1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/// A range which can be set as iterate bounds on [`crate::ReadOptions`].
///
/// See [`crate::ReadOptions::set_iterate_range`] for documentation and
/// examples.
pub trait IterateBounds {
/// Converts object into lower and upper bounds pair.
///
/// If this object represents range with one of the bounds unset,
/// corresponding element is returned as `None`. For example, `..upper`
/// range would be converted into `(None, Some(upper))` pair.
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>);
}
impl IterateBounds for std::ops::RangeFull {
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>) {
(None, None)
}
}
impl<K: Into<Vec<u8>>> IterateBounds for std::ops::Range<K> {
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>) {
(Some(self.start.into()), Some(self.end.into()))
}
}
impl<K: Into<Vec<u8>>> IterateBounds for std::ops::RangeFrom<K> {
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>) {
(Some(self.start.into()), None)
}
}
impl<K: Into<Vec<u8>>> IterateBounds for std::ops::RangeTo<K> {
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>) {
(None, Some(self.end.into()))
}
}
/// Representation of a range of keys starting with given prefix.
///
/// Can be used as argument of [`crate::ReadOptions::set_iterate_range`] method
/// to set iterate bounds.
#[derive(Clone, Copy)]
pub struct PrefixRange<K>(pub K);
impl<K: Into<Vec<u8>>> IterateBounds for PrefixRange<K> {
/// Converts the prefix range representation into pair of bounds.
///
/// The conversion assumes lexicographical sorting on `u8` values. For
/// example, `PrefixRange("a")` is equivalent to `"a".."b"` range. Note
/// that for some prefixes, either of the bounds may be `None`. For
/// example, an empty prefix is equivalent to a full range (i.e. both bounds
/// being `None`).
fn into_bounds(self) -> (Option<Vec<u8>>, Option<Vec<u8>>) {
let start = self.0.into();
if start.is_empty() {
(None, None)
} else {
let end = next_prefix(&start);
(Some(start), end)
}
}
}
/// Returns lowest value following largest value with given prefix.
///
/// In other words, computes upper bound for a prefix scan over list of keys
/// sorted in lexicographical order. This means that a prefix scan can be
/// expressed as range scan over a right-open `[prefix, next_prefix(prefix))`
/// range.
///
/// For example, for prefix `foo` the function returns `fop`.
///
/// Returns `None` if there is no value which can follow value with given
/// prefix. This happens when prefix consists entirely of `'\xff'` bytes (or is
/// empty).
fn next_prefix(prefix: &[u8]) -> Option<Vec<u8>> {
let ffs = prefix
.iter()
.rev()
.take_while(|&&byte| byte == u8::MAX)
.count();
let next = &prefix[..(prefix.len() - ffs)];
if next.is_empty() {
// Prefix consisted of \xff bytes. There is no prefix that
// follows it.
None
} else {
let mut next = next.to_vec();
*next.last_mut().unwrap() += 1;
Some(next)
}
}
#[test]
fn test_prefix_range() {
fn test(start: &[u8], end: Option<&[u8]>) {
let got = PrefixRange(start).into_bounds();
assert_eq!((Some(start), end), (got.0.as_deref(), got.1.as_deref()));
}
let empty: &[u8] = &[];
assert_eq!((None, None), PrefixRange(empty).into_bounds());
test(b"\xff", None);
test(b"\xff\xff\xff\xff", None);
test(b"a", Some(b"b"));
test(b"a\xff\xff\xff", Some(b"b"));
}