1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! The central type in Apache Arrow are arrays, which are a known-length sequence of values
//! all having the same type. This crate provides concrete implementations of each type, as
//! well as an [`Array`] trait that can be used for type-erasure.
//!
//! # Building an Array
//!
//! Most [`Array`] implementations can be constructed directly from iterators or [`Vec`]
//!
//! ```
//! # use arrow_array::{Int32Array, ListArray, StringArray};
//! # use arrow_array::types::Int32Type;
//! #
//! Int32Array::from(vec![1, 2]);
//! Int32Array::from(vec![Some(1), None]);
//! Int32Array::from_iter([1, 2, 3, 4]);
//! Int32Array::from_iter([Some(1), Some(2), None, Some(4)]);
//!
//! StringArray::from(vec!["foo", "bar"]);
//! StringArray::from(vec![Some("foo"), None]);
//! StringArray::from_iter([Some("foo"), None]);
//! StringArray::from_iter_values(["foo", "bar"]);
//!
//! ListArray::from_iter_primitive::<Int32Type, _, _>([
//!     Some(vec![Some(1), None, Some(3)]),
//!     None,
//!     Some(vec![])
//! ]);
//! ```
//!
//! Additionally [`ArrayBuilder`](builder::ArrayBuilder) implementations can be
//! used to construct arrays with a push-based interface
//!
//! ```
//! # use arrow_array::Int16Array;
//! #
//! // Create a new builder with a capacity of 100
//! let mut builder = Int16Array::builder(100);
//!
//! // Append a single primitive value
//! builder.append_value(1);
//! // Append a null value
//! builder.append_null();
//! // Append a slice of primitive values
//! builder.append_slice(&[2, 3, 4]);
//!
//! // Build the array
//! let array = builder.finish();
//!
//! assert_eq!(5, array.len());
//! assert_eq!(2, array.value(2));
//! assert_eq!(&array.values()[3..5], &[3, 4])
//! ```
//!
//! # Low-level API
//!
//! Internally, arrays consist of one or more shared memory regions backed by a [`Buffer`],
//! the number and meaning of which depend on the array’s data type, as documented in
//! the [Arrow specification].
//!
//! For example, the type [`Int16Array`] represents an array of 16-bit integers and consists of:
//!
//! * An optional [`NullBuffer`] identifying any null values
//! * A contiguous [`ScalarBuffer<i16>`] of values
//!
//! Similarly, the type [`StringArray`] represents an array of UTF-8 strings and consists of:
//!
//! * An optional [`NullBuffer`] identifying any null values
//! * An offsets [`OffsetBuffer<i32>`] identifying valid UTF-8 sequences within the values buffer
//! * A values [`Buffer`] of UTF-8 encoded string data
//!
//! Array constructors such as [`PrimitiveArray::try_new`] provide the ability to cheaply
//! construct an array from these parts, with functions such as [`PrimitiveArray::into_parts`]
//! providing the reverse operation.
//!
//! ```
//! # use arrow_array::{Array, Int32Array, StringArray};
//! # use arrow_buffer::OffsetBuffer;
//! #
//! // Create a Int32Array from Vec without copying
//! let array = Int32Array::new(vec![1, 2, 3].into(), None);
//! assert_eq!(array.values(), &[1, 2, 3]);
//! assert_eq!(array.null_count(), 0);
//!
//! // Create a StringArray from parts
//! let offsets = OffsetBuffer::new(vec![0, 5, 10].into());
//! let array = StringArray::new(offsets, b"helloworld".into(), None);
//! let values: Vec<_> = array.iter().map(|x| x.unwrap()).collect();
//! assert_eq!(values, &["hello", "world"]);
//! ```
//!
//! As [`Buffer`], and its derivatives, can be created from [`Vec`] without copying, this provides
//! an efficient way to not only interoperate with other Rust code, but also implement kernels
//! optimised for the arrow data layout - e.g. by handling buffers instead of values.
//!
//! # Zero-Copy Slicing
//!
//! Given an [`Array`] of arbitrary length, it is possible to create an owned slice of this
//! data. Internally this just increments some ref-counts, and so is incredibly cheap
//!
//! ```rust
//! # use arrow_array::Int32Array;
//! let array = Int32Array::from_iter([1, 2, 3]);
//!
//! // Slice with offset 1 and length 2
//! let sliced = array.slice(1, 2);
//! assert_eq!(sliced.values(), &[2, 3]);
//! ```
//!
//! # Downcasting an Array
//!
//! Arrays are often passed around as a dynamically typed [`&dyn Array`] or [`ArrayRef`].
//! For example, [`RecordBatch`](`crate::RecordBatch`) stores columns as [`ArrayRef`].
//!
//! Whilst these arrays can be passed directly to the [`compute`], [`csv`], [`json`], etc... APIs,
//! it is often the case that you wish to interact with the concrete arrays directly.
//!
//! This requires downcasting to the concrete type of the array:
//!
//! ```
//! # use arrow_array::{Array, Float32Array, Int32Array};
//!
//! // Safely downcast an `Array` to an `Int32Array` and compute the sum
//! // using native i32 values
//! fn sum_int32(array: &dyn Array) -> i32 {
//!     let integers: &Int32Array = array.as_any().downcast_ref().unwrap();
//!     integers.iter().map(|val| val.unwrap_or_default()).sum()
//! }
//!
//! // Safely downcasts the array to a `Float32Array` and returns a &[f32] view of the data
//! // Note: the values for positions corresponding to nulls will be arbitrary (but still valid f32)
//! fn as_f32_slice(array: &dyn Array) -> &[f32] {
//!     array.as_any().downcast_ref::<Float32Array>().unwrap().values()
//! }
//! ```
//!
//! The [`cast::AsArray`] extension trait can make this more ergonomic
//!
//! ```
//! # use arrow_array::Array;
//! # use arrow_array::cast::{AsArray, as_primitive_array};
//! # use arrow_array::types::Float32Type;
//!
//! fn as_f32_slice(array: &dyn Array) -> &[f32] {
//!     array.as_primitive::<Float32Type>().values()
//! }
//! ```
//! # Alternatives to ChunkedArray Support
//!
//! The Rust implementation does not provide the ChunkedArray abstraction implemented by the Python
//! and C++ Arrow implementations. The recommended alternative is to use one of the following:
//! - `Vec<ArrayRef>` a simple, eager version of a `ChunkedArray`
//! - `impl Iterator<Item=ArrayRef>` a lazy version of a `ChunkedArray`
//! - `impl Stream<Item=ArrayRef>` a lazy async version of a `ChunkedArray`
//!
//! Similar patterns can be applied at the `RecordBatch` level. For example, [DataFusion] makes
//! extensive use of [RecordBatchStream].
//!
//! This approach integrates well into the Rust ecosystem, simplifies the implementation and
//! encourages the use of performant lazy and async patterns.
//! ```rust
//! use std::sync::Arc;
//! use arrow_array::{ArrayRef, Float32Array, RecordBatch, StringArray};
//! use arrow_array::cast::AsArray;
//! use arrow_array::types::Float32Type;
//! use arrow_schema::DataType;
//!
//! let batches = [
//!    RecordBatch::try_from_iter(vec![
//!         ("label", Arc::new(StringArray::from(vec!["A", "B", "C"])) as ArrayRef),
//!         ("value", Arc::new(Float32Array::from(vec![0.1, 0.2, 0.3])) as ArrayRef),
//!     ]).unwrap(),
//!    RecordBatch::try_from_iter(vec![
//!         ("label", Arc::new(StringArray::from(vec!["D", "E"])) as ArrayRef),
//!         ("value", Arc::new(Float32Array::from(vec![0.4, 0.5])) as ArrayRef),
//!    ]).unwrap(),
//! ];
//!
//! let labels: Vec<&str> = batches
//!    .iter()
//!    .flat_map(|batch| batch.column(0).as_string::<i32>())
//!    .map(Option::unwrap)
//!    .collect();
//!
//! let values: Vec<f32> = batches
//!    .iter()
//!    .flat_map(|batch| batch.column(1).as_primitive::<Float32Type>().values())
//!    .copied()
//!    .collect();
//!
//! assert_eq!(labels, ["A", "B", "C", "D", "E"]);
//! assert_eq!(values, [0.1, 0.2, 0.3, 0.4, 0.5]);
//!```
//! [`ScalarBuffer<T>`]: arrow_buffer::ScalarBuffer
//! [`ScalarBuffer<i16>`]: arrow_buffer::ScalarBuffer
//! [`OffsetBuffer<i32>`]: arrow_buffer::OffsetBuffer
//! [`NullBuffer`]: arrow_buffer::NullBuffer
//! [Arrow specification]: https://arrow.apache.org/docs/format/Columnar.html
//! [`&dyn Array`]: Array
//! [`NullBuffer`]: arrow_buffer::NullBuffer
//! [`Buffer`]: arrow_buffer::Buffer
//! [`compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
//! [`json`]: https://docs.rs/arrow/latest/arrow/json/index.html
//! [`csv`]: https://docs.rs/arrow/latest/arrow/csv/index.html
//! [DataFusion]: https://github.com/apache/arrow-datafusion
//! [RecordBatchStream]: https://docs.rs/datafusion/latest/datafusion/execution/trait.RecordBatchStream.html

#![deny(rustdoc::broken_intra_doc_links)]
#![warn(missing_docs)]

pub mod array;
pub use array::*;

mod record_batch;
pub use record_batch::{
    RecordBatch, RecordBatchIterator, RecordBatchOptions, RecordBatchReader, RecordBatchWriter,
};

mod arithmetic;
pub use arithmetic::ArrowNativeTypeOp;

mod numeric;
pub use numeric::*;

mod scalar;
pub use scalar::*;

pub mod builder;
pub mod cast;
mod delta;
#[cfg(feature = "ffi")]
pub mod ffi;
#[cfg(feature = "ffi")]
pub mod ffi_stream;
pub mod iterator;
pub mod run_iterator;
pub mod temporal_conversions;
pub mod timezone;
mod trusted_len;
pub mod types;

#[cfg(test)]
mod tests {
    use crate::builder::*;

    #[test]
    fn test_buffer_builder_availability() {
        let _builder = Int8BufferBuilder::new(10);
        let _builder = Int16BufferBuilder::new(10);
        let _builder = Int32BufferBuilder::new(10);
        let _builder = Int64BufferBuilder::new(10);
        let _builder = UInt16BufferBuilder::new(10);
        let _builder = UInt32BufferBuilder::new(10);
        let _builder = Float32BufferBuilder::new(10);
        let _builder = Float64BufferBuilder::new(10);
        let _builder = TimestampSecondBufferBuilder::new(10);
        let _builder = TimestampMillisecondBufferBuilder::new(10);
        let _builder = TimestampMicrosecondBufferBuilder::new(10);
        let _builder = TimestampNanosecondBufferBuilder::new(10);
        let _builder = Date32BufferBuilder::new(10);
        let _builder = Date64BufferBuilder::new(10);
        let _builder = Time32SecondBufferBuilder::new(10);
        let _builder = Time32MillisecondBufferBuilder::new(10);
        let _builder = Time64MicrosecondBufferBuilder::new(10);
        let _builder = Time64NanosecondBufferBuilder::new(10);
        let _builder = IntervalYearMonthBufferBuilder::new(10);
        let _builder = IntervalDayTimeBufferBuilder::new(10);
        let _builder = IntervalMonthDayNanoBufferBuilder::new(10);
        let _builder = DurationSecondBufferBuilder::new(10);
        let _builder = DurationMillisecondBufferBuilder::new(10);
        let _builder = DurationMicrosecondBufferBuilder::new(10);
        let _builder = DurationNanosecondBufferBuilder::new(10);
    }
}