regex_syntax/utf8.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*!
Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes.
This is sub-module is useful for constructing byte based automatons that need
to embed UTF-8 decoding. The most common use of this module is in conjunction
with the [`hir::ClassUnicodeRange`](crate::hir::ClassUnicodeRange) type.
See the documentation on the `Utf8Sequences` iterator for more details and
an example.
# Wait, what is this?
This is simplest to explain with an example. Let's say you wanted to test
whether a particular byte sequence was a Cyrillic character. One possible
scalar value range is `[0400-04FF]`. The set of allowed bytes for this
range can be expressed as a sequence of byte ranges:
```text
[D0-D3][80-BF]
```
This is simple enough: simply encode the boundaries, `0400` encodes to
`D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each
corresponding pair of bytes: `D0` to `D3` and `80` to `BF`.
However, what if you wanted to add the Cyrillic Supplementary characters to
your range? Your range might then become `[0400-052F]`. The same procedure
as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges
you'd get from the previous transformation would be `[D0-D4][80-AF]`. However,
this isn't quite correct because this range doesn't capture many characters,
for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`).
Instead, you need multiple sequences of byte ranges:
```text
[D0-D3][80-BF] # matches codepoints 0400-04FF
[D4][80-AF] # matches codepoints 0500-052F
```
This gets even more complicated if you want bigger ranges, particularly if
they naively contain surrogate codepoints. For example, the sequence of byte
ranges for the basic multilingual plane (`[0000-FFFF]`) look like this:
```text
[0-7F]
[C2-DF][80-BF]
[E0][A0-BF][80-BF]
[E1-EC][80-BF][80-BF]
[ED][80-9F][80-BF]
[EE-EF][80-BF][80-BF]
```
Note that the byte ranges above will *not* match any erroneous encoding of
UTF-8, including encodings of surrogate codepoints.
And, of course, for all of Unicode (`[000000-10FFFF]`):
```text
[0-7F]
[C2-DF][80-BF]
[E0][A0-BF][80-BF]
[E1-EC][80-BF][80-BF]
[ED][80-9F][80-BF]
[EE-EF][80-BF][80-BF]
[F0][90-BF][80-BF][80-BF]
[F1-F3][80-BF][80-BF][80-BF]
[F4][80-8F][80-BF][80-BF]
```
This module automates the process of creating these byte ranges from ranges of
Unicode scalar values.
# Lineage
I got the idea and general implementation strategy from Russ Cox in his
[article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2.
Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?).
I also got the idea from
[Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java),
which uses it for executing automata on their term index.
*/
use core::{char, fmt, iter::FusedIterator, slice};
use alloc::{vec, vec::Vec};
const MAX_UTF8_BYTES: usize = 4;
/// Utf8Sequence represents a sequence of byte ranges.
///
/// To match a Utf8Sequence, a candidate byte sequence must match each
/// successive range.
///
/// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte
/// sequence `\xDD\x61` would not match because `0x61 < 0x80`.
#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord)]
pub enum Utf8Sequence {
/// One byte range.
One(Utf8Range),
/// Two successive byte ranges.
Two([Utf8Range; 2]),
/// Three successive byte ranges.
Three([Utf8Range; 3]),
/// Four successive byte ranges.
Four([Utf8Range; 4]),
}
impl Utf8Sequence {
/// Creates a new UTF-8 sequence from the encoded bytes of a scalar value
/// range.
///
/// This assumes that `start` and `end` have the same length.
fn from_encoded_range(start: &[u8], end: &[u8]) -> Self {
assert_eq!(start.len(), end.len());
match start.len() {
2 => Utf8Sequence::Two([
Utf8Range::new(start[0], end[0]),
Utf8Range::new(start[1], end[1]),
]),
3 => Utf8Sequence::Three([
Utf8Range::new(start[0], end[0]),
Utf8Range::new(start[1], end[1]),
Utf8Range::new(start[2], end[2]),
]),
4 => Utf8Sequence::Four([
Utf8Range::new(start[0], end[0]),
Utf8Range::new(start[1], end[1]),
Utf8Range::new(start[2], end[2]),
Utf8Range::new(start[3], end[3]),
]),
n => unreachable!("invalid encoded length: {}", n),
}
}
/// Returns the underlying sequence of byte ranges as a slice.
pub fn as_slice(&self) -> &[Utf8Range] {
use self::Utf8Sequence::*;
match *self {
One(ref r) => slice::from_ref(r),
Two(ref r) => &r[..],
Three(ref r) => &r[..],
Four(ref r) => &r[..],
}
}
/// Returns the number of byte ranges in this sequence.
///
/// The length is guaranteed to be in the closed interval `[1, 4]`.
pub fn len(&self) -> usize {
self.as_slice().len()
}
/// Reverses the ranges in this sequence.
///
/// For example, if this corresponds to the following sequence:
///
/// ```text
/// [D0-D3][80-BF]
/// ```
///
/// Then after reversal, it will be
///
/// ```text
/// [80-BF][D0-D3]
/// ```
///
/// This is useful when one is constructing a UTF-8 automaton to match
/// character classes in reverse.
pub fn reverse(&mut self) {
match *self {
Utf8Sequence::One(_) => {}
Utf8Sequence::Two(ref mut x) => x.reverse(),
Utf8Sequence::Three(ref mut x) => x.reverse(),
Utf8Sequence::Four(ref mut x) => x.reverse(),
}
}
/// Returns true if and only if a prefix of `bytes` matches this sequence
/// of byte ranges.
pub fn matches(&self, bytes: &[u8]) -> bool {
if bytes.len() < self.len() {
return false;
}
for (&b, r) in bytes.iter().zip(self) {
if !r.matches(b) {
return false;
}
}
true
}
}
impl<'a> IntoIterator for &'a Utf8Sequence {
type IntoIter = slice::Iter<'a, Utf8Range>;
type Item = &'a Utf8Range;
fn into_iter(self) -> Self::IntoIter {
self.as_slice().iter()
}
}
impl fmt::Debug for Utf8Sequence {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::Utf8Sequence::*;
match *self {
One(ref r) => write!(f, "{:?}", r),
Two(ref r) => write!(f, "{:?}{:?}", r[0], r[1]),
Three(ref r) => write!(f, "{:?}{:?}{:?}", r[0], r[1], r[2]),
Four(ref r) => {
write!(f, "{:?}{:?}{:?}{:?}", r[0], r[1], r[2], r[3])
}
}
}
}
/// A single inclusive range of UTF-8 bytes.
#[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)]
pub struct Utf8Range {
/// Start of byte range (inclusive).
pub start: u8,
/// End of byte range (inclusive).
pub end: u8,
}
impl Utf8Range {
fn new(start: u8, end: u8) -> Self {
Utf8Range { start, end }
}
/// Returns true if and only if the given byte is in this range.
pub fn matches(&self, b: u8) -> bool {
self.start <= b && b <= self.end
}
}
impl fmt::Debug for Utf8Range {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.start == self.end {
write!(f, "[{:X}]", self.start)
} else {
write!(f, "[{:X}-{:X}]", self.start, self.end)
}
}
}
/// An iterator over ranges of matching UTF-8 byte sequences.
///
/// The iteration represents an alternation of comprehensive byte sequences
/// that match precisely the set of UTF-8 encoded scalar values.
///
/// A byte sequence corresponds to one of the scalar values in the range given
/// if and only if it completely matches exactly one of the sequences of byte
/// ranges produced by this iterator.
///
/// Each sequence of byte ranges matches a unique set of bytes. That is, no two
/// sequences will match the same bytes.
///
/// # Example
///
/// This shows how to match an arbitrary byte sequence against a range of
/// scalar values.
///
/// ```rust
/// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence};
///
/// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool {
/// for range in seqs {
/// if range.matches(bytes) {
/// return true;
/// }
/// }
/// false
/// }
///
/// // Test the basic multilingual plane.
/// let seqs: Vec<_> = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect();
///
/// // UTF-8 encoding of 'a'.
/// assert!(matches(&seqs, &[0x61]));
/// // UTF-8 encoding of '☃' (`\u{2603}`).
/// assert!(matches(&seqs, &[0xE2, 0x98, 0x83]));
/// // UTF-8 encoding of `\u{10348}` (outside the BMP).
/// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88]));
/// // Tries to match against a UTF-8 encoding of a surrogate codepoint,
/// // which is invalid UTF-8, and therefore fails, despite the fact that
/// // the corresponding codepoint (0xD800) falls in the range given.
/// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80]));
/// // And fails against plain old invalid UTF-8.
/// assert!(!matches(&seqs, &[0xFF, 0xFF]));
/// ```
///
/// If this example seems circuitous, that's because it is! It's meant to be
/// illustrative. In practice, you could just try to decode your byte sequence
/// and compare it with the scalar value range directly. However, this is not
/// always possible (for example, in a byte based automaton).
#[derive(Debug)]
pub struct Utf8Sequences {
range_stack: Vec<ScalarRange>,
}
impl Utf8Sequences {
/// Create a new iterator over UTF-8 byte ranges for the scalar value range
/// given.
pub fn new(start: char, end: char) -> Self {
let mut it = Utf8Sequences { range_stack: vec![] };
it.push(u32::from(start), u32::from(end));
it
}
/// reset resets the scalar value range.
/// Any existing state is cleared, but resources may be reused.
///
/// N.B. Benchmarks say that this method is dubious.
#[doc(hidden)]
pub fn reset(&mut self, start: char, end: char) {
self.range_stack.clear();
self.push(u32::from(start), u32::from(end));
}
fn push(&mut self, start: u32, end: u32) {
self.range_stack.push(ScalarRange { start, end });
}
}
struct ScalarRange {
start: u32,
end: u32,
}
impl fmt::Debug for ScalarRange {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ScalarRange({:X}, {:X})", self.start, self.end)
}
}
impl Iterator for Utf8Sequences {
type Item = Utf8Sequence;
fn next(&mut self) -> Option<Self::Item> {
'TOP: while let Some(mut r) = self.range_stack.pop() {
'INNER: loop {
if let Some((r1, r2)) = r.split() {
self.push(r2.start, r2.end);
r.start = r1.start;
r.end = r1.end;
continue 'INNER;
}
if !r.is_valid() {
continue 'TOP;
}
for i in 1..MAX_UTF8_BYTES {
let max = max_scalar_value(i);
if r.start <= max && max < r.end {
self.push(max + 1, r.end);
r.end = max;
continue 'INNER;
}
}
if let Some(ascii_range) = r.as_ascii() {
return Some(Utf8Sequence::One(ascii_range));
}
for i in 1..MAX_UTF8_BYTES {
let m = (1 << (6 * i)) - 1;
if (r.start & !m) != (r.end & !m) {
if (r.start & m) != 0 {
self.push((r.start | m) + 1, r.end);
r.end = r.start | m;
continue 'INNER;
}
if (r.end & m) != m {
self.push(r.end & !m, r.end);
r.end = (r.end & !m) - 1;
continue 'INNER;
}
}
}
let mut start = [0; MAX_UTF8_BYTES];
let mut end = [0; MAX_UTF8_BYTES];
let n = r.encode(&mut start, &mut end);
return Some(Utf8Sequence::from_encoded_range(
&start[0..n],
&end[0..n],
));
}
}
None
}
}
impl FusedIterator for Utf8Sequences {}
impl ScalarRange {
/// split splits this range if it overlaps with a surrogate codepoint.
///
/// Either or both ranges may be invalid.
fn split(&self) -> Option<(ScalarRange, ScalarRange)> {
if self.start < 0xE000 && self.end > 0xD7FF {
Some((
ScalarRange { start: self.start, end: 0xD7FF },
ScalarRange { start: 0xE000, end: self.end },
))
} else {
None
}
}
/// is_valid returns true if and only if start <= end.
fn is_valid(&self) -> bool {
self.start <= self.end
}
/// as_ascii returns this range as a Utf8Range if and only if all scalar
/// values in this range can be encoded as a single byte.
fn as_ascii(&self) -> Option<Utf8Range> {
if self.is_ascii() {
let start = u8::try_from(self.start).unwrap();
let end = u8::try_from(self.end).unwrap();
Some(Utf8Range::new(start, end))
} else {
None
}
}
/// is_ascii returns true if the range is ASCII only (i.e., takes a single
/// byte to encode any scalar value).
fn is_ascii(&self) -> bool {
self.is_valid() && self.end <= 0x7f
}
/// encode writes the UTF-8 encoding of the start and end of this range
/// to the corresponding destination slices, and returns the number of
/// bytes written.
///
/// The slices should have room for at least `MAX_UTF8_BYTES`.
fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize {
let cs = char::from_u32(self.start).unwrap();
let ce = char::from_u32(self.end).unwrap();
let ss = cs.encode_utf8(start);
let se = ce.encode_utf8(end);
assert_eq!(ss.len(), se.len());
ss.len()
}
}
fn max_scalar_value(nbytes: usize) -> u32 {
match nbytes {
1 => 0x007F,
2 => 0x07FF,
3 => 0xFFFF,
4 => 0x0010_FFFF,
_ => unreachable!("invalid UTF-8 byte sequence size"),
}
}
#[cfg(test)]
mod tests {
use core::char;
use alloc::{vec, vec::Vec};
use crate::utf8::{Utf8Range, Utf8Sequences};
fn rutf8(s: u8, e: u8) -> Utf8Range {
Utf8Range::new(s, e)
}
fn never_accepts_surrogate_codepoints(start: char, end: char) {
for cp in 0xD800..0xE000 {
let buf = encode_surrogate(cp);
for r in Utf8Sequences::new(start, end) {
if r.matches(&buf) {
panic!(
"Sequence ({:X}, {:X}) contains range {:?}, \
which matches surrogate code point {:X} \
with encoded bytes {:?}",
u32::from(start),
u32::from(end),
r,
cp,
buf,
);
}
}
}
}
#[test]
fn codepoints_no_surrogates() {
never_accepts_surrogate_codepoints('\u{0}', '\u{FFFF}');
never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFF}');
never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFE}');
never_accepts_surrogate_codepoints('\u{80}', '\u{10FFFF}');
never_accepts_surrogate_codepoints('\u{D7FF}', '\u{E000}');
}
#[test]
fn single_codepoint_one_sequence() {
// Tests that every range of scalar values that contains a single
// scalar value is recognized by one sequence of byte ranges.
for i in 0x0..=0x0010_FFFF {
let c = match char::from_u32(i) {
None => continue,
Some(c) => c,
};
let seqs: Vec<_> = Utf8Sequences::new(c, c).collect();
assert_eq!(seqs.len(), 1);
}
}
#[test]
fn bmp() {
use crate::utf8::Utf8Sequence::*;
let seqs = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect::<Vec<_>>();
assert_eq!(
seqs,
vec![
One(rutf8(0x0, 0x7F)),
Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]),
Three([
rutf8(0xE0, 0xE0),
rutf8(0xA0, 0xBF),
rutf8(0x80, 0xBF)
]),
Three([
rutf8(0xE1, 0xEC),
rutf8(0x80, 0xBF),
rutf8(0x80, 0xBF)
]),
Three([
rutf8(0xED, 0xED),
rutf8(0x80, 0x9F),
rutf8(0x80, 0xBF)
]),
Three([
rutf8(0xEE, 0xEF),
rutf8(0x80, 0xBF),
rutf8(0x80, 0xBF)
]),
]
);
}
#[test]
fn reverse() {
use crate::utf8::Utf8Sequence::*;
let mut s = One(rutf8(0xA, 0xB));
s.reverse();
assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]);
let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]);
s.reverse();
assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]);
let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]);
s.reverse();
assert_eq!(
s.as_slice(),
&[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)]
);
let mut s = Four([
rutf8(0xA, 0xB),
rutf8(0xB, 0xC),
rutf8(0xC, 0xD),
rutf8(0xD, 0xE),
]);
s.reverse();
assert_eq!(
s.as_slice(),
&[
rutf8(0xD, 0xE),
rutf8(0xC, 0xD),
rutf8(0xB, 0xC),
rutf8(0xA, 0xB)
]
);
}
fn encode_surrogate(cp: u32) -> [u8; 3] {
const TAG_CONT: u8 = 0b1000_0000;
const TAG_THREE_B: u8 = 0b1110_0000;
assert!(0xD800 <= cp && cp < 0xE000);
let mut dst = [0; 3];
dst[0] = u8::try_from(cp >> 12 & 0x0F).unwrap() | TAG_THREE_B;
dst[1] = u8::try_from(cp >> 6 & 0x3F).unwrap() | TAG_CONT;
dst[2] = u8::try_from(cp & 0x3F).unwrap() | TAG_CONT;
dst
}
}