1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Push non-null requirements toward sources.
//!
//! This analysis derives NonNull requirements on the arguments to predicates.
//! These requirements exist because most functions with Null arguments are
//! themselves Null, and a predicate that evaluates to Null will not pass.
//!
//! These requirements are not here introduced as constraints, but rather flow
//! to sources of data and restrict any constant collections to those rows that
//! satisfy the constraint. The main consequence is when Null values are added
//! in support of outer-joins and subqueries, we can occasionally remove that
//! branch when we observe that Null values would be subjected to predicates.
//!
//! This analysis relies on a careful understanding of `ScalarExpr` and the
//! semantics of various functions, *some of which may be non-Null even with
//! Null arguments*.
use std::collections::{BTreeMap, BTreeSet};
use itertools::{zip_eq, Either, Itertools};
use mz_expr::{Id, JoinInputMapper, MirRelationExpr, MirScalarExpr, RECURSION_LIMIT};
use mz_ore::assert_none;
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use crate::TransformCtx;
/// Push non-null requirements toward sources.
#[derive(Debug)]
pub struct NonNullRequirements {
recursion_guard: RecursionGuard,
}
impl Default for NonNullRequirements {
fn default() -> NonNullRequirements {
NonNullRequirements {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for NonNullRequirements {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for NonNullRequirements {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "non_null_requirements")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let result = self.action(relation, BTreeSet::new(), &mut BTreeMap::new());
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl NonNullRequirements {
/// Push non-null requirements toward sources.
///
/// The action computes and pushes `columns` in a top-down manner and
/// simplifies the associated tree. The `columns` value denotes a set of
/// output columns that entail the associated `relation` will evaluate to
/// the constant empty collection if any column is null. This information is
/// used to simplify and prune sub-trees in the `Constant` and `Map` cases.
pub fn action(
&self,
relation: &mut MirRelationExpr,
mut columns: BTreeSet<usize>,
gets: &mut BTreeMap<Id, Vec<BTreeSet<usize>>>,
) -> Result<(), crate::TransformError> {
self.checked_recur(|_| {
match relation {
MirRelationExpr::Constant { rows, .. } => {
if let Ok(rows) = rows {
let mut datum_vec = mz_repr::DatumVec::new();
rows.retain(|(row, _)| {
let datums = datum_vec.borrow_with(row);
columns.iter().all(|c| datums[*c] != mz_repr::Datum::Null)
})
}
Ok(())
}
MirRelationExpr::Get { id, .. } => {
gets.entry(*id).or_insert_with(Vec::new).push(columns);
Ok(())
}
MirRelationExpr::Let { id, value, body } => {
// Let harvests any non-null requirements from its body,
// and acts on the intersection of the requirements for
// each corresponding Get, pushing them at its value.
let id = Id::Local(*id);
let prior = gets.insert(id, Vec::new());
self.action(body, columns, gets)?;
let columns = intersect_all(&gets.remove(&id).unwrap());
if let Some(prior) = prior {
gets.insert(id, prior);
}
self.action(value, columns, gets)?;
Ok(())
}
MirRelationExpr::LetRec {
ids,
values,
body,
limits: _,
} => {
// Determine the recursive IDs in this LetRec binding.
let rec_ids = MirRelationExpr::recursive_ids(ids, values);
// Seed the gets map with an empty vector for each ID.
for id in ids.iter() {
let prior = gets.insert(Id::Local(*id), vec![]);
assert_none!(prior);
}
// Descend into the body with the supplied columns.
self.action(body, columns, gets)?;
// Descend into the values in reverse order.
for (id, value) in zip_eq(ids.iter().rev(), values.iter_mut().rev()) {
// Compute the required non-null columns for this value.
let columns = if rec_ids.contains(id) {
// For recursive IDs: conservatively don't assume
// any non-null column requests. TODO: This can be
// improved using a fixpoint-based approximation.
BTreeSet::new()
} else {
// For non-recursive IDs: request the intersection
// of all `columns` sets in the gets vector.
intersect_all(gets.get(&Id::Local(*id)).unwrap())
};
self.action(value, columns, gets)?;
}
// Remove the entries for all ids.
for id in ids.iter() {
gets.remove(&Id::Local(*id));
}
Ok(())
}
MirRelationExpr::Project { input, outputs } => self.action(
input,
columns.into_iter().map(|c| outputs[c]).collect(),
gets,
),
MirRelationExpr::Map { input, scalars } => {
let input_arity = input.arity();
if columns
.iter()
.any(|c| *c >= input_arity && scalars[*c - input_arity].is_literal_null())
{
// A null value was introduced in a marked column;
// the entire expression can be zeroed out.
relation.take_safely();
Ok(())
} else {
// For each column, if it must be non-null, extract the expression's
// non-null requirements and include them too. We go in reverse order
// to ensure we squeegee down all requirements even for references to
// other columns produced in this operator.
for column in (input_arity..(input_arity + scalars.len())).rev() {
if columns.contains(&column) {
scalars[column - input_arity].non_null_requirements(&mut columns);
}
columns.remove(&column);
}
self.action(input, columns, gets)
}
}
MirRelationExpr::FlatMap { input, func, exprs } => {
// Columns whose number is smaller than arity refer to
// columns of `input`. Columns whose number is
// greater than or equal to the arity refer to columns created
// by the FlatMap. The latter group of columns cannot be
// propagated down.
let input_arity = input.arity();
columns.retain(|c| *c < input_arity);
if func.empty_on_null_input() {
// we can safely disregard rows where any of the exprs
// evaluate to null
for expr in exprs {
expr.non_null_requirements(&mut columns);
}
}
// TODO: if `!func.empty_on_null_input()` and there are members
// of `columns` that refer to columns created by the FlatMap, we
// may be able to propagate some non-null requirements based on
// which columns created by the FlatMap cannot be null. However,
// we have been too lazy to handle this so far.
self.action(input, columns, gets)
}
MirRelationExpr::Filter { input, predicates } => {
for predicate in predicates {
predicate.non_null_requirements(&mut columns);
// TODO: Not(IsNull) should add a constraint!
}
self.action(input, columns, gets)
}
MirRelationExpr::Join {
inputs,
equivalences,
..
} => {
let input_types = inputs.iter().map(|i| i.typ()).collect::<Vec<_>>();
let input_mapper = JoinInputMapper::new_from_input_types(&input_types);
let mut new_columns = input_mapper.split_column_set_by_input(columns.iter());
// `variable` smears constraints around.
// Also, any non-nullable columns impose constraints on their equivalence class.
for equivalence in equivalences {
let exists_constraint = equivalence.iter().any(|expr| {
if let MirScalarExpr::Column(c) = expr {
let (col, rel) = input_mapper.map_column_to_local(*c);
new_columns[rel].contains(&col)
|| !input_types[rel].column_types[col].nullable
} else {
false
}
});
if exists_constraint {
for expr in equivalence.iter() {
if let MirScalarExpr::Column(c) = expr {
let (col, rel) = input_mapper.map_column_to_local(*c);
new_columns[rel].insert(col);
}
}
}
}
for (input, columns) in inputs.iter_mut().zip(new_columns) {
self.action(input, columns, gets)?;
}
Ok(())
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let mut new_columns = BTreeSet::new();
let (group_key_columns, aggr_columns): (Vec<usize>, Vec<usize>) =
columns.iter().partition(|c| **c < group_key.len());
for column in group_key_columns {
group_key[column].non_null_requirements(&mut new_columns);
}
if !aggr_columns.is_empty() {
let (
mut inferred_nonnull_constraints,
mut ignored_nulls_by_remaining_aggregates,
): (Vec<BTreeSet<usize>>, Vec<BTreeSet<usize>>) =
aggregates.iter().enumerate().partition_map(|(pos, aggr)| {
let mut ignores_nulls_on_columns = BTreeSet::new();
if let mz_repr::Datum::Null = aggr.func.identity_datum() {
aggr.expr
.non_null_requirements(&mut ignores_nulls_on_columns);
}
if aggr.func.propagates_nonnull_constraint()
&& aggr_columns.contains(&(group_key.len() + pos))
{
Either::Left(ignores_nulls_on_columns)
} else {
Either::Right(ignores_nulls_on_columns)
}
});
// Compute the intersection of all pushable non constraints inferred from
// the non-null constraints on aggregate columns and the nulls ignored by
// the remaining aggregates. Example:
// - SUM(#0 + #2), MAX(#0 + #1), non-null requirements on both aggs => implies !isnull(#0)
// We don't want to push down a !isnull(#2) because deleting a row like (1,1, null) would
// make the MAX wrong.
// - SUM(#0 + #2), MAX(#0 + #1), non-null requirements only on the MAX => implies !isnull(#0).
let mut pushable_nonnull_constraints: Option<BTreeSet<usize>> = None;
if !inferred_nonnull_constraints.is_empty() {
for column_set in inferred_nonnull_constraints
.drain(..)
.chain(ignored_nulls_by_remaining_aggregates.drain(..))
{
if let Some(previous) = pushable_nonnull_constraints {
pushable_nonnull_constraints =
Some(column_set.intersection(&previous).cloned().collect());
} else {
pushable_nonnull_constraints = Some(column_set);
}
}
}
if let Some(pushable_nonnull_constraints) = pushable_nonnull_constraints {
new_columns.extend(pushable_nonnull_constraints);
}
}
self.action(input, new_columns, gets)
}
MirRelationExpr::TopK {
input, group_key, ..
} => {
// We can only allow rows to be discarded if their key columns are
// NULL, as discarding rows based on other columns can change the
// result set, based on how NULL is ordered.
columns.retain(|c| group_key.contains(c));
// TODO(mcsherry): bind NULL ordering and apply the transformation
// to all columns if the correct ASC/DESC ordering is observed
// (with some care about orderings on multiple columns).
self.action(input, columns, gets)
}
MirRelationExpr::Negate { input } => self.action(input, columns, gets),
MirRelationExpr::Threshold { input } => self.action(input, columns, gets),
MirRelationExpr::Union { base, inputs } => {
self.action(base, columns.clone(), gets)?;
for input in inputs {
self.action(input, columns.clone(), gets)?;
}
Ok(())
}
MirRelationExpr::ArrangeBy { input, .. } => self.action(input, columns, gets),
}
})
}
}
fn intersect_all(columns_vec: &Vec<BTreeSet<usize>>) -> BTreeSet<usize> {
columns_vec.iter().skip(1).fold(
columns_vec.first().cloned().unwrap_or_default(),
|mut intersection, columns| {
intersection.retain(|col| columns.contains(col));
intersection
},
)
}