1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
// Copyright Materialize, Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::Ordering;
use std::convert::{TryFrom, TryInto};
use std::ffi::{CStr, CString};
use std::fmt;
use std::iter::{Product, Sum};
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
use std::str::FromStr;
use libc::c_char;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::context::{Class, Context};
use crate::decimal128::Decimal128;
use crate::decimal32::Decimal32;
use crate::decimal64::Decimal64;
use crate::error::{
FromBcdError, InvalidCoefficientError, InvalidExponentError, InvalidPrecisionError,
ParseDecimalError, TryFromDecimalError, TryIntoDecimalError,
};
fn validate_n(n: usize) {
// TODO(benesch): check this at compile time, when that becomes possible.
if n < 12 || n > 999_999_999 {
panic!("Decimal<N>:: N is not in the range [12, 999999999]");
}
}
/// An arbitrary-precision decimal number.
///
/// The maximum number of digits that can be stored in the number is specified
/// by `N * 3`. For example, a value of type `Decimal<3>` has space for nine
/// decimal digits. This somewhat odd design is due to limitations of constant
/// generic parameters in Rust. The intention is to someday make `N` correspond
/// directly to the number of digits of precision.
///
/// `N` must be at least 12 and no greater than 999,999,999, though typically
/// the stack size implies a smaller maximum for `N`. Due to limitations with
/// constant generics it is not yet possible to enforce these restrictions at
/// compile time, so they are checked at runtime.
///
/// For more details about e.g. the struct's fields, see the [upstream
/// documentation](http://speleotrove.com/decimal/dnnumb.html).
#[repr(C)]
#[derive(Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Decimal<const N: usize> {
pub(crate) digits: u32,
pub(crate) exponent: i32,
pub(crate) bits: u8,
/// Must provide custom serde implementation for array defined with const
/// generic until something happens with
/// https://github.com/serde-rs/serde/issues/1272
#[cfg_attr(feature = "serde", serde(with = "lsu_serde"))]
pub(crate) lsu: [u16; N],
}
#[cfg(feature = "serde")]
mod lsu_serde {
use std::convert::TryInto;
use serde::de::{Error, Unexpected};
use serde::ser::SerializeSeq;
use serde::Deserialize;
pub fn serialize<S, const N: usize>(v: &[u16; N], serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let mut seq = serializer.serialize_seq(Some(N))?;
for e in v.iter() {
seq.serialize_element(e)?;
}
seq.end()
}
pub fn deserialize<'de, D, const N: usize>(deserializer: D) -> Result<[u16; N], D::Error>
where
D: serde::Deserializer<'de>,
{
let lsu = Vec::<u16>::deserialize(deserializer)?;
let lsu_len = lsu.len();
match lsu.try_into() {
Ok(lsu) => Ok(lsu),
Err(_) => {
return Err(Error::invalid_value(
Unexpected::Other(&format!("&[u16] of length {}", lsu_len)),
&format!("&[u16] of length {}", N).as_str(),
))
}
}
}
}
impl<const N: usize> Decimal<N> {
pub(crate) fn as_ptr(&self) -> *const decnumber_sys::decNumber {
self as *const Decimal<N> as *const decnumber_sys::decNumber
}
pub(crate) fn as_mut_ptr(&mut self) -> *mut decnumber_sys::decNumber {
self as *mut Decimal<N> as *mut decnumber_sys::decNumber
}
/// Constructs a decimal number with `N / 3` digits of precision
/// representing the number 0.
pub fn zero() -> Decimal<N> {
Decimal::default()
}
/// Constructs a decimal number representing positive infinity.
pub fn infinity() -> Decimal<N> {
let mut d = Decimal::default();
d.bits = decnumber_sys::DECINF;
d
}
/// Constructs a decimal number representing a non-signaling NaN.
pub fn nan() -> Decimal<N> {
let mut d = Decimal::default();
d.bits = decnumber_sys::DECNAN;
d
}
// Constructs a decimal number equal to 2^32. We use this value internally
// to create decimals from primitive integers with more than 32 bits.
fn two_pow_32() -> Decimal<N> {
let mut d = Decimal::default();
d.digits = 10;
d.lsu[0..4].copy_from_slice(&[296, 967, 294, 4]);
d
}
/// Computes the number of significant digits in the number.
///
/// If the number is zero or infinite, returns 1. If the number is a NaN,
/// returns the number of digits in the payload.
pub fn digits(&self) -> u32 {
self.digits
}
/// Returns the individual digits of the coefficient in 8-bit, unpacked
/// [binary-coded decimal][bcd] format.
///
/// [bcd]: https://en.wikipedia.org/wiki/Binary-coded_decimal
pub fn coefficient_digits(&self) -> Vec<u8> {
let mut buf = vec![0; usize::try_from(self.digits()).unwrap()];
unsafe {
decnumber_sys::decNumberGetBCD(self.as_ptr(), buf.as_mut_ptr() as *mut u8);
};
buf
}
/// Returns the digits of the coefficient in [`decNumberUnit`][dnu] format,
/// which is a vector of `u16`, with element number representing
/// [`decnumber_sys::DECDPUN`] digits of the coefficient.
///
/// The result is ordered with the least significant digits at index 0.
///
/// [dpd]: http://speleotrove.com/decimal/dnnumb.html
pub fn coefficient_units(&self) -> &[u16] {
let units_len = Self::digits_to_lsu_elements_len(self.digits);
&self.lsu[0..units_len]
}
/// Returns the value's coefficient as `T` or errors if not possible.
///
/// All primitive ints are valid for `T`.
pub fn coefficient<T>(&mut self) -> Result<T, InvalidCoefficientError>
where
T: TryFrom<Decimal<N>>,
{
// Save current exponent to avoid an allocation.
let cur_exp = self.exponent();
// Temporarily set exponent to 0 to make convertible to primitive int
// `T`.
self.set_exponent(0);
let coefficient = <T>::try_from(*self);
// Revert the exponent to its previous value.
self.set_exponent(cur_exp);
match coefficient {
Ok(d) => Ok(d),
Err(_) => Err(InvalidCoefficientError),
}
}
/// Returns the number of elements required in the `lsu` to represent some
/// number of digits.
///
/// This function is public and accepts a `u32` instead of a `Decimal` to
/// aid in recomposing ([`Self::from_raw_parts`]) values.
pub fn digits_to_lsu_elements_len(digits: u32) -> usize {
(usize::try_from(digits).unwrap() + decnumber_sys::DECDPUN - 1) / decnumber_sys::DECDPUN
}
/// Computes the exponent of the number.
pub fn exponent(&self) -> i32 {
self.exponent
}
/// Sets `self`'s exponent to the provided value.
pub fn set_exponent(&mut self, exponent: i32) {
self.exponent = exponent;
}
/// Reports whether the number is finite.
///
/// A finite number is one that is neither infinite nor a NaN.
pub fn is_finite(&self) -> bool {
(self.bits & decnumber_sys::DECSPECIAL) == 0
}
/// Reports whether the number is positive or negative infinity.
pub fn is_infinite(&self) -> bool {
(self.bits & decnumber_sys::DECINF) != 0
}
/// Reports whether the number is a NaN.
pub fn is_nan(&self) -> bool {
(self.bits & (decnumber_sys::DECNAN | decnumber_sys::DECSNAN)) != 0
}
/// Reports whether the number is negative.
///
/// A negative number is either negative zero, less than zero, or NaN
/// with a sign of one. This corresponds to [`Decimal128::is_signed`], not
/// [`Decimal128::is_negative`].
pub fn is_negative(&self) -> bool {
(self.bits & decnumber_sys::DECNEG) != 0
}
/// Reports whether the number is a quiet NaN.
pub fn is_quiet_nan(&self) -> bool {
(self.bits & decnumber_sys::DECNAN) != 0
}
/// Reports whether the number is a signaling NaN.
pub fn is_signaling_nan(&self) -> bool {
(self.bits & decnumber_sys::DECSNAN) != 0
}
/// Reports whether the number has a special value.
///
/// A special value is either infinity or NaN. This is the inverse of
/// [`Decimal::is_finite`].
pub fn is_special(&self) -> bool {
(self.bits & decnumber_sys::DECSPECIAL) != 0
}
/// Reports whether the number is positive or negative zero.
pub fn is_zero(&self) -> bool {
self.is_finite() && self.lsu[0] == 0 && self.digits == 1
}
/// Reports whether the quantum of the number matches the quantum of
/// `rhs`.
///
/// Quantums are considered to match if the numbers have the same exponent,
/// are both NaNs, or both infinite.
pub fn quantum_matches(&self, rhs: &Decimal<N>) -> bool {
let mut d = MaybeUninit::<Decimal<N>>::uninit();
let d = unsafe {
decnumber_sys::decNumberSameQuantum(
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
self.as_ptr(),
rhs.as_ptr(),
);
d.assume_init()
};
if d.is_zero() {
false
} else {
debug_assert!(!d.is_special());
true
}
}
/// Converts this decimal to a 32-bit decimal float.
///
/// The result may be inexact. Use [`Context::<Decimal32>::from_decimal`]
/// to observe exceptional conditions.
pub fn to_decimal32(&self) -> Decimal32 {
Context::<Decimal32>::default().from_decimal(self)
}
/// Converts this decimal to a 64-bit decimal float.
///
/// The result may be inexact. Use [`Context::<Decimal64>::from_decimal`]
/// to observe exceptional conditions.
pub fn to_decimal64(&self) -> Decimal64 {
Context::<Decimal64>::default().from_decimal(self)
}
/// Converts this decimal to a 128-bit decimal float.
///
/// The result may be inexact. Use [`Context::<Decimal128>::from_decimal`]
/// to observe exceptional conditions.
pub fn to_decimal128(&self) -> Decimal128 {
Context::<Decimal128>::default().from_decimal(self)
}
/// Returns the raw parts of this decimal.
///
/// The meaning of these parts are unspecified and subject to change. The
/// only guarantee is that these parts can be supplied as arguments to the
/// [`Decimal::from_raw_parts`] to produce a decimal equivalent to the
/// original.
pub fn to_raw_parts(&self) -> (u32, i32, u8, [u16; N]) {
(self.digits, self.exponent, self.bits, self.lsu)
}
/// Returns a `Decimal::<N>` with the supplied raw parts, which should be
/// generated using [`Decimal::to_raw_parts`].
pub fn from_raw_parts(digits: u32, exponent: i32, bits: u8, lsu: [u16; N]) -> Self {
Decimal {
digits,
exponent,
bits,
lsu,
}
}
/// Returns `self` as a [Packed Decimal][pd] number, including its scale
/// (i.e. its negated exponent) or `None` for special values.
///
/// [pd]: http://speleotrove.com/decimal/dnpack.html
pub fn to_packed_bcd(&mut self) -> Option<(Vec<u8>, i32)> {
if self.is_special() {
return None;
}
let mut len = (usize::try_from(self.digits).unwrap() + 1) / 2;
if self.digits % 2 == 0 {
// Ensure space for sign nibble
len += 1;
}
let mut bcd = vec![0; len];
let mut scale: i32 = 0;
let ret = unsafe {
decnumber_sys::decPackedFromNumber(
bcd.as_mut_ptr() as *mut u8,
len.try_into().unwrap(),
&mut scale as *mut i32,
self.as_mut_ptr() as *mut decnumber_sys::decNumber,
)
};
// Null returned only for special values (already handled) or if `self`
// didn't fit within `bcd` (shouldn't happen).
assert!(!ret.is_null());
Some((bcd, scale))
}
/// Takes [Packed Decimal][pd] values and their scales (generated by
/// [`Self::to_packed_bcd`]) and returns a `Decimal`.
///
/// # Errors
///
/// - `bcd` contains more digits than the coefficient permits
/// - The adjusted exponent is out of range
/// - No sign nibble was found
/// - A sign nibble was found before the final nibble
///
/// [pd]: http://speleotrove.com/decimal/dnpack.html
pub fn from_packed_bcd(bcd: &[u8], scale: i32) -> Result<Decimal<N>, FromBcdError> {
let mut d = Decimal::default();
let ret = unsafe {
decnumber_sys::decPackedToNumber(
bcd.as_ptr() as *const u8,
bcd.len().try_into().unwrap(),
&scale as *const i32,
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
)
};
if ret.is_null() {
Err(FromBcdError)
} else {
Ok(d)
}
}
/// Returns a string of the number in standard notation, i.e. guaranteed to
/// not be scientific notation.
pub fn to_standard_notation_string(&self) -> String {
if !self.is_finite() {
return self.to_string();
}
let digits = self.coefficient_digits();
let digits = {
let i = digits
.iter()
.position(|d| *d != 0)
.unwrap_or(digits.len() - 1);
&digits[i..]
};
let ndigits = digits.len() as i32;
let e = self.exponent();
// We allocate space for all the digits plus a possible "-0." prefix.
// This is usually an overestimate but is an underestimate for very
// large or very small scales.
let mut out = String::with_capacity(digits.len() + 3);
if self.is_negative() {
out.push('-');
}
if e >= 0 {
// All digits before the decimal point.
for d in digits {
out.push(char::from(b'0' + *d));
}
if !self.is_zero() {
for _ in 0..e {
out.push('0');
}
}
} else if ndigits > -e {
// Digits span the decimal point.
let e = (ndigits + e) as usize;
for d in &digits[..e] {
out.push(char::from(b'0' + *d));
}
out.push('.');
for d in &digits[e..] {
out.push(char::from(b'0' + *d));
}
} else {
// All digits after the decimal point.
out.push_str("0.");
for _ in 0..(-e - ndigits) {
out.push('0');
}
for d in digits {
out.push(char::from(b'0' + *d));
}
}
out
}
/// Removes insignificant trailing zeros from a number, unconditionally, and
/// stores the modified value in `self`.
pub fn trim(&mut self) {
unsafe {
decnumber_sys::decNumberTrim(self.as_mut_ptr());
}
}
}
impl<const N: usize> Default for Decimal<N> {
fn default() -> Decimal<N> {
validate_n(N);
Decimal::<N> {
digits: 1,
bits: 0,
exponent: 0,
lsu: [0; N],
}
}
}
impl<const N: usize> PartialOrd for Decimal<N> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Context::<Decimal<N>>::default().partial_cmp(self, other)
}
}
impl<const N: usize> PartialEq for Decimal<N> {
fn eq(&self, other: &Self) -> bool {
self.partial_cmp(other) == Some(Ordering::Equal)
}
}
impl<const N: usize> Neg for Decimal<N> {
type Output = Decimal<N>;
/// Note that this clones `self` to generate the negative value. For a
/// non-cloning method, use `Context::<N>::neg`.
fn neg(self) -> Decimal<N> {
let mut n = self.clone();
unsafe {
decnumber_sys::decNumberCopyNegate(n.as_mut_ptr(), n.as_ptr());
}
n
}
}
impl<const M: usize, const N: usize> Add<Decimal<M>> for Decimal<N> {
type Output = Self;
/// Note that this clones `self` to generate the output. For a
/// non-cloning method, use `Context::<N>::add`.
fn add(self, rhs: Decimal<M>) -> Self {
let mut lhs = self.clone();
Context::<Self>::default().add(&mut lhs, &rhs);
lhs
}
}
impl<const M: usize, const N: usize> AddAssign<Decimal<M>> for Decimal<N> {
fn add_assign(&mut self, rhs: Decimal<M>) {
Context::<Self>::default().add(self, &rhs);
}
}
impl<const M: usize, const N: usize> Div<Decimal<M>> for Decimal<N> {
type Output = Self;
/// Note that this clones `self` to generate the output. For a
/// non-cloning method, use `Context::<N>::div`.
fn div(self, rhs: Decimal<M>) -> Self {
let mut lhs = self.clone();
Context::<Self>::default().div(&mut lhs, &rhs);
lhs
}
}
impl<const M: usize, const N: usize> DivAssign<Decimal<M>> for Decimal<N> {
fn div_assign(&mut self, rhs: Decimal<M>) {
Context::<Self>::default().div(self, &rhs);
}
}
impl<const M: usize, const N: usize> Mul<Decimal<M>> for Decimal<N> {
type Output = Self;
/// Note that this clones `self` to generate the output. For a
/// non-cloning method, use `Context::<N>::mul`.
fn mul(self, rhs: Decimal<M>) -> Self {
let mut lhs = self.clone();
Context::<Self>::default().mul(&mut lhs, &rhs);
lhs
}
}
impl<const M: usize, const N: usize> MulAssign<Decimal<M>> for Decimal<N> {
fn mul_assign(&mut self, rhs: Decimal<M>) {
Context::<Self>::default().mul(self, &rhs);
}
}
impl<const M: usize, const N: usize> Rem<Decimal<M>> for Decimal<N> {
type Output = Self;
/// Note that this clones `self` to generate the output. For a
/// non-cloning method, use `Context::<N>::rem`.
fn rem(self, rhs: Decimal<M>) -> Self {
let mut lhs = self.clone();
Context::<Self>::default().rem(&mut lhs, &rhs);
lhs
}
}
impl<const M: usize, const N: usize> RemAssign<Decimal<M>> for Decimal<N> {
fn rem_assign(&mut self, rhs: Decimal<M>) {
Context::<Self>::default().rem(self, &rhs);
}
}
impl<const M: usize, const N: usize> Sub<Decimal<M>> for Decimal<N> {
type Output = Self;
/// Note that this clones `self` to generate the output. For a
/// non-cloning method, use `Context::<N>::sub`.
fn sub(self, rhs: Decimal<M>) -> Self {
let mut lhs = self.clone();
Context::<Self>::default().sub(&mut lhs, &rhs);
lhs
}
}
impl<const M: usize, const N: usize> SubAssign<Decimal<M>> for Decimal<N> {
fn sub_assign(&mut self, rhs: Decimal<M>) {
Context::<Self>::default().sub(self, &rhs);
}
}
impl<const M: usize, const N: usize> Sum<Decimal<M>> for Decimal<N> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Decimal<M>>,
{
iter.map(|v| v).collect::<Vec<_>>().iter().sum()
}
}
impl<'a, const M: usize, const N: usize> Sum<&'a Decimal<M>> for Decimal<N> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Decimal<M>>,
{
let mut cx = Context::<Self>::default();
cx.sum(iter)
}
}
impl<const M: usize, const N: usize> Product<Decimal<M>> for Decimal<N> {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Decimal<M>>,
{
iter.map(|v| v).collect::<Vec<_>>().iter().product()
}
}
impl<'a, const M: usize, const N: usize> Product<&'a Decimal<M>> for Decimal<N> {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Decimal<M>>,
{
let mut cx = Context::<Self>::default();
cx.product(iter)
}
}
impl<const N: usize> fmt::Debug for Decimal<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl<const N: usize> fmt::Display for Decimal<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// String conversion may need up to `self.digits + 14` characters,
// per the libdecnumber documentation.
let mut buf = Vec::with_capacity(self.digits as usize + 14);
let c_str = unsafe {
if f.alternate() {
decnumber_sys::decNumberToEngString(self.as_ptr(), buf.as_mut_ptr() as *mut c_char);
} else {
decnumber_sys::decNumberToString(self.as_ptr(), buf.as_mut_ptr() as *mut c_char);
}
CStr::from_ptr(buf.as_ptr() as *const c_char)
};
f.write_str(
c_str
.to_str()
.expect("decNumberToString yields valid UTF-8"),
)
}
}
impl<const N: usize> FromStr for Decimal<N> {
type Err = ParseDecimalError;
fn from_str(s: &str) -> Result<Decimal<N>, ParseDecimalError> {
Context::<Decimal<N>>::default().parse(s)
}
}
/// Implements `std::convert::TryInto` semantics for `Decimal<N>` (represented
/// by `$d`) into primitive integers (`$p`).
macro_rules! __decnum_tryinto_primitive {
($p:ty, $cx:expr, $max_digits:literal, $d:expr, $allow_neg:expr) => {{
$cx.rescale(&mut $d, &Decimal::<N>::zero());
// inexact indicates you rounded away non-zero digits during rescale.
let inexact = $cx.status().inexact();
let mut fail = || -> TryFromDecimalError {
let mut s = $cx.status();
s.set_invalid_operation();
$cx.set_status(s);
TryFromDecimalError
};
if $d.is_special()
|| $d.digits() > $max_digits
|| (!$allow_neg && $d.is_negative())
|| inexact
{
return Err(fail());
}
let accum_op = if $d.is_negative() {
<$p>::checked_sub
} else {
<$p>::checked_add
};
let ten: $p = 10;
let mut ten_pow = 0;
let mut accum = 0;
// try-catch
|| -> Option<$p> {
for v in $d.coefficient_units() {
let d = <$p>::from(*v).checked_mul(ten.pow(ten_pow))?;
accum = accum_op(accum, d)?;
ten_pow += decnumber_sys::DECDPUN as u32;
}
Some(accum)
}()
.ok_or_else(|| fail())
}};
}
macro_rules! decnum_tryinto_primitive_int {
($p:ty, $cx:expr, $max_digits:literal, $d:expr) => {{
__decnum_tryinto_primitive!($p, $cx, $max_digits, $d, true)
}};
}
macro_rules! decnum_tryinto_primitive_uint {
($p:ty, $cx:expr, $max_digits:literal, $d:expr) => {{
__decnum_tryinto_primitive!($p, $cx, $max_digits, $d, false)
}};
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for i8 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<i8, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_i8(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for u8 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<u8, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_u8(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for i16 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<i16, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_i16(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for u16 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<u16, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_u16(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for i32 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<i32, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_i32(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for u32 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<u32, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_u32(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for i64 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<i64, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_i64(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for u64 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<u64, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_u64(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for i128 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<i128, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_i128(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for u128 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<u128, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_u128(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for usize {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<usize, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_usize(n)
}
}
/// Refer to the comments on [`Context<Decimal<N>>::try_into_i32()`], which also apply to
/// this trait.
impl<const N: usize> TryFrom<Decimal<N>> for isize {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<isize, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_isize(n)
}
}
macro_rules! decnum_tryinto_primitive_float {
($p:ty, $cx:expr, $d:expr) => {{
if $d.is_infinite() {
return Ok(if $d.is_negative() {
<$p>::NEG_INFINITY
} else {
<$p>::INFINITY
});
}
if $d.is_nan() {
return Ok(<$p>::NAN);
}
const TEN: $p = 10.0;
const DECDPUN_F: $p = decnumber_sys::DECDPUN as $p;
let mut e = $d.exponent() as $p;
let mut f: $p = 0.0;
for u in $d.coefficient_units() {
// `powi` gives wrong results on some input, whereas `powf` does not
f += <$p>::from(*u) * TEN.powf(e);
e += DECDPUN_F;
}
if $d.is_negative() {
f = -f;
}
// Value over- or underflows $p:
// - f.is_infinite() represents generic overflow
// - f.is_nan() can occur when multiplying a coefficient unit by a power
// of 10 that exceeds the primitive type's maximum exponent
// - (!$d.is_zero() && f == 0.0) represents underflow
if f.is_infinite() || f.is_nan() || (!$d.is_zero() && f == 0.0) {
let mut s = $cx.status();
s.set_invalid_operation();
$cx.set_status(s);
Err(TryFromDecimalError)
} else {
Ok(f)
}
}};
}
impl<const N: usize> TryFrom<Decimal<N>> for f32 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<f32, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_f32(n)
}
}
impl<const N: usize> TryFrom<Decimal<N>> for f64 {
type Error = TryFromDecimalError;
fn try_from(n: Decimal<N>) -> Result<f64, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
cx.try_into_f64(n)
}
}
impl<const N: usize> From<f32> for Decimal<N> {
fn from(n: f32) -> Decimal<N> {
let mut cx = Context::<Decimal<N>>::default();
cx.from_f32(n)
}
}
impl<const N: usize> From<f64> for Decimal<N> {
fn from(n: f64) -> Decimal<N> {
let mut cx = Context::<Decimal<N>>::default();
cx.from_f64(n)
}
}
impl<const N: usize> From<i8> for Decimal<N> {
fn from(n: i8) -> Decimal<N> {
Decimal::<N>::from(i32::from(n))
}
}
impl<const N: usize> From<u8> for Decimal<N> {
fn from(n: u8) -> Decimal<N> {
Decimal::<N>::from(u32::from(n))
}
}
impl<const N: usize> From<i16> for Decimal<N> {
fn from(n: i16) -> Decimal<N> {
Decimal::<N>::from(i32::from(n))
}
}
impl<const N: usize> From<u16> for Decimal<N> {
fn from(n: u16) -> Decimal<N> {
Decimal::<N>::from(u32::from(n))
}
}
impl<const N: usize> From<i32> for Decimal<N> {
fn from(n: i32) -> Decimal<N> {
let mut d = Decimal::default();
unsafe {
decnumber_sys::decNumberFromInt32(d.as_mut_ptr() as *mut decnumber_sys::decNumber, n);
}
d
}
}
impl<const N: usize> From<u32> for Decimal<N> {
fn from(n: u32) -> Decimal<N> {
let mut d = Decimal::default();
unsafe {
decnumber_sys::decNumberFromUInt32(d.as_mut_ptr() as *mut decnumber_sys::decNumber, n);
}
d
}
}
impl<const N: usize> From<i64> for Decimal<N> {
fn from(n: i64) -> Decimal<N> {
let mut cx = Context::<Decimal<N>>::default();
cx.from_i64(n)
}
}
impl<const N: usize> From<u64> for Decimal<N> {
fn from(n: u64) -> Decimal<N> {
let mut cx = Context::<Decimal<N>>::default();
cx.from_u64(n)
}
}
/// Generates a [`Decimal`] from an `i128` or fails if the result would be
/// imprecise, e.g. has more than `N*3` digits of precision.
///
/// For an infallible version of this function, see
/// [`Context<Decimal<N>>::from_i128`].
impl<const N: usize> TryFrom<i128> for Decimal<N> {
type Error = TryIntoDecimalError;
fn try_from(n: i128) -> Result<Decimal<N>, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
let d = cx.from_i128(n);
return if cx.status().any() {
Err(TryIntoDecimalError)
} else {
Ok(d)
};
}
}
/// Generates a [`Decimal`] from a `u128` or fails if the result would be
/// imprecise, e.g. has more than `N*3` digits of precision.
///
/// For an infallible version of this function, see
/// [`Context<Decimal<N>>::from_u128`].
impl<const N: usize> TryFrom<u128> for Decimal<N> {
type Error = TryIntoDecimalError;
fn try_from(n: u128) -> Result<Decimal<N>, Self::Error> {
let mut cx = Context::<Decimal<N>>::default();
let d = cx.from_u128(n);
return if cx.status().any() {
Err(TryIntoDecimalError)
} else {
Ok(d)
};
}
}
#[cfg(target_pointer_width = "32")]
impl<const N: usize> From<usize> for Decimal<N> {
fn from(n: usize) -> Decimal<N> {
Decimal::<N>::from(n as u32)
}
}
#[cfg(target_pointer_width = "32")]
impl<const N: usize> From<isize> for Decimal<N> {
fn from(n: isize) -> Decimal<N> {
Decimal::<N>::from(n as i32)
}
}
#[cfg(target_pointer_width = "64")]
impl<const N: usize> From<usize> for Decimal<N> {
fn from(n: usize) -> Decimal<N> {
Decimal::<N>::from(n as u64)
}
}
#[cfg(target_pointer_width = "64")]
impl<const N: usize> From<isize> for Decimal<N> {
fn from(n: isize) -> Decimal<N> {
Decimal::<N>::from(n as i64)
}
}
impl<const N: usize> From<Decimal32> for Decimal<N> {
fn from(n: Decimal32) -> Decimal<N> {
let mut d = Decimal::default();
unsafe {
decnumber_sys::decimal32ToNumber(
&n.inner,
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
);
}
d
}
}
impl<const N: usize> From<Decimal64> for Decimal<N> {
fn from(n: Decimal64) -> Decimal<N> {
let mut d = Decimal::default();
unsafe {
decnumber_sys::decimal64ToNumber(
&n.inner,
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
);
}
d
}
}
impl<const N: usize> From<Decimal128> for Decimal<N> {
fn from(n: Decimal128) -> Decimal<N> {
let mut d = Decimal::default();
unsafe {
decnumber_sys::decimal128ToNumber(
&n.inner,
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
);
}
d
}
}
impl<const N: usize> Default for Context<Decimal<N>> {
fn default() -> Context<Decimal<N>> {
let mut ctx = MaybeUninit::<decnumber_sys::decContext>::uninit();
let mut ctx = unsafe {
decnumber_sys::decContextDefault(ctx.as_mut_ptr(), decnumber_sys::DEC_INIT_BASE);
ctx.assume_init()
};
ctx.traps = 0;
// TODO(benesch): this could be a static assertion or a where bound,
// if either of those were supported.
ctx.digits = i32::try_from(N * decnumber_sys::DECDPUN)
.expect("decimal digit count does not fit into i32");
Context {
inner: ctx,
_phantom: PhantomData,
}
}
}
impl<const N: usize> Context<Decimal<N>> {
/// Returns the context's precision.
///
/// Operations that use this context will be rounded to this length if
/// necessary.
pub fn precision(&self) -> usize {
usize::try_from(self.inner.digits).expect("context digit count does not fit into usize")
}
/// Sets the context's precision.
///
/// The precision must be at least one and no greater than `N * 3`.
pub fn set_precision(&mut self, precision: usize) -> Result<(), InvalidPrecisionError> {
if precision < 1 || precision > N * decnumber_sys::DECDPUN {
return Err(InvalidPrecisionError);
}
self.inner.digits = i32::try_from(precision).map_err(|_| InvalidPrecisionError)?;
Ok(())
}
/// Reports whether the context has exponent clamping enabled.
///
/// See the `clamp` field in the documentation of libdecnumber's
/// [decContext module] for details.
///
/// [decContext module]: http://speleotrove.com/decimal/dncont.html
pub fn clamp(&self) -> bool {
self.inner.clamp != 0
}
/// Sets whether the context has exponent clamping enabled.
pub fn set_clamp(&mut self, clamp: bool) {
self.inner.clamp = u8::from(clamp)
}
/// Returns the context's maximum exponent.
///
/// See the `emax` field in the documentation of libdecnumber's
/// [decContext module] for details.
///
/// [decContext module]: http://speleotrove.com/decimal/dncont.html
pub fn max_exponent(&self) -> isize {
isize::try_from(self.inner.emax).expect("context max exponent does not fit into isize")
}
/// Sets the context's maximum exponent.
///
/// The maximum exponent must not be negative and no greater than
/// 999,999,999.
pub fn set_max_exponent(&mut self, e: isize) -> Result<(), InvalidExponentError> {
if e < 0 || e > 999999999 {
return Err(InvalidExponentError);
}
self.inner.emax = i32::try_from(e).map_err(|_| InvalidExponentError)?;
Ok(())
}
/// Returns the context's minimum exponent.
///
/// See the `emin` field in the documentation of libdecnumber's
/// [decContext module] for details.
///
/// [decContext module]: http://speleotrove.com/decimal/dncont.html
pub fn min_exponent(&self) -> isize {
isize::try_from(self.inner.emin).expect("context min exponent does not fit into isize")
}
/// Sets the context's minimum exponent.
///
/// The minimum exponent must not be positive and no smaller than
/// -999,999,999.
pub fn set_min_exponent(&mut self, e: isize) -> Result<(), InvalidExponentError> {
if e > 0 || e < -999999999 {
return Err(InvalidExponentError);
}
self.inner.emin = i32::try_from(e).map_err(|_| InvalidExponentError)?;
Ok(())
}
/// Parses a number from its string representation.
pub fn parse<S>(&mut self, s: S) -> Result<Decimal<N>, ParseDecimalError>
where
S: Into<Vec<u8>>,
{
validate_n(N);
let c_string = CString::new(s).map_err(|_| ParseDecimalError)?;
let mut d = Decimal::zero();
unsafe {
decnumber_sys::decNumberFromString(
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
c_string.as_ptr(),
&mut self.inner,
);
};
if (self.inner.status & decnumber_sys::DEC_Conversion_syntax) != 0 {
Err(ParseDecimalError)
} else {
Ok(d)
}
}
/// Classifies the number.
pub fn class(&mut self, n: &Decimal<N>) -> Class {
Class::from_c(unsafe { decnumber_sys::decNumberClass(n.as_ptr(), &mut self.inner) })
}
/// Computes the absolute value of `n`, storing the result in `n`.
///
/// This has the same effect as [`Context::<Decimal<N>>::plus`] unless
/// `n` is negative, in which case it has the same effect as
/// [`Context::<Decimal<N>>::minus`].
pub fn abs(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberAbs(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Adds `lhs` and `rhs`, storing the result in `lhs`.
pub fn add<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberAdd(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Carries out the digitwise logical and of `lhs` and `rhs`, storing
/// the result in `lhs`.
pub fn and<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberAnd(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Divides `lhs` by `rhs`, storing the result in `lhs`.
pub fn div<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberDivide(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Divides `lhs` by `rhs`, storing the integer part of the result in `lhs`.
pub fn div_integer<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberDivideInteger(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Raises *e* to the power of `n`, storing the result in `n`.
pub fn exp(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberExp(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Calculates the fused multiply-add `(x * y) + z` and stores the result
/// in `x`.
///
/// The multiplication is carried out first and is exact, so this operation
/// only has the one, final rounding.
pub fn fma<const L: usize, const M: usize>(
&mut self,
x: &mut Decimal<N>,
y: &Decimal<L>,
z: &Decimal<M>,
) {
unsafe {
decnumber_sys::decNumberFMA(
x.as_mut_ptr(),
x.as_ptr(),
y.as_ptr(),
z.as_ptr(),
&mut self.inner,
);
}
}
/// Constructs a number from an `i32`.
pub fn from_i32(&mut self, n: i32) -> Decimal<N> {
Decimal::<N>::from(n)
}
/// Constructs a number from an `i32`.
pub fn from_u32(&mut self, n: u32) -> Decimal<N> {
Decimal::<N>::from(n)
}
/// Constructs a number from an `i64`.
pub fn from_i64(&mut self, n: i64) -> Decimal<N> {
decimal_from_signed_int!(self, n)
}
/// Constructs a number from a `u64`.
pub fn from_u64(&mut self, n: u64) -> Decimal<N> {
decimal_from_unsigned_int!(self, n)
}
/// Constructs a number from an `i128`.
///
/// Note that this function can return inexact results for numbers with more
/// than `N` * 3 places of precision, e.g. where `N` is 12,
/// `9_999_999_999_999_999_999_999_999_999_999_999_999i128`,
/// `-9_999_999_999_999_999_999_999_999_999_999_999_999i128`, `i128::MAX`,
/// `i128::MIN`, etc.
///
/// However, some numbers more than `N` * 3 places of precision retain their
/// exactness, e.g. `1_000_000_000_000_000_000_000_000_000_000_000_000i128`.
///
/// ```
/// const N: usize = 12;
/// use dec::Decimal;
/// let mut ctx = dec::Context::<Decimal::<N>>::default();
/// let d = ctx.from_i128(i128::MAX);
/// // Inexact result
/// assert!(ctx.status().inexact());
///
/// let mut ctx = dec::Context::<Decimal::<N>>::default();
/// let d = ctx.from_i128(1_000_000_000_000_000_000_000_000_000_000_000_000i128);
/// // Exact result
/// assert!(!ctx.status().inexact());
/// ```
///
/// To avoid inexact results when converting from large `i64`, use
/// [`crate::Decimal128`] instead.
pub fn from_i128(&mut self, n: i128) -> Decimal<N> {
decimal_from_signed_int!(self, n)
}
/// Constructs a number from an `u128`.
///
/// Note that this function can return inexact results for numbers with more
/// than `N` * 3 places of precision, e.g. where `N` is 12,
/// `10_000_000_000_000_000_000_000_000_000_000_001u128` and `u128::MAX`.
///
/// However, some numbers more than `N` * 3 places of precision retain their
/// exactness, e.g. `10_000_000_000_000_000_000_000_000_000_000_000u128`.
///
/// ```
/// const N: usize = 12;
/// use dec::Decimal;
/// let mut ctx = dec::Context::<Decimal::<N>>::default();
/// let d = ctx.from_u128(u128::MAX);
/// // Inexact result
/// assert!(ctx.status().inexact());
///
/// let mut ctx = dec::Context::<Decimal::<N>>::default();
/// let d = ctx.from_u128(1_000_000_000_000_000_000_000_000_000_000_000_000u128);
/// // Exact result
/// assert!(!ctx.status().inexact());
/// ```
pub fn from_u128(&mut self, n: u128) -> Decimal<N> {
decimal_from_unsigned_int!(self, n)
}
/// Attempts to convert `d` to `u8` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_u8(&mut self, d: Decimal<N>) -> Result<u8, TryFromDecimalError> {
let i = self.try_into_u32(d)?;
u8::try_from(i).map_err(|_| TryFromDecimalError)
}
/// Attempts to convert `d` to `i8` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_i8(&mut self, d: Decimal<N>) -> Result<i8, TryFromDecimalError> {
let i = self.try_into_i32(d)?;
i8::try_from(i).map_err(|_| TryFromDecimalError)
}
/// Attempts to convert `d` to `u16` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_u16(&mut self, d: Decimal<N>) -> Result<u16, TryFromDecimalError> {
let i = self.try_into_u32(d)?;
u16::try_from(i).map_err(|_| TryFromDecimalError)
}
/// Attempts to convert `d` to `i16` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_i16(&mut self, d: Decimal<N>) -> Result<i16, TryFromDecimalError> {
let i = self.try_into_i32(d)?;
i16::try_from(i).map_err(|_| TryFromDecimalError)
}
/// Attempts to convert `d` to `i32` or fails if not possible. Note that
/// when returning an error, `self`'s [`context::Status`] is set to
/// `invalid_operation` in addition to using Rust's `Err` return value.
///
/// Note that this function:
/// - Accepts any value that can be rescaled to an exponent of 0 without
/// becoming inexact. For example, `123.000` and `123E2` are valid
/// `Decimal` values.
///
/// The corollary is that values that cannot be rescaled to an exponent of
/// 0 error.
/// - Errors if `self.status()` is set to `invalid_operation` irrespective
/// of whether or not this specific invocation of the function set that
/// status.
pub fn try_into_i32(&mut self, mut d: Decimal<N>) -> Result<i32, TryFromDecimalError> {
self.rescale(&mut d, &Decimal::<N>::zero());
let i = unsafe { decnumber_sys::decNumberToInt32(d.as_ptr(), &mut self.inner) };
// inexact indicates you rounded away non-zero digits during rescale.
if self.status().invalid_operation() || self.status().inexact() {
Err(TryFromDecimalError)
} else {
Ok(i)
}
}
/// Attempts to convert `d` to `u32` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_u32(&mut self, mut d: Decimal<N>) -> Result<u32, TryFromDecimalError> {
self.rescale(&mut d, &Decimal::<N>::zero());
let i = unsafe { decnumber_sys::decNumberToUInt32(d.as_ptr(), &mut self.inner) };
// inexact indicates you rounded away non-zero digits during rescale.
if self.status().invalid_operation() || self.status().inexact() {
Err(TryFromDecimalError)
} else {
Ok(i)
}
}
/// Attempts to convert `d` to `isize` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
#[cfg(target_pointer_width = "32")]
pub fn try_into_isize(&mut self, d: Decimal<N>) -> Result<isize, TryFromDecimalError> {
let d = self.try_into_i32(d)?;
Ok(d as isize)
}
/// Attempts to convert `d` to `isize` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
#[cfg(target_pointer_width = "64")]
pub fn try_into_isize(&mut self, d: Decimal<N>) -> Result<isize, TryFromDecimalError> {
let d = self.try_into_i64(d)?;
Ok(d as isize)
}
/// Attempts to convert `d` to `i64` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_i64(&mut self, mut d: Decimal<N>) -> Result<i64, TryFromDecimalError> {
decnum_tryinto_primitive_int!(i64, self, 19, d)
}
/// Attempts to convert `d` to `i128` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_i128(&mut self, mut d: Decimal<N>) -> Result<i128, TryFromDecimalError> {
decnum_tryinto_primitive_int!(i128, self, 39, d)
}
/// Attempts to convert `d` to `usize` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
#[cfg(target_pointer_width = "32")]
pub fn try_into_usize(&mut self, d: Decimal<N>) -> Result<usize, TryFromDecimalError> {
let d = self.try_into_u32(d)?;
Ok(d as usize)
}
/// Attempts to convert `d` to `usize` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
#[cfg(target_pointer_width = "64")]
pub fn try_into_usize(&mut self, d: Decimal<N>) -> Result<usize, TryFromDecimalError> {
let d = self.try_into_u64(d)?;
Ok(d as usize)
}
/// Attempts to convert `d` to `u64` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_u64(&mut self, mut d: Decimal<N>) -> Result<u64, TryFromDecimalError> {
decnum_tryinto_primitive_uint!(u64, self, 20, d)
}
/// Attempts to convert `d` to `u128` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_i32()`], which also apply to this
/// function.
pub fn try_into_u128(&mut self, mut d: Decimal<N>) -> Result<u128, TryFromDecimalError> {
decnum_tryinto_primitive_uint!(u128, self, 39, d)
}
/// Attempts to convert `d` to `f32` or fails if not possible.
///
/// Note that this function:
/// - Errors for values that over- or underflow `f32`, rather than returning
/// infinity or `0.0`, respectively.
/// - Returns a primitive infinity or NaN if `d` is an equivalent value.
pub fn try_into_f32(&mut self, d: Decimal<N>) -> Result<f32, TryFromDecimalError> {
decnum_tryinto_primitive_float!(f32, self, d)
}
/// Attempts to convert `d` to `f32` or fails if not possible.
///
/// Refer to the comments on [`Self::try_into_f32()`], which also apply to this
/// function.
pub fn try_into_f64(&mut self, d: Decimal<N>) -> Result<f64, TryFromDecimalError> {
decnum_tryinto_primitive_float!(f64, self, d)
}
/// Converts an `f32` to a `Decimal<N>`.
///
/// Note that this conversion is infallible because `f32`'s:
/// - Maximum precision is ~8
/// - Min/max exponent is ~ -37, 37
///
/// Both of these are guaranteed to fit comfortably within `Decimal`'s
/// constraints.
pub fn from_f32(&mut self, n: f32) -> Decimal<N> {
self.parse(n.to_string().as_str()).unwrap()
}
/// Converts an `f64` to a `Decimal<N>`.
///
/// Note that this conversion is infallible because `f64`'s:
/// - Maximum precision is ~18
/// - Min/max exponent is ~ -305, 305
///
/// Both of these are guaranteed to fit comfortably within `Decimal`'s
/// constraints.
pub fn from_f64(&mut self, n: f64) -> Decimal<N> {
self.parse(n.to_string().as_str()).unwrap()
}
/// Computes the digitwise logical inversion of `n`, storing the result in
/// `n`.
pub fn invert(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberInvert(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Computes the natural logarithm of `n`, storing the result in `n`.
pub fn ln(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberLn(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Computes the base-10 logarithm of `n`, storing the result in `n`.
pub fn log10(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberLog10(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Computes the adjusted exponent of the number, according to IEEE 754
/// rules.
pub fn logb(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberLogB(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Places whichever of `lhs` and `rhs` is larger in `lhs`.
///
/// The comparison is performed using the same rules as for
/// [`total_cmp`](Context::<Decimal128>::total_cmp).
pub fn max<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberMax(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Places whichever of `lhs` and `rhs` has the larger absolute value in
/// `lhs`.
pub fn max_abs<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberMaxMag(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Places whichever of `lhs` and `rhs` is smaller in `lhs`.
///
/// The comparison is performed using the same rules as for
/// [`total_cmp`](Context::<Decimal128>::total_cmp).
pub fn min<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberMin(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Places whichever of `lhs` and `rhs` has the smaller absolute value in
/// `lhs`.
pub fn min_abs<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberMinMag(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Subtracts `n` from zero, storing the result in `n`.
pub fn minus(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberMinus(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Multiples `lhs` by `rhs`, storing the result in `lhs`.
pub fn mul<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberMultiply(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Negates the sign of `n`, storing the result in `n`. Note that unlike
/// `minus`, no exception or error can occur.
pub fn neg(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberCopyNegate(n.as_mut_ptr(), n.as_ptr());
}
}
/// Computes the next number to `n` in the direction of negative infinity,
/// storing the result in `n`.
///
/// This operation is a generalization of the IEEE 754 *nextDown* operation.
pub fn next_minus(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberNextMinus(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Computes the next number to `n` in the direction of positive infinity,
/// storing the result in `n`.
///
/// This operation is a generalization of the IEEE 754 *nextUp* operation.
pub fn next_plus(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberNextPlus(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Computes the next number to `x` in the direction of `y`, storing the
/// result in `x`.
///
/// This operation is a generalization of the IEEE 754 *nextAfter*
/// operation.
pub fn next_toward<const M: usize>(&mut self, x: &mut Decimal<N>, y: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberNextToward(
x.as_mut_ptr(),
x.as_ptr(),
y.as_ptr(),
&mut self.inner,
);
}
}
/// Carries out the digitwise logical or of `lhs` and `rhs`, storing
/// the result in `lhs`.
pub fn or<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberOr(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Determines the ordering of `lhs` relative to `rhs`, using a partial
/// order.
///
/// If either `lhs` or `rhs` is a NaN, returns `None`. To force an ordering
/// upon NaNs, use [`total_cmp`](Context::<Decimal<N>>::total_cmp).
pub fn partial_cmp<const L: usize, const M: usize>(
&mut self,
lhs: &Decimal<L>,
rhs: &Decimal<M>,
) -> Option<Ordering> {
validate_n(N);
let mut d = MaybeUninit::<Decimal<N>>::uninit();
let d = unsafe {
decnumber_sys::decNumberCompare(
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
d.assume_init()
};
if d.is_nan() {
None
} else if d.is_negative() {
Some(Ordering::Less)
} else if d.is_zero() {
Some(Ordering::Equal)
} else {
debug_assert!(!d.is_special());
Some(Ordering::Greater)
}
}
/// Adds `n` to zero, storing the result in `n`.
pub fn plus(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberPlus(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Raises `x` to the power of `y`, storing the result in `x`.
pub fn pow<const M: usize>(&mut self, x: &mut Decimal<N>, y: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberPower(x.as_mut_ptr(), x.as_ptr(), y.as_ptr(), &mut self.inner);
}
}
/// Takes product of elements in `iter`.
pub fn product<'a, I, const M: usize>(&mut self, iter: I) -> Decimal<N>
where
I: Iterator<Item = &'a Decimal<M>>,
{
iter.fold(Decimal::<N>::from(1), |mut product, d| {
self.mul(&mut product, &d);
product
})
}
/// Rounds or pads `lhs` so that it has the same exponent as `rhs`, storing
/// the result in `lhs`.
pub fn quantize<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberQuantize(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Reduces `n`'s coefficient to its shortest possible form without
/// changing the value of the result, storing the result in `n`.
pub fn reduce(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberReduce(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Integer-divides `lhs` by `rhs`, storing the remainder in `lhs`.
pub fn rem<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberRemainder(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Like [`rem`](Context::<Decimal<N>>::rem), but uses the IEEE 754
/// rules for remainder operations.
pub fn rem_near<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberRemainderNear(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Rescales `lhs` to have an exponent of `rhs`.
pub fn rescale<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberRescale(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Rounds the number to an integral value using the rounding mode in the
/// context.
pub fn round(&mut self, n: &mut Decimal<N>) {
unsafe {
decnumber_sys::decNumberToIntegralExact(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Rounds `n` at a given "place from the left" in the number, akin to a
/// shift right, round, and shift left.
///
/// Note that this rounding will not drop integral digits (i.e those
/// representing values at least 1), but can round off fractional values.
///
/// `place` must be at least one and no greater than `N * 3`, i.e. a valid
/// precision.
pub fn round_to_place(
&mut self,
n: &mut Decimal<N>,
place: usize,
) -> Result<(), InvalidPrecisionError> {
let precision = self.precision();
self.set_precision(place)?;
self.plus(n);
self.set_precision(precision)
}
/// Identical to [`round_to_place`] but simultaneously performs a [`reduce`]
/// operation, as well.
pub fn round_reduce_to_place(
&mut self,
n: &mut Decimal<N>,
place: usize,
) -> Result<(), InvalidPrecisionError> {
let precision = self.precision();
self.set_precision(place)?;
self.reduce(n);
self.set_precision(precision)
}
/// Shifts the digits of `lhs` by `rhs`, storing the result in `lhs`.
///
/// If `rhs` is positive, shifts to the left. If `rhs` is negative, shifts
/// to the right. Any digits "shifted in" will be zero.
///
/// `rhs` specifies the number of positions to shift, and must be a finite
/// integer.
pub fn shift<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberShift(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Rotates the digits of `lhs` by `rhs`, storing the result in `lhs`.
///
/// If `rhs` is positive, rotates to the left. If `rhs` is negative, rotates
/// to the right.
///
/// `rhs` specifies the number of positions to rotate, and must be a finite
/// integer.
pub fn rotate<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberRotate(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Multiplies `x` by 10<sup>`y`</sup>, storing the result in `x`.
pub fn scaleb<const M: usize>(&mut self, x: &mut Decimal<N>, y: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberScaleB(x.as_mut_ptr(), x.as_ptr(), y.as_ptr(), &mut self.inner);
}
}
/// Computes the square root of `n`, storing the result in `n`.
pub fn sqrt<const M: usize>(&mut self, n: &mut Decimal<M>) {
unsafe {
decnumber_sys::decNumberSquareRoot(n.as_mut_ptr(), n.as_ptr(), &mut self.inner);
}
}
/// Subtracts `rhs` from `lhs`, storing the result in `lhs`.
pub fn sub<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberSubtract(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Sums all elements of `iter`.
pub fn sum<'a, I, const M: usize>(&mut self, iter: I) -> Decimal<N>
where
I: Iterator<Item = &'a Decimal<M>>,
{
iter.fold(Decimal::<N>::zero(), |mut sum, d| {
self.add(&mut sum, d);
sum
})
}
/// Determines the ordering of `lhs` relative to `rhs`, using the
/// total order predicate defined in IEEE 754-2008.
///
/// For a brief description of the ordering, consult [`f32::total_cmp`].
pub fn total_cmp<const L: usize, const M: usize>(
&mut self,
lhs: &Decimal<L>,
rhs: &Decimal<M>,
) -> Ordering {
validate_n(N);
let mut d = MaybeUninit::<Decimal<N>>::uninit();
let d = unsafe {
decnumber_sys::decNumberCompareTotal(
d.as_mut_ptr() as *mut decnumber_sys::decNumber,
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
d.assume_init()
};
debug_assert!(!d.is_special());
if d.is_negative() {
Ordering::Less
} else if d.is_zero() {
Ordering::Equal
} else {
Ordering::Greater
}
}
/// Carries out the digitwise logical xor of `lhs` and `rhs`, storing
/// the result in `lhs`.
pub fn xor<const M: usize>(&mut self, lhs: &mut Decimal<N>, rhs: &Decimal<M>) {
unsafe {
decnumber_sys::decNumberXor(
lhs.as_mut_ptr(),
lhs.as_ptr(),
rhs.as_ptr(),
&mut self.inner,
);
}
}
/// Returns `m` cast as a `Decimal::<N>`.
///
/// `Context` uses similar statuses to arithmetic to express under- and
/// overflow for values whose total precisions exceeds this context's.
pub fn to_width<const M: usize>(&mut self, m: Decimal<M>) -> Decimal<N> {
let mut n = Decimal::<N>::zero();
unsafe {
decnumber_sys::decNumberPlus(n.as_mut_ptr(), m.as_ptr(), &mut self.inner);
}
n
}
}