lexical_util/
div128.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//! Optimized division algorithms for u128.
//!
//! # Fast Algorithms
//!
//! The more optimized algorithms for calculating the divisor constants are
//! based off of the paper "Division by Invariant Integers Using Multiplication",
//! by T. Granlund and P. Montgomery, in "Proc. of the SIGPLAN94 Conference
//! on Programming Language Design and Implementation", available online
//! [here](https://gmplib.org/~tege/divcnst-pldi94.pdf).
//!
//! This approach is derived from the Rust algorithm for formatting 128-bit
//! values, and therefore is similarly dual-licensed under MIT/Apache-2.0.
//!
//! # Fallback Algorithms
//!
//! The slower algorithms in this module are derived off of `dtolnay/itoa`
//! and Rust's compiler-builtins crate. This copies a specific
//! path of LLVM's `__udivmodti4` intrinsic, which does division/
//! modulus for u128 in a single step. Rust implements both division
//! and modulus in terms of this intrinsic, but calls the intrinsic
//! twice for subsequent division and modulus operations on the same
//! dividend/divisor, leading to significant performance overhead.
//!
//! This module calculates the optimal divisors for each radix,
//! and exports a general-purpose division algorithm for u128 where
//! the divisor can fit in a u64. The moderate algorithm is derived from
//! dtolnay/itoa, which can be found
//! [here](https://github.com/dtolnay/itoa/blob/master/src/udiv128.rs), which
//! in turn is derived from Rust's compiler-builtins crate, which can be found
//! [here](https://github.com/rust-lang-nursery/compiler-builtins/blob/master/src/int/udiv.rs).
//!
//! Licensing for these routines is therefore subject to an MIT/Illinois
//! dual license (a BSD-like license), while the rest of the module is
//! subject to an MIT/Apache-2.0 dual-license.
//!
//! # Generation
//!
//! See [`etc/div128.py`] for the script to generate the divisors and the
//! constants, and the division algorithm.
//!
//! [`etc/div128.py`]: https://github.com/Alexhuszagh/rust-lexical/blob/main/lexical-util/etc/div128.py

#![cfg(not(feature = "compact"))]
#![cfg(feature = "write")]

use crate::assert::debug_assert_radix;
use crate::mul::mulhi;

/// Calculate a div/remainder algorithm optimized for power-of-two radixes.
/// This is trivial: the number of digits we process is `64 / log2(radix)`.
/// Therefore, the `shr` is `log2(radix) * digits`, and the mask is just the
/// lower `shr` bits of the digits.
#[inline]
#[allow(clippy::many_single_char_names)]
pub const fn pow2_u128_divrem(n: u128, mask: u64, shr: u32) -> (u128, u64) {
    let quot = n >> shr;
    let rem = mask & n as u64;
    (quot, rem)
}

/// Fast division/remainder algorithm for u128, without a fast native approximation.
#[inline]
#[allow(clippy::many_single_char_names)]
pub fn fast_u128_divrem(
    n: u128,
    d: u64,
    fast: u128,
    fast_shr: u32,
    factor: u128,
    factor_shr: u32,
) -> (u128, u64) {
    let quot = if n < fast {
        ((n >> fast_shr) as u64 / (d >> fast_shr)) as u128
    } else {
        mulhi::<u128, u64>(n, factor) >> factor_shr
    };
    let rem = (n - quot * d as u128) as u64;
    (quot, rem)
}

/// Fast division/remainder algorithm for u128, without a fast native approximation.
#[inline]
#[allow(clippy::many_single_char_names)]
pub fn moderate_u128_divrem(n: u128, d: u64, factor: u128, factor_shr: u32) -> (u128, u64) {
    let quot = mulhi::<u128, u64>(n, factor) >> factor_shr;
    let rem = (n - quot * d as u128) as u64;
    (quot, rem)
}

/// Optimized fallback division/remainder algorithm for u128.
///
/// This is because the codegen for u128 divrem is very inefficient in Rust,
/// calling both `__udivmodti4` twice internally, rather than a single time.
///
/// This is still a fair bit slower than the optimized algorithms described
/// in the above paper, but this is a suitable fallback when we cannot use
/// the faster algorithm.
#[inline]
#[allow(clippy::many_single_char_names)]
pub fn slow_u128_divrem(n: u128, d: u64, d_ctlz: u32) -> (u128, u64) {
    // Ensure we have the correct number of leading zeros passed.
    debug_assert_eq!(d_ctlz, d.leading_zeros());

    // Optimize if we can divide using u64 first.
    let high = (n >> 64) as u64;
    if high == 0 {
        let low = n as u64;
        return ((low / d) as u128, low % d);
    }

    // sr = 1 + u64::BITS + d.leading_zeros() - high.leading_zeros();
    let sr = 65 + d_ctlz - high.leading_zeros();

    // 1 <= sr <= u64::BITS - 1
    let mut q: u128 = n << (128 - sr);
    let mut r: u128 = n >> sr;
    let mut carry: u64 = 0;

    // Don't use a range because they may generate references to memcpy in unoptimized code
    // Loop invariants:  r < d; carry is 0 or 1
    let mut i = 0;
    while i < sr {
        i += 1;

        // r:q = ((r:q) << 1) | carry
        r = (r << 1) | (q >> 127);
        q = (q << 1) | carry as u128;

        // carry = 0
        // if r >= d {
        //     r -= d;
        //     carry = 1;
        // }
        let s = (d as u128).wrapping_sub(r).wrapping_sub(1) as i128 >> 127;
        carry = (s & 1) as u64;
        r -= (d as u128) & s as u128;
    }

    ((q << 1) | carry as u128, r as u64)
}

/// Calculate the div/remainder of a value based on the radix.
///
/// This uses the largest divisor possible for the given size,
/// and uses various fast-path approximations for different types.
///
/// 1. Powers-of-two can be cleanly split into 2 64-bit products.
/// 2. Division that can be simulated as if by multiplication by a constant.
/// 3. Cases of 2. with a power-of-two divisor.
/// 4. Fallback cases.
///
/// This returns the quotient and the remainder.
/// For the number of digits processed, see
/// [min_step](crate::step::min_step).
#[inline(always)]
pub fn u128_divrem(n: u128, radix: u32) -> (u128, u64) {
    debug_assert_radix(radix);

    if cfg!(feature = "radix") {
        match radix {
            2 => u128_divrem_2(n),
            3 => u128_divrem_3(n),
            4 => u128_divrem_4(n),
            5 => u128_divrem_5(n),
            6 => u128_divrem_6(n),
            7 => u128_divrem_7(n),
            8 => u128_divrem_8(n),
            9 => u128_divrem_9(n),
            10 => u128_divrem_10(n),
            11 => u128_divrem_11(n),
            12 => u128_divrem_12(n),
            13 => u128_divrem_13(n),
            14 => u128_divrem_14(n),
            15 => u128_divrem_15(n),
            16 => u128_divrem_16(n),
            17 => u128_divrem_17(n),
            18 => u128_divrem_18(n),
            19 => u128_divrem_19(n),
            20 => u128_divrem_20(n),
            21 => u128_divrem_21(n),
            22 => u128_divrem_22(n),
            23 => u128_divrem_23(n),
            24 => u128_divrem_24(n),
            25 => u128_divrem_25(n),
            26 => u128_divrem_26(n),
            27 => u128_divrem_27(n),
            28 => u128_divrem_28(n),
            29 => u128_divrem_29(n),
            30 => u128_divrem_30(n),
            31 => u128_divrem_31(n),
            32 => u128_divrem_32(n),
            33 => u128_divrem_33(n),
            34 => u128_divrem_34(n),
            35 => u128_divrem_35(n),
            36 => u128_divrem_36(n),
            _ => unreachable!(),
        }
    } else if cfg!(feature = "power-of-two") {
        match radix {
            2 => u128_divrem_2(n),
            4 => u128_divrem_4(n),
            8 => u128_divrem_8(n),
            10 => u128_divrem_10(n),
            16 => u128_divrem_16(n),
            32 => u128_divrem_32(n),
            _ => unreachable!(),
        }
    } else {
        u128_divrem_10(n)
    }
}

// AUTO-GENERATED
// These functions were auto-generated by `etc/div128.py`.
// Do not edit them unless there is a good reason to.
// Preferably, edit the source code to generate the constants.
//
// The seemingly magical values are all derived there, and are explained
// in the function signatures of the functions they call.

#[inline]
const fn u128_divrem_2(n: u128) -> (u128, u64) {
    pow2_u128_divrem(n, 18446744073709551615, 64)
}

#[inline]
fn u128_divrem_3(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 12157665459056928801, 0)
}

#[inline]
const fn u128_divrem_4(n: u128) -> (u128, u64) {
    pow2_u128_divrem(n, 18446744073709551615, 64)
}

#[inline]
fn u128_divrem_5(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 7450580596923828125, 105312291668557186697918027683670432319, 61)
}

#[inline]
fn u128_divrem_6(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        4738381338321616896,
        309485009821345068724781056,
        24,
        165591931273573223021296166324748699891,
        61,
    )
}

#[inline]
fn u128_divrem_7(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 3909821048582988049, 200683792729517998822275406364627986707, 61)
}

#[inline]
const fn u128_divrem_8(n: u128) -> (u128, u64) {
    pow2_u128_divrem(n, 9223372036854775807, 63)
}

#[inline]
fn u128_divrem_9(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 12157665459056928801, 0)
}

#[inline]
fn u128_divrem_10(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        10000000000000000000,
        9671406556917033397649408,
        19,
        156927543384667019095894735580191660403,
        62,
    )
}

#[inline]
fn u128_divrem_11(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 5559917313492231481, 1)
}

#[inline]
fn u128_divrem_12(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 2218611106740436992, 3)
}

#[inline]
fn u128_divrem_13(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 8650415919381337933, 181410402513790565292660635782582404765, 62)
}

#[inline]
fn u128_divrem_14(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        2177953337809371136,
        1208925819614629174706176,
        16,
        1407280417134467544760816054546363235,
        53,
    )
}

#[inline]
fn u128_divrem_15(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 6568408355712890625, 1866504587258795246613513364166764993, 55)
}

#[inline]
const fn u128_divrem_16(n: u128) -> (u128, u64) {
    pow2_u128_divrem(n, 18446744073709551615, 64)
}

#[inline]
fn u128_divrem_17(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 2862423051509815793, 68529153692836345537218837732158950089, 59)
}

#[inline]
fn u128_divrem_18(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        6746640616477458432,
        604462909807314587353088,
        15,
        232601011830094623283686247347795155951,
        62,
    )
}

#[inline]
fn u128_divrem_19(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 15181127029874798299, 25842538415601616733690423925257626679, 60)
}

#[inline]
fn u128_divrem_20(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        1638400000000000000,
        4951760157141521099596496896,
        28,
        239452428260295134118491722992235809941,
        60,
    )
}

#[inline]
fn u128_divrem_21(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 3243919932521508681, 120939747781233590383781714337497669585, 60)
}

#[inline]
fn u128_divrem_22(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 6221821273427820544, 1)
}

#[inline]
fn u128_divrem_23(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 11592836324538749809, 270731922700393644432243678371210997949, 63)
}

#[inline]
fn u128_divrem_24(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        876488338465357824,
        10141204801825835211973625643008,
        39,
        55950381945266105153185943557606235389,
        57,
    )
}

#[inline]
fn u128_divrem_25(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 1490116119384765625, 131640364585696483372397534604588040399, 59)
}

#[inline]
fn u128_divrem_26(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        2481152873203736576,
        151115727451828646838272,
        13,
        316239166637962178669658228673482425689,
        61,
    )
}

#[inline]
fn u128_divrem_27(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 4052555153018976267, 2)
}

#[inline]
fn u128_divrem_28(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        6502111422497947648,
        1237940039285380274899124224,
        26,
        241348591538561183926479953354701294803,
        62,
    )
}

#[inline]
fn u128_divrem_29(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 10260628712958602189, 152941450056053853841698190746050519297, 62)
}

#[inline]
fn u128_divrem_30(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 15943230000000000000, 0)
}

#[inline]
fn u128_divrem_31(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 787662783788549761, 124519929891402176328714857711808162537, 58)
}

#[inline]
const fn u128_divrem_32(n: u128) -> (u128, u64) {
    pow2_u128_divrem(n, 1152921504606846975, 60)
}

#[inline]
fn u128_divrem_33(n: u128) -> (u128, u64) {
    slow_u128_divrem(n, 1667889514952984961, 3)
}

#[inline]
fn u128_divrem_34(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        2386420683693101056,
        75557863725914323419136,
        12,
        328792707121977505492535302517672775183,
        61,
    )
}

#[inline]
fn u128_divrem_35(n: u128) -> (u128, u64) {
    moderate_u128_divrem(n, 3379220508056640625, 116097442450503652080238494022501325491, 60)
}

#[inline]
fn u128_divrem_36(n: u128) -> (u128, u64) {
    fast_u128_divrem(
        n,
        4738381338321616896,
        309485009821345068724781056,
        24,
        165591931273573223021296166324748699891,
        61,
    )
}