mz_compute_client/protocol/command.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Compute protocol commands.
use std::time::Duration;
use mz_cluster_client::client::{ClusterStartupEpoch, TimelyConfig, TryIntoTimelyConfig};
use mz_compute_types::dataflows::DataflowDescription;
use mz_compute_types::plan::render_plan::RenderPlan;
use mz_dyncfg::ConfigUpdates;
use mz_expr::RowSetFinishing;
use mz_ore::tracing::OpenTelemetryContext;
use mz_proto::{any_uuid, IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::{GlobalId, Row};
use mz_service::params::GrpcClientParameters;
use mz_storage_client::client::ProtoCompaction;
use mz_storage_types::controller::CollectionMetadata;
use mz_timely_util::progress::any_antichain;
use mz_tracing::params::TracingParameters;
use proptest::prelude::{any, Arbitrary};
use proptest::strategy::{BoxedStrategy, Strategy, Union};
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use timely::progress::frontier::Antichain;
use uuid::Uuid;
use crate::logging::LoggingConfig;
include!(concat!(
env!("OUT_DIR"),
"/mz_compute_client.protocol.command.rs"
));
/// Compute protocol commands, sent by the compute controller to replicas.
///
/// Command sequences sent by the compute controller must be valid according to the [Protocol
/// Stages].
///
/// [Protocol Stages]: super#protocol-stages
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum ComputeCommand<T = mz_repr::Timestamp> {
/// `CreateTimely` is the first command sent to a replica after a connection was established.
/// It instructs the replica to initialize the timely dataflow runtime using the given
/// `config`.
///
/// This command is special in that it is broadcast to all workers of a multi-worker replica.
/// All subsequent commands, except `UpdateConfiguration`, are only sent to the first worker,
/// which then distributes them to the other workers using a dataflow. This method of command
/// distribution requires the timely dataflow runtime to be initialized, which is why the
/// `CreateTimely` command exists.
///
/// The `epoch` value imposes an ordering on iterations of the compute protocol. When the
/// compute controller connects to a replica, it must send an `epoch` that is greater than all
/// epochs it sent to the same replica on previous connections. Multi-process replicas should
/// use the `epoch` to ensure that their individual processes agree on which protocol iteration
/// they are in.
CreateTimely {
/// TODO(database-issues#7533): Add documentation.
config: TimelyConfig,
/// TODO(database-issues#7533): Add documentation.
epoch: ClusterStartupEpoch,
},
/// `CreateInstance` must be sent after `CreateTimely` to complete the [Creation Stage] of the
/// compute protocol. Unlike `CreateTimely`, it is only sent to the first worker of the
/// replica, and then distributed through the timely runtime. `CreateInstance` instructs the
/// replica to initialize its state to a point where it is ready to start maintaining
/// dataflows.
///
/// Upon receiving a `CreateInstance` command, the replica must further initialize logging
/// dataflows according to the given [`LoggingConfig`].
///
/// [Creation Stage]: super#creation-stage
CreateInstance(InstanceConfig),
/// `InitializationComplete` informs the replica about the end of the [Initialization Stage].
/// Upon receiving this command, the replica should perform a reconciliation process, to ensure
/// its dataflow state matches the state requested by the computation commands it received
/// previously. The replica must now start sending responses to commands received previously,
/// if it opted to defer them during the [Initialization Stage].
///
/// [Initialization Stage]: super#initialization-stage
InitializationComplete,
/// `AllowWrites` informs the replica that it can transition out of the
/// read-only computation stage and into the read-write computation stage.
/// It is now allowed to affect changes to external systems (writes).
///
/// After initialization is complete, an instance starts out in the
/// read-only computation stage. Only when receiving this command will it go
/// out of that and allow running operations to do writes.
///
/// An instance that has once been told that it can go into read-write mode
/// can never go out of that mode again. It is okay for a read-only
/// controller to re-connect to an instance that is already in read-write
/// mode: _someone_ has already told the instance that it is okay to write
/// and there is no way in the protocol to transition an instance back to
/// read-only mode.
///
/// NOTE: We don't have a protocol in place that allows writes only after a
/// certain, controller-determined, timestamp. Such a protocol would allow
/// tighter control and could allow the instance to avoid work. However, it
/// is more work to put in place the logic for that so we leave it as future
/// work for now.
AllowWrites,
/// `UpdateConfiguration` instructs the replica to update its configuration, according to the
/// given [`ComputeParameters`].
///
/// This command is special in that, like `CreateTimely`, it is broadcast to all workers of the
/// replica. However, unlike `CreateTimely`, it is ignored by all workers except the first one,
/// which distributes the command to the other workers through the timely runtime.
/// `UpdateConfiguration` commands are broadcast only to allow the intermediary parts of the
/// networking fabric to observe them and learn of configuration updates.
///
/// Parameter updates transmitted through this command must be applied by the replica as soon
/// as it receives the command, and they must be applied globally to all replica state, even
/// dataflows and pending peeks that were created before the parameter update. This property
/// allows the replica to hoist `UpdateConfiguration` commands during reconciliation.
///
/// Configuration parameters that should not be applied globally, but only to specific
/// dataflows or peeks, should be added to the [`DataflowDescription`] or [`Peek`] types,
/// rather than as [`ComputeParameters`].
UpdateConfiguration(ComputeParameters),
/// `CreateDataflow` instructs the replica to create a dataflow according to the given
/// [`DataflowDescription`].
///
/// The [`DataflowDescription`] must have the following properties:
///
/// * Dataflow imports are valid:
/// * Imported storage collections specified in [`source_imports`] exist and are readable by
/// the compute replica.
/// * Imported indexes specified in [`index_imports`] have been created on the replica
/// previously, by previous `CreateDataflow` commands.
/// * Dataflow imports are readable at the specified [`as_of`]. In other words: The `since`s of
/// imported collections are not beyond the dataflow [`as_of`].
/// * Dataflow exports have unique IDs, i.e., the IDs of exports from dataflows a replica is
/// instructed to create do not repeat (within a single protocol iteration).
/// * The dataflow objects defined in [`objects_to_build`] are topologically ordered according
/// to the dependency relation.
///
/// A dataflow description that violates any of the above properties can cause the replica to
/// exhibit undefined behavior, such as panicking or production of incorrect results. A replica
/// should prefer panicking over producing incorrect results.
///
/// After receiving a `CreateDataflow` command, if the created dataflow exports indexes or
/// storage sinks, the replica must produce [`Frontiers`] responses that report the
/// advancement of the frontiers of these compute collections.
///
/// After receiving a `CreateDataflow` command, if the created dataflow exports subscribes, the
/// replica must produce [`SubscribeResponse`]s that report the progress and results of the
/// subscribes.
///
/// The replica may create the dataflow in a suspended state and defer starting the computation
/// until it receives a corresponding `Schedule` command. Thus, to ensure dataflow execution,
/// the compute controller should eventually send a `Schedule` command for each sent
/// `CreateDataflow` command.
///
/// [`objects_to_build`]: DataflowDescription::objects_to_build
/// [`source_imports`]: DataflowDescription::source_imports
/// [`index_imports`]: DataflowDescription::index_imports
/// [`as_of`]: DataflowDescription::as_of
/// [`Frontiers`]: super::response::ComputeResponse::Frontiers
/// [`SubscribeResponse`]: super::response::ComputeResponse::SubscribeResponse
CreateDataflow(DataflowDescription<RenderPlan<T>, CollectionMetadata, T>),
/// `Schedule` allows the replica to start computation for a compute collection.
///
/// It is invalid to send a `Schedule` command that references a collection that was not
/// created by a corresponding `CreateDataflow` command before. Doing so may cause the replica
/// to exhibit undefined behavior.
///
/// It is also invalid to send a `Schedule` command that references a collection that has,
/// through an `AllowCompaction` command, been allowed to compact to the empty frontier before.
Schedule(GlobalId),
/// `AllowCompaction` informs the replica about the relaxation of external read capabilities on
/// a compute collection exported by one of the replica’s dataflow.
///
/// The command names a collection and provides a frontier after which accumulations must be
/// correct. The replica gains the liberty of compacting the corresponding maintained trace up
/// through that frontier.
///
/// It is invalid to send an `AllowCompaction` command that references a compute collection
/// that was not created by a corresponding `CreateDataflow` command before. Doing so may cause
/// the replica to exhibit undefined behavior.
///
/// The `AllowCompaction` command only informs about external read requirements, not internal
/// ones. The replica is responsible for ensuring that internal requirements are fulfilled at
/// all times, so local dataflow inputs are not compacted beyond times at which they are still
/// being read from.
///
/// The read frontiers transmitted through `AllowCompaction`s may be beyond the corresponding
/// collections' current `upper` frontiers. This signals that external readers are not
/// interested in times up to the specified new read frontiers. Consequently, an empty read
/// frontier signals that external readers are not interested in updates from the corresponding
/// collection ever again, so the collection is not required anymore.
///
/// Sending an `AllowCompaction` command with the empty frontier is the canonical way to drop
/// compute collections.
///
/// A replica that receives an `AllowCompaction` command with the empty frontier must
/// eventually respond with [`Frontiers`] responses reporting empty frontiers for the
/// same collection. ([#16271])
///
/// [`Frontiers`]: super::response::ComputeResponse::Frontiers
/// [#16271]: https://github.com/MaterializeInc/database-issues/issues/4699
AllowCompaction {
/// TODO(database-issues#7533): Add documentation.
id: GlobalId,
/// TODO(database-issues#7533): Add documentation.
frontier: Antichain<T>,
},
/// `Peek` instructs the replica to perform a peek on a collection: either an index or a
/// Persist-backed collection.
///
/// The [`Peek`] description must have the following properties:
///
/// * If targeting an index, it has previously been created by a corresponding `CreateDataflow`
/// command. (If targeting a persist collection, that collection should exist.)
/// * The [`Peek::uuid`] is unique, i.e., the UUIDs of peeks a replica gets instructed to
/// perform do not repeat (within a single protocol iteration).
///
/// A [`Peek`] description that violates any of the above properties can cause the replica to
/// exhibit undefined behavior.
///
/// Specifying a [`Peek::timestamp`] that is less than the target index’s `since` frontier does
/// not provoke undefined behavior. Instead, the replica must produce a [`PeekResponse::Error`]
/// in response.
///
/// After receiving a `Peek` command, the replica must eventually produce a single
/// [`PeekResponse`]:
///
/// * For peeks that were not cancelled: either [`Rows`] or [`Error`].
/// * For peeks that were cancelled: either [`Rows`], or [`Error`], or [`Canceled`].
///
/// [`PeekResponse`]: super::response::PeekResponse
/// [`PeekResponse::Error`]: super::response::PeekResponse::Error
/// [`Rows`]: super::response::PeekResponse::Rows
/// [`Error`]: super::response::PeekResponse::Error
/// [`Canceled`]: super::response::PeekResponse::Canceled
Peek(Peek<T>),
/// `CancelPeek` instructs the replica to cancel the identified pending peek.
///
/// It is invalid to send a `CancelPeek` command that references a peek that was not created
/// by a corresponding `Peek` command before. Doing so may cause the replica to exhibit
/// undefined behavior.
///
/// If a replica cancels a peek in response to a `CancelPeek` command, it must respond with a
/// [`PeekResponse::Canceled`]. The replica may also decide to fulfill the peek instead and
/// return a different [`PeekResponse`], or it may already have returned a response to the
/// specified peek. In these cases it must *not* return another [`PeekResponse`].
///
/// [`PeekResponse`]: super::response::PeekResponse
/// [`PeekResponse::Canceled`]: super::response::PeekResponse::Canceled
CancelPeek {
/// The identifier of the peek request to cancel.
///
/// This Value must match a [`Peek::uuid`] value transmitted in a previous `Peek` command.
uuid: Uuid,
},
}
impl RustType<ProtoComputeCommand> for ComputeCommand<mz_repr::Timestamp> {
fn into_proto(&self) -> ProtoComputeCommand {
use proto_compute_command::Kind::*;
use proto_compute_command::*;
ProtoComputeCommand {
kind: Some(match self {
ComputeCommand::CreateTimely { config, epoch } => CreateTimely(ProtoCreateTimely {
config: Some(config.into_proto()),
epoch: Some(epoch.into_proto()),
}),
ComputeCommand::CreateInstance(config) => CreateInstance(config.into_proto()),
ComputeCommand::InitializationComplete => InitializationComplete(()),
ComputeCommand::UpdateConfiguration(params) => {
UpdateConfiguration(params.into_proto())
}
ComputeCommand::CreateDataflow(dataflow) => CreateDataflow(dataflow.into_proto()),
ComputeCommand::Schedule(id) => Schedule(id.into_proto()),
ComputeCommand::AllowCompaction { id, frontier } => {
AllowCompaction(ProtoCompaction {
id: Some(id.into_proto()),
frontier: Some(frontier.into_proto()),
})
}
ComputeCommand::Peek(peek) => Peek(peek.into_proto()),
ComputeCommand::CancelPeek { uuid } => CancelPeek(uuid.into_proto()),
ComputeCommand::AllowWrites => AllowWrites(()),
}),
}
}
fn from_proto(proto: ProtoComputeCommand) -> Result<Self, TryFromProtoError> {
use proto_compute_command::Kind::*;
use proto_compute_command::*;
match proto.kind {
Some(CreateTimely(ProtoCreateTimely { config, epoch })) => {
Ok(ComputeCommand::CreateTimely {
config: config.into_rust_if_some("ProtoCreateTimely::config")?,
epoch: epoch.into_rust_if_some("ProtoCreateTimely::epoch")?,
})
}
Some(CreateInstance(config)) => Ok(ComputeCommand::CreateInstance(config.into_rust()?)),
Some(InitializationComplete(())) => Ok(ComputeCommand::InitializationComplete),
Some(UpdateConfiguration(params)) => {
Ok(ComputeCommand::UpdateConfiguration(params.into_rust()?))
}
Some(CreateDataflow(dataflow)) => {
Ok(ComputeCommand::CreateDataflow(dataflow.into_rust()?))
}
Some(Schedule(id)) => Ok(ComputeCommand::Schedule(id.into_rust()?)),
Some(AllowCompaction(ProtoCompaction { id, frontier })) => {
Ok(ComputeCommand::AllowCompaction {
id: id.into_rust_if_some("ProtoAllowCompaction::id")?,
frontier: frontier.into_rust_if_some("ProtoAllowCompaction::frontier")?,
})
}
Some(Peek(peek)) => Ok(ComputeCommand::Peek(peek.into_rust()?)),
Some(CancelPeek(uuid)) => Ok(ComputeCommand::CancelPeek {
uuid: uuid.into_rust()?,
}),
Some(AllowWrites(())) => Ok(ComputeCommand::AllowWrites),
None => Err(TryFromProtoError::missing_field(
"ProtoComputeCommand::kind",
)),
}
}
}
impl Arbitrary for ComputeCommand<mz_repr::Timestamp> {
type Strategy = Union<BoxedStrategy<Self>>;
type Parameters = ();
fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
Union::new(vec![
any::<InstanceConfig>()
.prop_map(ComputeCommand::CreateInstance)
.boxed(),
any::<ComputeParameters>()
.prop_map(ComputeCommand::UpdateConfiguration)
.boxed(),
any::<DataflowDescription<RenderPlan, CollectionMetadata, mz_repr::Timestamp>>()
.prop_map(ComputeCommand::CreateDataflow)
.boxed(),
any::<GlobalId>().prop_map(ComputeCommand::Schedule).boxed(),
(any::<GlobalId>(), any_antichain())
.prop_map(|(id, frontier)| ComputeCommand::AllowCompaction { id, frontier })
.boxed(),
any::<Peek>().prop_map(ComputeCommand::Peek).boxed(),
any_uuid()
.prop_map(|uuid| ComputeCommand::CancelPeek { uuid })
.boxed(),
])
}
}
/// Configuration for a replica, passed with the `CreateInstance`. Replicas should halt
/// if the controller attempt to reconcile them with different values
/// for anything in this struct.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, Arbitrary)]
pub struct InstanceConfig {
/// Specification of introspection logging.
pub logging: LoggingConfig,
/// The offset relative to the replica startup at which it should expire. None disables feature.
pub expiration_offset: Option<Duration>,
}
impl InstanceConfig {
/// Check if the configuration is compatible with another configuration. This is true iff the
/// logging configuration is equivalent, and the other configuration (non-strictly) strengthens
/// the expiration offset.
///
/// We consider a stricter offset compatible, which allows us to strengthen the value without
/// forcing replica restarts. However, it also means that replicas will only pick up the new
/// value after a restart.
pub fn compatible_with(&self, other: &InstanceConfig) -> bool {
// Destructure to protect against adding fields in the future.
let InstanceConfig {
logging: self_logging,
expiration_offset: self_offset,
} = self;
let InstanceConfig {
logging: other_logging,
expiration_offset: other_offset,
} = other;
// Logging is compatible if exactly the same.
let logging_compatible = self_logging == other_logging;
// The offsets are compatible of other_offset is less than or equal to self_offset, i.e., it
// is a smaller offset and strengthens the offset.
let self_offset = Antichain::from_iter(*self_offset);
let other_offset = Antichain::from_iter(*other_offset);
let offset_compatible = timely::PartialOrder::less_equal(&other_offset, &self_offset);
logging_compatible && offset_compatible
}
}
impl RustType<ProtoInstanceConfig> for InstanceConfig {
fn into_proto(&self) -> ProtoInstanceConfig {
ProtoInstanceConfig {
logging: Some(self.logging.into_proto()),
expiration_offset: self.expiration_offset.into_proto(),
}
}
fn from_proto(proto: ProtoInstanceConfig) -> Result<Self, TryFromProtoError> {
Ok(Self {
logging: proto
.logging
.into_rust_if_some("ProtoCreateInstance::logging")?,
expiration_offset: proto.expiration_offset.into_rust()?,
})
}
}
/// Compute instance configuration parameters.
///
/// Parameters can be set (`Some`) or unset (`None`).
/// Unset parameters should be interpreted to mean "use the previous value".
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize, Arbitrary)]
pub struct ComputeParameters {
/// An optional arbitrary string that describes the class of the workload
/// this compute instance is running (e.g., `production` or `staging`).
///
/// When `Some(x)`, a `workload_class=x` label is applied to all metrics
/// exported by the metrics registry associated with the compute instance.
pub workload_class: Option<Option<String>>,
/// The maximum allowed size in bytes for results of peeks and subscribes.
///
/// Peeks and subscribes that would return results larger than this maximum return the
/// respective error responses instead:
/// * [`PeekResponse::Rows`] is replaced by [`PeekResponse::Error`].
/// * The [`SubscribeBatch::updates`] field is populated with an [`Err`] value.
///
/// [`PeekResponse::Rows`]: super::response::PeekResponse::Rows
/// [`PeekResponse::Error`]: super::response::PeekResponse::Error
/// [`SubscribeBatch::updates`]: super::response::SubscribeBatch::updates
pub max_result_size: Option<u64>,
/// Tracing configuration.
pub tracing: TracingParameters,
/// gRPC client configuration.
pub grpc_client: GrpcClientParameters,
/// Config updates for components migrated to `mz_dyncfg`.
pub dyncfg_updates: ConfigUpdates,
}
impl ComputeParameters {
/// Update the parameter values with the set ones from `other`.
pub fn update(&mut self, other: ComputeParameters) {
let ComputeParameters {
workload_class,
max_result_size,
tracing,
grpc_client,
dyncfg_updates,
} = other;
if workload_class.is_some() {
self.workload_class = workload_class;
}
if max_result_size.is_some() {
self.max_result_size = max_result_size;
}
self.tracing.update(tracing);
self.grpc_client.update(grpc_client);
self.dyncfg_updates.extend(dyncfg_updates);
}
/// Return whether all parameters are unset.
pub fn all_unset(&self) -> bool {
*self == Self::default()
}
}
impl RustType<ProtoComputeParameters> for ComputeParameters {
fn into_proto(&self) -> ProtoComputeParameters {
ProtoComputeParameters {
workload_class: self.workload_class.into_proto(),
max_result_size: self.max_result_size.into_proto(),
tracing: Some(self.tracing.into_proto()),
grpc_client: Some(self.grpc_client.into_proto()),
dyncfg_updates: Some(self.dyncfg_updates.clone()),
}
}
fn from_proto(proto: ProtoComputeParameters) -> Result<Self, TryFromProtoError> {
Ok(Self {
workload_class: proto.workload_class.into_rust()?,
max_result_size: proto.max_result_size.into_rust()?,
tracing: proto
.tracing
.into_rust_if_some("ProtoComputeParameters::tracing")?,
grpc_client: proto
.grpc_client
.into_rust_if_some("ProtoComputeParameters::grpc_client")?,
dyncfg_updates: proto.dyncfg_updates.ok_or_else(|| {
TryFromProtoError::missing_field("ProtoComputeParameters::dyncfg_updates")
})?,
})
}
}
impl RustType<ProtoWorkloadClass> for Option<String> {
fn into_proto(&self) -> ProtoWorkloadClass {
ProtoWorkloadClass {
value: self.clone(),
}
}
fn from_proto(proto: ProtoWorkloadClass) -> Result<Self, TryFromProtoError> {
Ok(proto.value)
}
}
/// Metadata specific to the peek variant.
#[derive(Arbitrary, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum PeekTarget {
/// This peek is against an index. Since this should be held in memory on
/// the target cluster, no additional coordinates are necessary.
Index {
/// The id of the (possibly transient) index.
id: GlobalId,
},
/// This peek is against a Persist collection.
Persist {
/// The id of the backing Persist collection.
id: GlobalId,
/// The identifying metadata of the Persist shard.
metadata: CollectionMetadata,
},
}
impl PeekTarget {
/// Returns the ID of the peeked collection.
pub fn id(&self) -> GlobalId {
match self {
Self::Index { id } => *id,
Self::Persist { id, .. } => *id,
}
}
}
/// Peek a collection, either in an arrangement or Persist.
///
/// This request elicits data from the worker, by naming the
/// collection and some actions to apply to the results before
/// returning them.
///
/// The `timestamp` member must be valid for the arrangement that
/// is referenced by `id`. This means that `AllowCompaction` for
/// this arrangement should not pass `timestamp` before this command.
/// Subsequent commands may arbitrarily compact the arrangements;
/// the dataflow runners are responsible for ensuring that they can
/// correctly answer the `Peek`.
#[derive(Arbitrary, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct Peek<T = mz_repr::Timestamp> {
/// Target-specific metadata.
pub target: PeekTarget,
/// If `Some`, then look up only the given keys from the collection (instead of a full scan).
/// The vector is never empty.
#[proptest(strategy = "proptest::option::of(proptest::collection::vec(any::<Row>(), 1..5))")]
pub literal_constraints: Option<Vec<Row>>,
/// The identifier of this peek request.
///
/// Used in responses and cancellation requests.
#[proptest(strategy = "any_uuid()")]
pub uuid: Uuid,
/// The logical timestamp at which the collection is queried.
pub timestamp: T,
/// Actions to apply to the result set before returning them.
pub finishing: RowSetFinishing,
/// Linear operation to apply in-line on each result.
pub map_filter_project: mz_expr::SafeMfpPlan,
/// An `OpenTelemetryContext` to forward trace information along
/// to the compute worker to allow associating traces between
/// the compute controller and the compute worker.
#[proptest(strategy = "empty_otel_ctx()")]
pub otel_ctx: OpenTelemetryContext,
}
impl RustType<ProtoPeek> for Peek {
fn into_proto(&self) -> ProtoPeek {
ProtoPeek {
key: match &self.literal_constraints {
// In the Some case, the vector is never empty, so it's safe to encode None as an
// empty vector, and Some(vector) as just the vector.
Some(vec) => {
assert!(!vec.is_empty());
vec.into_proto()
}
None => Vec::<Row>::new().into_proto(),
},
uuid: Some(self.uuid.into_proto()),
timestamp: self.timestamp.into(),
finishing: Some(self.finishing.into_proto()),
map_filter_project: Some(self.map_filter_project.into_proto()),
otel_ctx: self.otel_ctx.clone().into(),
target: Some(match &self.target {
PeekTarget::Index { id } => proto_peek::Target::Index(ProtoIndexTarget {
id: Some(id.into_proto()),
}),
PeekTarget::Persist { id, metadata } => {
proto_peek::Target::Persist(ProtoPersistTarget {
id: Some(id.into_proto()),
metadata: Some(metadata.into_proto()),
})
}
}),
}
}
fn from_proto(x: ProtoPeek) -> Result<Self, TryFromProtoError> {
Ok(Self {
literal_constraints: {
let vec: Vec<Row> = x.key.into_rust()?;
if vec.is_empty() {
None
} else {
Some(vec)
}
},
uuid: x.uuid.into_rust_if_some("ProtoPeek::uuid")?,
timestamp: x.timestamp.into(),
finishing: x.finishing.into_rust_if_some("ProtoPeek::finishing")?,
map_filter_project: x
.map_filter_project
.into_rust_if_some("ProtoPeek::map_filter_project")?,
otel_ctx: x.otel_ctx.into(),
target: match x.target {
Some(proto_peek::Target::Index(target)) => PeekTarget::Index {
id: target.id.into_rust_if_some("ProtoIndexTarget::id")?,
},
Some(proto_peek::Target::Persist(target)) => PeekTarget::Persist {
id: target.id.into_rust_if_some("ProtoPersistTarget::id")?,
metadata: target
.metadata
.into_rust_if_some("ProtoPersistTarget::metadata")?,
},
None => return Err(TryFromProtoError::missing_field("ProtoPeek::target")),
},
})
}
}
fn empty_otel_ctx() -> impl Strategy<Value = OpenTelemetryContext> {
(0..1).prop_map(|_| OpenTelemetryContext::empty())
}
impl TryIntoTimelyConfig for ComputeCommand {
fn try_into_timely_config(self) -> Result<(TimelyConfig, ClusterStartupEpoch), Self> {
match self {
ComputeCommand::CreateTimely { config, epoch } => Ok((config, epoch)),
cmd => Err(cmd),
}
}
}
#[cfg(test)]
mod tests {
use mz_ore::assert_ok;
use mz_proto::protobuf_roundtrip;
use proptest::prelude::ProptestConfig;
use proptest::proptest;
use super::*;
proptest! {
#![proptest_config(ProptestConfig::with_cases(32))]
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn peek_protobuf_roundtrip(expect in any::<Peek>() ) {
let actual = protobuf_roundtrip::<_, ProtoPeek>(&expect);
assert_ok!(actual);
assert_eq!(actual.unwrap(), expect);
}
#[mz_ore::test]
fn compute_command_protobuf_roundtrip(expect in any::<ComputeCommand<mz_repr::Timestamp>>() ) {
let actual = protobuf_roundtrip::<_, ProtoComputeCommand>(&expect);
assert_ok!(actual);
assert_eq!(actual.unwrap(), expect);
}
}
}