1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

#![warn(missing_docs)]

use std::cmp::{max, Ordering};
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
use std::fmt::{Display, Formatter};
use std::hash::{DefaultHasher, Hash, Hasher};
use std::num::NonZeroU64;
use std::time::Instant;

use bytesize::ByteSize;
use itertools::Itertools;
use mz_lowertest::MzReflect;
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::id_gen::IdGen;
use mz_ore::metrics::Histogram;
use mz_ore::num::NonNeg;
use mz_ore::stack::RecursionLimitError;
use mz_ore::str::Indent;
use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::adt::numeric::NumericMaxScale;
use mz_repr::explain::text::text_string_at;
use mz_repr::explain::{
    DummyHumanizer, ExplainConfig, ExprHumanizer, IndexUsageType, PlanRenderingContext,
};
use mz_repr::{
    ColumnName, ColumnType, Datum, Diff, GlobalId, IntoRowIterator, RelationType, Row, RowIterator,
    ScalarType,
};
use proptest::prelude::{any, Arbitrary, BoxedStrategy};
use proptest::strategy::{Strategy, Union};
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use timely::container::columnation::{Columnation, CopyRegion};

use crate::explain::{HumanizedExpr, HumanizerMode};
use crate::relation::func::{AggregateFunc, LagLeadType, TableFunc};
use crate::row::{RowCollection, SortedRowCollectionIter};
use crate::visit::{Visit, VisitChildren};
use crate::Id::Local;
use crate::{
    func as scalar_func, EvalError, FilterCharacteristics, Id, LocalId, MirScalarExpr, UnaryFunc,
    VariadicFunc,
};

pub mod canonicalize;
pub mod func;
pub mod join_input_mapper;

include!(concat!(env!("OUT_DIR"), "/mz_expr.relation.rs"));

/// A recursion limit to be used for stack-safe traversals of [`MirRelationExpr`] trees.
///
/// The recursion limit must be large enough to accommodate for the linear representation
/// of some pathological but frequently occurring query fragments.
///
/// For example, in MIR we could have long chains of
/// - (1) `Let` bindings,
/// - (2) `CallBinary` calls with associative functions such as `+`
///
/// Until we fix those, we need to stick with the larger recursion limit.
pub const RECURSION_LIMIT: usize = 2048;

/// A trait for types that describe how to build a collection.
pub trait CollectionPlan {
    /// Collects the set of global identifiers from dataflows referenced in Get.
    fn depends_on_into(&self, out: &mut BTreeSet<GlobalId>);

    /// Returns the set of global identifiers from dataflows referenced in Get.
    ///
    /// See [`CollectionPlan::depends_on_into`] to reuse an existing `BTreeSet`.
    fn depends_on(&self) -> BTreeSet<GlobalId> {
        let mut out = BTreeSet::new();
        self.depends_on_into(&mut out);
        out
    }
}

/// An abstract syntax tree which defines a collection.
///
/// The AST is meant to reflect the capabilities of the `differential_dataflow::Collection` type,
/// written generically enough to avoid run-time compilation work.
///
/// `derived_hash_with_manual_eq` was complaining for the wrong reason: This lint exists because
/// it's bad when `Eq` doesn't agree with `Hash`, which is often quite likely if one of them is
/// implemented manually. However, our manual implementation of `Eq` _will_ agree with the derived
/// one. This is because the reason for the manual implementation is not to change the semantics
/// from the derived one, but to avoid stack overflows.
#[allow(clippy::derived_hash_with_manual_eq)]
#[derive(Clone, Debug, Ord, PartialOrd, Serialize, Deserialize, MzReflect, Hash)]
pub enum MirRelationExpr {
    /// A constant relation containing specified rows.
    ///
    /// The runtime memory footprint of this operator is zero.
    ///
    /// When you would like to pattern match on this, consider using `MirRelationExpr::as_const`
    /// instead, which looks behind `ArrangeBy`s. You might want this matching behavior because
    /// constant folding doesn't remove `ArrangeBy`s.
    Constant {
        /// Rows of the constant collection and their multiplicities.
        rows: Result<Vec<(Row, Diff)>, EvalError>,
        /// Schema of the collection.
        typ: RelationType,
    },
    /// Get an existing dataflow.
    ///
    /// The runtime memory footprint of this operator is zero.
    Get {
        /// The identifier for the collection to load.
        #[mzreflect(ignore)]
        id: Id,
        /// Schema of the collection.
        typ: RelationType,
        /// If this is a global Get, this will indicate whether we are going to read from Persist or
        /// from an index, or from a different object in `objects_to_build`. If it's an index, then
        /// how downstream dataflow operations will use this index is also recorded. This is filled
        /// by `prune_and_annotate_dataflow_index_imports`. Note that this is not used by the
        /// lowering to LIR, but is used only by EXPLAIN.
        #[mzreflect(ignore)]
        access_strategy: AccessStrategy,
    },
    /// Introduce a temporary dataflow.
    ///
    /// The runtime memory footprint of this operator is zero.
    Let {
        /// The identifier to be used in `Get` variants to retrieve `value`.
        #[mzreflect(ignore)]
        id: LocalId,
        /// The collection to be bound to `id`.
        value: Box<MirRelationExpr>,
        /// The result of the `Let`, evaluated with `id` bound to `value`.
        body: Box<MirRelationExpr>,
    },
    /// Introduce mutually recursive bindings.
    ///
    /// Each `LocalId` is immediately bound to an initially empty  collection
    /// with the type of its corresponding `MirRelationExpr`. Repeatedly, each
    /// binding is evaluated using the current contents of each other binding,
    /// and is refreshed to contain the new evaluation. This process continues
    /// through all bindings, and repeats as long as changes continue to occur.
    ///
    /// The resulting value of the expression is `body` evaluated once in the
    /// context of the final iterates.
    ///
    /// A zero-binding instance can be replaced by `body`.
    /// A single-binding instance is equivalent to `MirRelationExpr::Let`.
    ///
    /// The runtime memory footprint of this operator is zero.
    LetRec {
        /// The identifiers to be used in `Get` variants to retrieve each `value`.
        #[mzreflect(ignore)]
        ids: Vec<LocalId>,
        /// The collections to be bound to each `id`.
        values: Vec<MirRelationExpr>,
        /// Maximum number of iterations, after which we should artificially force a fixpoint.
        /// (Whether we error or just stop is configured by `LetRecLimit::return_at_limit`.)
        /// The per-`LetRec` limit that the user specified is initially copied to each binding to
        /// accommodate slicing and merging of `LetRec`s in MIR transforms (e.g., `NormalizeLets`).
        #[mzreflect(ignore)]
        limits: Vec<Option<LetRecLimit>>,
        /// The result of the `Let`, evaluated with `id` bound to `value`.
        body: Box<MirRelationExpr>,
    },
    /// Project out some columns from a dataflow
    ///
    /// The runtime memory footprint of this operator is zero.
    Project {
        /// The source collection.
        input: Box<MirRelationExpr>,
        /// Indices of columns to retain.
        outputs: Vec<usize>,
    },
    /// Append new columns to a dataflow
    ///
    /// The runtime memory footprint of this operator is zero.
    Map {
        /// The source collection.
        input: Box<MirRelationExpr>,
        /// Expressions which determine values to append to each row.
        /// An expression may refer to columns in `input` or
        /// expressions defined earlier in the vector
        scalars: Vec<MirScalarExpr>,
    },
    /// Like Map, but yields zero-or-more output rows per input row
    ///
    /// The runtime memory footprint of this operator is zero.
    FlatMap {
        /// The source collection
        input: Box<MirRelationExpr>,
        /// The table func to apply
        func: TableFunc,
        /// The argument to the table func
        exprs: Vec<MirScalarExpr>,
    },
    /// Keep rows from a dataflow where all the predicates are true
    ///
    /// The runtime memory footprint of this operator is zero.
    Filter {
        /// The source collection.
        input: Box<MirRelationExpr>,
        /// Predicates, each of which must be true.
        predicates: Vec<MirScalarExpr>,
    },
    /// Join several collections, where some columns must be equal.
    ///
    /// For further details consult the documentation for [`MirRelationExpr::join`].
    ///
    /// The runtime memory footprint of this operator can be proportional to
    /// the sizes of all inputs and the size of all joins of prefixes.
    /// This may be reduced due to arrangements available at rendering time.
    Join {
        /// A sequence of input relations.
        inputs: Vec<MirRelationExpr>,
        /// A sequence of equivalence classes of expressions on the cross product of inputs.
        ///
        /// Each equivalence class is a list of scalar expressions, where for each class the
        /// intended interpretation is that all evaluated expressions should be equal.
        ///
        /// Each scalar expression is to be evaluated over the cross-product of all records
        /// from all inputs. In many cases this may just be column selection from specific
        /// inputs, but more general cases exist (e.g. complex functions of multiple columns
        /// from multiple inputs, or just constant literals).
        equivalences: Vec<Vec<MirScalarExpr>>,
        /// Join implementation information.
        #[serde(default)]
        implementation: JoinImplementation,
    },
    /// Group a dataflow by some columns and aggregate over each group
    ///
    /// The runtime memory footprint of this operator is at most proportional to the
    /// number of distinct records in the input and output. The actual requirements
    /// can be less: the number of distinct inputs to each aggregate, summed across
    /// each aggregate, plus the output size. For more details consult the code that
    /// builds the associated dataflow.
    Reduce {
        /// The source collection.
        input: Box<MirRelationExpr>,
        /// Column indices used to form groups.
        group_key: Vec<MirScalarExpr>,
        /// Expressions which determine values to append to each row, after the group keys.
        aggregates: Vec<AggregateExpr>,
        /// True iff the input is known to monotonically increase (only addition of records).
        #[serde(default)]
        monotonic: bool,
        /// User hint: expected number of values per group key. Used to optimize physical rendering.
        #[serde(default)]
        expected_group_size: Option<u64>,
    },
    /// Groups and orders within each group, limiting output.
    ///
    /// The runtime memory footprint of this operator is proportional to its input and output.
    TopK {
        /// The source collection.
        input: Box<MirRelationExpr>,
        /// Column indices used to form groups.
        group_key: Vec<usize>,
        /// Column indices used to order rows within groups.
        order_key: Vec<ColumnOrder>,
        /// Number of records to retain
        #[serde(default)]
        limit: Option<MirScalarExpr>,
        /// Number of records to skip
        #[serde(default)]
        offset: usize,
        /// True iff the input is known to monotonically increase (only addition of records).
        #[serde(default)]
        monotonic: bool,
        /// User-supplied hint: how many rows will have the same group key.
        #[serde(default)]
        expected_group_size: Option<u64>,
    },
    /// Return a dataflow where the row counts are negated
    ///
    /// The runtime memory footprint of this operator is zero.
    Negate {
        /// The source collection.
        input: Box<MirRelationExpr>,
    },
    /// Keep rows from a dataflow where the row counts are positive
    ///
    /// The runtime memory footprint of this operator is proportional to its input and output.
    Threshold {
        /// The source collection.
        input: Box<MirRelationExpr>,
    },
    /// Adds the frequencies of elements in contained sets.
    ///
    /// The runtime memory footprint of this operator is zero.
    Union {
        /// A source collection.
        base: Box<MirRelationExpr>,
        /// Source collections to union.
        inputs: Vec<MirRelationExpr>,
    },
    /// Technically a no-op. Used to render an index. Will be used to optimize queries
    /// on finer grain. Each `keys` item represents a different index that should be
    /// produced from the `keys`.
    ///
    /// The runtime memory footprint of this operator is proportional to its input.
    ArrangeBy {
        /// The source collection
        input: Box<MirRelationExpr>,
        /// Columns to arrange `input` by, in order of decreasing primacy
        keys: Vec<Vec<MirScalarExpr>>,
    },
}

impl PartialEq for MirRelationExpr {
    fn eq(&self, other: &Self) -> bool {
        // Capture the result and test it wrt `Ord` implementation in test environments.
        let result = structured_diff::MreDiff::new(self, other).next().is_none();
        mz_ore::soft_assert_eq_no_log!(result, self.cmp(other) == Ordering::Equal);
        result
    }
}
impl Eq for MirRelationExpr {}

impl Arbitrary for MirRelationExpr {
    type Parameters = ();

    fn arbitrary_with((): Self::Parameters) -> Self::Strategy {
        const VEC_LEN: usize = 2;

        // A strategy for generating the leaf cases.
        let leaf = Union::new([
            (
                any::<Result<Vec<(Row, Diff)>, EvalError>>(),
                any::<RelationType>(),
            )
                .prop_map(|(rows, typ)| MirRelationExpr::Constant { rows, typ })
                .boxed(),
            (any::<Id>(), any::<RelationType>(), any::<AccessStrategy>())
                .prop_map(|(id, typ, access_strategy)| MirRelationExpr::Get {
                    id,
                    typ,
                    access_strategy,
                })
                .boxed(),
        ])
        .boxed();

        leaf.prop_recursive(2, 2, 2, |inner| {
            Union::new([
                // Let
                (any::<LocalId>(), inner.clone(), inner.clone())
                    .prop_map(|(id, value, body)| MirRelationExpr::Let {
                        id,
                        value: Box::new(value),
                        body: Box::new(body),
                    })
                    .boxed(),
                // LetRec
                (
                    any::<Vec<LocalId>>(),
                    proptest::collection::vec(inner.clone(), 1..VEC_LEN),
                    any::<Vec<Option<LetRecLimit>>>(),
                    inner.clone(),
                )
                    .prop_map(|(ids, values, limits, body)| MirRelationExpr::LetRec {
                        ids,
                        values,
                        limits,
                        body: Box::new(body),
                    })
                    .boxed(),
                // Project
                (inner.clone(), any::<Vec<usize>>())
                    .prop_map(|(input, outputs)| MirRelationExpr::Project {
                        input: Box::new(input),
                        outputs,
                    })
                    .boxed(),
                // Map
                (inner.clone(), any::<Vec<MirScalarExpr>>())
                    .prop_map(|(input, scalars)| MirRelationExpr::Map {
                        input: Box::new(input),
                        scalars,
                    })
                    .boxed(),
                // FlatMap
                (
                    inner.clone(),
                    any::<TableFunc>(),
                    any::<Vec<MirScalarExpr>>(),
                )
                    .prop_map(|(input, func, exprs)| MirRelationExpr::FlatMap {
                        input: Box::new(input),
                        func,
                        exprs,
                    })
                    .boxed(),
                // Filter
                (inner.clone(), any::<Vec<MirScalarExpr>>())
                    .prop_map(|(input, predicates)| MirRelationExpr::Filter {
                        input: Box::new(input),
                        predicates,
                    })
                    .boxed(),
                // Join
                (
                    proptest::collection::vec(inner.clone(), 1..VEC_LEN),
                    any::<Vec<Vec<MirScalarExpr>>>(),
                    any::<JoinImplementation>(),
                )
                    .prop_map(
                        |(inputs, equivalences, implementation)| MirRelationExpr::Join {
                            inputs,
                            equivalences,
                            implementation,
                        },
                    )
                    .boxed(),
                // Reduce
                (
                    inner.clone(),
                    any::<Vec<MirScalarExpr>>(),
                    any::<Vec<AggregateExpr>>(),
                    any::<bool>(),
                    any::<Option<u64>>(),
                )
                    .prop_map(
                        |(input, group_key, aggregates, monotonic, expected_group_size)| {
                            MirRelationExpr::Reduce {
                                input: Box::new(input),
                                group_key,
                                aggregates,
                                monotonic,
                                expected_group_size,
                            }
                        },
                    )
                    .boxed(),
                // TopK
                (
                    inner.clone(),
                    any::<Vec<usize>>(),
                    any::<Vec<ColumnOrder>>(),
                    any::<Option<MirScalarExpr>>(),
                    any::<usize>(),
                    any::<bool>(),
                    any::<Option<u64>>(),
                )
                    .prop_map(
                        |(
                            input,
                            group_key,
                            order_key,
                            limit,
                            offset,
                            monotonic,
                            expected_group_size,
                        )| MirRelationExpr::TopK {
                            input: Box::new(input),
                            group_key,
                            order_key,
                            limit,
                            offset,
                            monotonic,
                            expected_group_size,
                        },
                    )
                    .boxed(),
                // Negate
                inner
                    .clone()
                    .prop_map(|input| MirRelationExpr::Negate {
                        input: Box::new(input),
                    })
                    .boxed(),
                // Threshold
                inner
                    .clone()
                    .prop_map(|input| MirRelationExpr::Threshold {
                        input: Box::new(input),
                    })
                    .boxed(),
                // Union
                (
                    inner.clone(),
                    proptest::collection::vec(inner.clone(), 1..VEC_LEN),
                )
                    .prop_map(|(base, inputs)| MirRelationExpr::Union {
                        base: Box::new(base),
                        inputs,
                    })
                    .boxed(),
                // ArrangeBy
                (inner.clone(), any::<Vec<Vec<MirScalarExpr>>>())
                    .prop_map(|(input, keys)| MirRelationExpr::ArrangeBy {
                        input: Box::new(input),
                        keys,
                    })
                    .boxed(),
            ])
        })
        .boxed()
    }

    type Strategy = BoxedStrategy<Self>;
}

impl MirRelationExpr {
    /// Reports the schema of the relation.
    ///
    /// This method determines the type through recursive traversal of the
    /// relation expression, drawing from the types of base collections.
    /// As such, this is not an especially cheap method, and should be used
    /// judiciously.
    ///
    /// The relation type is computed incrementally with a recursive post-order
    /// traversal, that accumulates the input types for the relations yet to be
    /// visited in `type_stack`.
    pub fn typ(&self) -> RelationType {
        let mut type_stack = Vec::new();
        #[allow(deprecated)]
        self.visit_pre_post_nolimit(
            &mut |e: &MirRelationExpr| -> Option<Vec<&MirRelationExpr>> {
                match &e {
                    MirRelationExpr::Let { body, .. } => {
                        // Do not traverse the value sub-graph, since it's not relevant for
                        // determining the relation type of Let operators.
                        Some(vec![&*body])
                    }
                    MirRelationExpr::LetRec { body, .. } => {
                        // Do not traverse the value sub-graph, since it's not relevant for
                        // determining the relation type of Let operators.
                        Some(vec![&*body])
                    }
                    _ => None,
                }
            },
            &mut |e: &MirRelationExpr| {
                match e {
                    MirRelationExpr::Let { .. } => {
                        let body_typ = type_stack.pop().unwrap();
                        // Insert a dummy relation type for the value, since `typ_with_input_types`
                        // won't look at it, but expects the relation type of the body to be second.
                        type_stack.push(RelationType::empty());
                        type_stack.push(body_typ);
                    }
                    MirRelationExpr::LetRec { values, .. } => {
                        let body_typ = type_stack.pop().unwrap();
                        // Insert dummy relation types for the values, since `typ_with_input_types`
                        // won't look at them, but expects the relation type of the body to be last.
                        type_stack
                            .extend(std::iter::repeat(RelationType::empty()).take(values.len()));
                        type_stack.push(body_typ);
                    }
                    _ => {}
                }
                let num_inputs = e.num_inputs();
                let relation_type =
                    e.typ_with_input_types(&type_stack[type_stack.len() - num_inputs..]);
                type_stack.truncate(type_stack.len() - num_inputs);
                type_stack.push(relation_type);
            },
        );
        assert_eq!(type_stack.len(), 1);
        type_stack.pop().unwrap()
    }

    /// Reports the schema of the relation given the schema of the input relations.
    ///
    /// `input_types` is required to contain the schemas for the input relations of
    /// the current relation in the same order as they are visited by `try_visit_children`
    /// method, even though not all may be used for computing the schema of the
    /// current relation. For example, `Let` expects two input types, one for the
    /// value relation and one for the body, in that order, but only the one for the
    /// body is used to determine the type of the `Let` relation.
    ///
    /// It is meant to be used during post-order traversals to compute relation
    /// schemas incrementally.
    pub fn typ_with_input_types(&self, input_types: &[RelationType]) -> RelationType {
        let column_types = self.col_with_input_cols(input_types.iter().map(|i| &i.column_types));
        let unique_keys = self.keys_with_input_keys(
            input_types.iter().map(|i| i.arity()),
            input_types.iter().map(|i| &i.keys),
        );
        RelationType::new(column_types).with_keys(unique_keys)
    }

    /// Reports the column types of the relation given the column types of the
    /// input relations.
    ///
    /// This method delegates to `try_col_with_input_cols`, panicing if an `Err`
    /// variant is returned.
    pub fn col_with_input_cols<'a, I>(&self, input_types: I) -> Vec<ColumnType>
    where
        I: Iterator<Item = &'a Vec<ColumnType>>,
    {
        match self.try_col_with_input_cols(input_types) {
            Ok(col_types) => col_types,
            Err(err) => panic!("{err}"),
        }
    }

    /// Reports the column types of the relation given the column types of the input relations.
    ///
    /// `input_types` is required to contain the column types for the input relations of
    /// the current relation in the same order as they are visited by `try_visit_children`
    /// method, even though not all may be used for computing the schema of the
    /// current relation. For example, `Let` expects two input types, one for the
    /// value relation and one for the body, in that order, but only the one for the
    /// body is used to determine the type of the `Let` relation.
    ///
    /// It is meant to be used during post-order traversals to compute column types
    /// incrementally.
    pub fn try_col_with_input_cols<'a, I>(
        &self,
        mut input_types: I,
    ) -> Result<Vec<ColumnType>, String>
    where
        I: Iterator<Item = &'a Vec<ColumnType>>,
    {
        use MirRelationExpr::*;

        let col_types = match self {
            Constant { rows, typ } => {
                let mut col_types = typ.column_types.clone();
                let mut seen_null = vec![false; typ.arity()];
                if let Ok(rows) = rows {
                    for (row, _diff) in rows {
                        for (datum, i) in row.iter().zip_eq(0..typ.arity()) {
                            if datum.is_null() {
                                seen_null[i] = true;
                            }
                        }
                    }
                }
                for (&seen_null, i) in seen_null.iter().zip_eq(0..typ.arity()) {
                    if !seen_null {
                        col_types[i].nullable = false;
                    } else {
                        assert!(col_types[i].nullable);
                    }
                }
                col_types
            }
            Get { typ, .. } => typ.column_types.clone(),
            Project { outputs, .. } => {
                let input = input_types.next().unwrap();
                outputs.iter().map(|&i| input[i].clone()).collect()
            }
            Map { scalars, .. } => {
                let mut result = input_types.next().unwrap().clone();
                for scalar in scalars.iter() {
                    result.push(scalar.typ(&result))
                }
                result
            }
            FlatMap { func, .. } => {
                let mut result = input_types.next().unwrap().clone();
                result.extend(func.output_type().column_types);
                result
            }
            Filter { predicates, .. } => {
                let mut result = input_types.next().unwrap().clone();

                // Set as nonnull any columns where null values would cause
                // any predicate to evaluate to null.
                for column in non_nullable_columns(predicates) {
                    result[column].nullable = false;
                }
                result
            }
            Join { equivalences, .. } => {
                // Concatenate input column types
                let mut types = input_types.flat_map(|cols| cols.to_owned()).collect_vec();
                // In an equivalence class, if any column is non-null, then make all non-null
                for equivalence in equivalences {
                    let col_inds = equivalence
                        .iter()
                        .filter_map(|expr| match expr {
                            MirScalarExpr::Column(col) => Some(*col),
                            _ => None,
                        })
                        .collect_vec();
                    if col_inds.iter().any(|i| !types.get(*i).unwrap().nullable) {
                        for i in col_inds {
                            types.get_mut(i).unwrap().nullable = false;
                        }
                    }
                }
                types
            }
            Reduce {
                group_key,
                aggregates,
                ..
            } => {
                let input = input_types.next().unwrap();
                group_key
                    .iter()
                    .map(|e| e.typ(input))
                    .chain(aggregates.iter().map(|agg| agg.typ(input)))
                    .collect()
            }
            TopK { .. } | Negate { .. } | Threshold { .. } | ArrangeBy { .. } => {
                input_types.next().unwrap().clone()
            }
            Let { .. } => {
                // skip over the input types for `value`.
                input_types.nth(1).unwrap().clone()
            }
            LetRec { values, .. } => {
                // skip over the input types for `values`.
                input_types.nth(values.len()).unwrap().clone()
            }
            Union { .. } => {
                let mut result = input_types.next().unwrap().clone();
                for input_col_types in input_types {
                    for (base_col, col) in result.iter_mut().zip_eq(input_col_types) {
                        *base_col = base_col
                            .union(col)
                            .map_err(|e| format!("{}\nin plan:\n{}", e, self.pretty()))?;
                    }
                }
                result
            }
        };

        Ok(col_types)
    }

    /// Reports the unique keys of the relation given the arities and the unique
    /// keys of the input relations.
    ///
    /// `input_arities` and `input_keys` are required to contain the
    /// corresponding info for the input relations of
    /// the current relation in the same order as they are visited by `try_visit_children`
    /// method, even though not all may be used for computing the schema of the
    /// current relation. For example, `Let` expects two input types, one for the
    /// value relation and one for the body, in that order, but only the one for the
    /// body is used to determine the type of the `Let` relation.
    ///
    /// It is meant to be used during post-order traversals to compute unique keys
    /// incrementally.
    pub fn keys_with_input_keys<'a, I, J>(
        &self,
        mut input_arities: I,
        mut input_keys: J,
    ) -> Vec<Vec<usize>>
    where
        I: Iterator<Item = usize>,
        J: Iterator<Item = &'a Vec<Vec<usize>>>,
    {
        use MirRelationExpr::*;

        let mut keys = match self {
            Constant {
                rows: Ok(rows),
                typ,
            } => {
                let n_cols = typ.arity();
                // If the `i`th entry is `Some`, then we have not yet observed non-uniqueness in the `i`th column.
                let mut unique_values_per_col = vec![Some(BTreeSet::<Datum>::default()); n_cols];
                for (row, diff) in rows {
                    for (i, datum) in row.iter().enumerate() {
                        if datum != Datum::Dummy {
                            if let Some(unique_vals) = &mut unique_values_per_col[i] {
                                let is_dupe = *diff != 1 || !unique_vals.insert(datum);
                                if is_dupe {
                                    unique_values_per_col[i] = None;
                                }
                            }
                        }
                    }
                }
                if rows.len() == 0 || (rows.len() == 1 && rows[0].1 == 1) {
                    vec![vec![]]
                } else {
                    // XXX - Multi-column keys are not detected.
                    typ.keys
                        .iter()
                        .cloned()
                        .chain(
                            unique_values_per_col
                                .into_iter()
                                .enumerate()
                                .filter(|(_idx, unique_vals)| unique_vals.is_some())
                                .map(|(idx, _)| vec![idx]),
                        )
                        .collect()
                }
            }
            Constant { rows: Err(_), typ } | Get { typ, .. } => typ.keys.clone(),
            Threshold { .. } | ArrangeBy { .. } => input_keys.next().unwrap().clone(),
            Let { .. } => {
                // skip over the unique keys for value
                input_keys.nth(1).unwrap().clone()
            }
            LetRec { values, .. } => {
                // skip over the unique keys for value
                input_keys.nth(values.len()).unwrap().clone()
            }
            Project { outputs, .. } => {
                let input = input_keys.next().unwrap();
                input
                    .iter()
                    .filter_map(|key_set| {
                        if key_set.iter().all(|k| outputs.contains(k)) {
                            Some(
                                key_set
                                    .iter()
                                    .map(|c| outputs.iter().position(|o| o == c).unwrap())
                                    .collect(),
                            )
                        } else {
                            None
                        }
                    })
                    .collect()
            }
            Map { scalars, .. } => {
                let mut remappings = Vec::new();
                let arity = input_arities.next().unwrap();
                for (column, scalar) in scalars.iter().enumerate() {
                    // assess whether the scalar preserves uniqueness,
                    // and could participate in a key!

                    fn uniqueness(expr: &MirScalarExpr) -> Option<usize> {
                        match expr {
                            MirScalarExpr::CallUnary { func, expr } => {
                                if func.preserves_uniqueness() {
                                    uniqueness(expr)
                                } else {
                                    None
                                }
                            }
                            MirScalarExpr::Column(c) => Some(*c),
                            _ => None,
                        }
                    }

                    if let Some(c) = uniqueness(scalar) {
                        remappings.push((c, column + arity));
                    }
                }

                let mut result = input_keys.next().unwrap().clone();
                let mut new_keys = Vec::new();
                // Any column in `remappings` could be replaced in a key
                // by the corresponding c. This could lead to combinatorial
                // explosion using our current representation, so we wont
                // do that. Instead, we'll handle the case of one remapping.
                if remappings.len() == 1 {
                    let (old, new) = remappings.pop().unwrap();
                    for key in &result {
                        if key.contains(&old) {
                            let mut new_key: Vec<usize> =
                                key.iter().cloned().filter(|k| k != &old).collect();
                            new_key.push(new);
                            new_key.sort_unstable();
                            new_keys.push(new_key);
                        }
                    }
                    result.append(&mut new_keys);
                }
                result
            }
            FlatMap { .. } => {
                // FlatMap can add duplicate rows, so input keys are no longer
                // valid
                vec![]
            }
            Negate { .. } => {
                // Although negate may have distinct records for each key,
                // the multiplicity is -1 rather than 1. This breaks many
                // of the optimization uses of "keys".
                vec![]
            }
            Filter { predicates, .. } => {
                // A filter inherits the keys of its input unless the filters
                // have reduced the input to a single row, in which case the
                // keys of the input are `()`.
                let mut input = input_keys.next().unwrap().clone();

                if !input.is_empty() {
                    // Track columns equated to literals, which we can prune.
                    let mut cols_equal_to_literal = BTreeSet::new();

                    // Perform union find on `col1 = col2` to establish
                    // connected components of equated columns. Absent any
                    // equalities, this will be `0 .. #c` (where #c is the
                    // greatest column referenced by a predicate), but each
                    // equality will orient the root of the greater to the root
                    // of the lesser.
                    let mut union_find = Vec::new();

                    for expr in predicates.iter() {
                        if let MirScalarExpr::CallBinary {
                            func: crate::BinaryFunc::Eq,
                            expr1,
                            expr2,
                        } = expr
                        {
                            if let MirScalarExpr::Column(c) = &**expr1 {
                                if expr2.is_literal_ok() {
                                    cols_equal_to_literal.insert(c);
                                }
                            }
                            if let MirScalarExpr::Column(c) = &**expr2 {
                                if expr1.is_literal_ok() {
                                    cols_equal_to_literal.insert(c);
                                }
                            }
                            // Perform union-find to equate columns.
                            if let (Some(c1), Some(c2)) = (expr1.as_column(), expr2.as_column()) {
                                if c1 != c2 {
                                    // Ensure union_find has entries up to
                                    // max(c1, c2) by filling up missing
                                    // positions with identity mappings.
                                    while union_find.len() <= std::cmp::max(c1, c2) {
                                        union_find.push(union_find.len());
                                    }
                                    let mut r1 = c1; // Find the representative column of [c1].
                                    while r1 != union_find[r1] {
                                        assert!(union_find[r1] < r1);
                                        r1 = union_find[r1];
                                    }
                                    let mut r2 = c2; // Find the representative column of [c2].
                                    while r2 != union_find[r2] {
                                        assert!(union_find[r2] < r2);
                                        r2 = union_find[r2];
                                    }
                                    // Union [c1] and [c2] by pointing the
                                    // larger to the smaller representative (we
                                    // update the remaining equivalence class
                                    // members only once after this for-loop).
                                    union_find[std::cmp::max(r1, r2)] = std::cmp::min(r1, r2);
                                }
                            }
                        }
                    }

                    // Complete union-find by pointing each element at its representative column.
                    for i in 0..union_find.len() {
                        // Iteration not required, as each prior already references the right column.
                        union_find[i] = union_find[union_find[i]];
                    }

                    // Remove columns bound to literals, and remap columns equated to earlier columns.
                    // We will re-expand remapped columns in a moment, but this avoids exponential work.
                    for key_set in &mut input {
                        key_set.retain(|k| !cols_equal_to_literal.contains(&k));
                        for col in key_set.iter_mut() {
                            if let Some(equiv) = union_find.get(*col) {
                                *col = *equiv;
                            }
                        }
                        key_set.sort();
                        key_set.dedup();
                    }
                    input.sort();
                    input.dedup();

                    // Expand out each key to each of its equivalent forms.
                    // Each instance of `col` can be replaced by any equivalent column.
                    // This has the potential to result in exponentially sized number of unique keys,
                    // and in the future we should probably maintain unique keys modulo equivalence.

                    // First, compute an inverse map from each representative
                    // column `sub` to all other equivalent columns `col`.
                    let mut subs = Vec::new();
                    for (col, sub) in union_find.iter().enumerate() {
                        if *sub != col {
                            assert!(*sub < col);
                            while subs.len() <= *sub {
                                subs.push(Vec::new());
                            }
                            subs[*sub].push(col);
                        }
                    }
                    // For each column, substitute for it in each occurrence.
                    let mut to_add = Vec::new();
                    for (col, subs) in subs.iter().enumerate() {
                        if !subs.is_empty() {
                            for key_set in input.iter() {
                                if key_set.contains(&col) {
                                    let mut to_extend = key_set.clone();
                                    to_extend.retain(|c| c != &col);
                                    for sub in subs {
                                        to_extend.push(*sub);
                                        to_add.push(to_extend.clone());
                                        to_extend.pop();
                                    }
                                }
                            }
                        }
                        // No deduplication, as we cannot introduce duplicates.
                        input.append(&mut to_add);
                    }
                    for key_set in input.iter_mut() {
                        key_set.sort();
                        key_set.dedup();
                    }
                }
                input
            }
            Join { equivalences, .. } => {
                // It is important the `new_from_input_arities` constructor is
                // used. Otherwise, Materialize may potentially end up in an
                // infinite loop.
                let input_mapper = crate::JoinInputMapper::new_from_input_arities(input_arities);

                input_mapper.global_keys(input_keys, equivalences)
            }
            Reduce { group_key, .. } => {
                // The group key should form a key, but we might already have
                // keys that are subsets of the group key, and should retain
                // those instead, if so.
                let mut result = Vec::new();
                for key_set in input_keys.next().unwrap() {
                    if key_set
                        .iter()
                        .all(|k| group_key.contains(&MirScalarExpr::Column(*k)))
                    {
                        result.push(
                            key_set
                                .iter()
                                .map(|i| {
                                    group_key
                                        .iter()
                                        .position(|k| k == &MirScalarExpr::Column(*i))
                                        .unwrap()
                                })
                                .collect::<Vec<_>>(),
                        );
                    }
                }
                if result.is_empty() {
                    result.push((0..group_key.len()).collect());
                }
                result
            }
            TopK {
                group_key, limit, ..
            } => {
                // If `limit` is `Some(1)` then the group key will become
                // a unique key, as there will be only one record with that key.
                let mut result = input_keys.next().unwrap().clone();
                if limit.as_ref().and_then(|x| x.as_literal_int64()) == Some(1) {
                    result.push(group_key.clone())
                }
                result
            }
            Union { base, inputs } => {
                // Generally, unions do not have any unique keys, because
                // each input might duplicate some. However, there is at
                // least one idiomatic structure that does preserve keys,
                // which results from SQL aggregations that must populate
                // absent records with default values. In that pattern,
                // the union of one GET with its negation, which has first
                // been subjected to a projection and map, we can remove
                // their influence on the key structure.
                //
                // If there are A, B, each with a unique `key` such that
                // we are looking at
                //
                //     A.proj(set_containing_key) + (B - A.proj(key)).map(stuff)
                //
                // Then we can report `key` as a unique key.
                //
                // TODO: make unique key structure an optimization analysis
                // rather than part of the type information.
                // TODO: perhaps ensure that (above) A.proj(key) is a
                // subset of B, as otherwise there are negative records
                // and who knows what is true (not expected, but again
                // who knows what the query plan might look like).

                let arity = input_arities.next().unwrap();
                let (base_projection, base_with_project_stripped) =
                    if let MirRelationExpr::Project { input, outputs } = &**base {
                        (outputs.clone(), &**input)
                    } else {
                        // A input without a project is equivalent to an input
                        // with the project being all columns in the input in order.
                        ((0..arity).collect::<Vec<_>>(), &**base)
                    };
                let mut result = Vec::new();
                if let MirRelationExpr::Get {
                    id: first_id,
                    typ: _,
                    ..
                } = base_with_project_stripped
                {
                    if inputs.len() == 1 {
                        if let MirRelationExpr::Map { input, .. } = &inputs[0] {
                            if let MirRelationExpr::Union { base, inputs } = &**input {
                                if inputs.len() == 1 {
                                    if let Some((input, outputs)) = base.is_negated_project() {
                                        if let MirRelationExpr::Get {
                                            id: second_id,
                                            typ: _,
                                            ..
                                        } = input
                                        {
                                            if first_id == second_id {
                                                result.extend(
                                                    inputs[0].typ().keys.drain(..).filter(|key| {
                                                        key.iter().all(|c| {
                                                            outputs.get(*c) == Some(c)
                                                                && base_projection.get(*c)
                                                                    == Some(c)
                                                        })
                                                    }),
                                                );
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
                // Important: do not inherit keys of either input, as not unique.
                result
            }
        };
        keys.sort();
        keys.dedup();
        keys
    }

    /// The number of columns in the relation.
    ///
    /// This number is determined from the type, which is determined recursively
    /// at non-trivial cost.
    ///
    /// The arity is computed incrementally with a recursive post-order
    /// traversal, that accumulates the arities for the relations yet to be
    /// visited in `arity_stack`.
    pub fn arity(&self) -> usize {
        let mut arity_stack = Vec::new();
        #[allow(deprecated)]
        self.visit_pre_post_nolimit(
            &mut |e: &MirRelationExpr| -> Option<Vec<&MirRelationExpr>> {
                match &e {
                    MirRelationExpr::Let { body, .. } => {
                        // Do not traverse the value sub-graph, since it's not relevant for
                        // determining the arity of Let operators.
                        Some(vec![&*body])
                    }
                    MirRelationExpr::LetRec { body, .. } => {
                        // Do not traverse the value sub-graph, since it's not relevant for
                        // determining the arity of Let operators.
                        Some(vec![&*body])
                    }
                    MirRelationExpr::Project { .. } | MirRelationExpr::Reduce { .. } => {
                        // No further traversal is required; these operators know their arity.
                        Some(Vec::new())
                    }
                    _ => None,
                }
            },
            &mut |e: &MirRelationExpr| {
                match &e {
                    MirRelationExpr::Let { .. } => {
                        let body_arity = arity_stack.pop().unwrap();
                        arity_stack.push(0);
                        arity_stack.push(body_arity);
                    }
                    MirRelationExpr::LetRec { values, .. } => {
                        let body_arity = arity_stack.pop().unwrap();
                        arity_stack.extend(std::iter::repeat(0).take(values.len()));
                        arity_stack.push(body_arity);
                    }
                    MirRelationExpr::Project { .. } | MirRelationExpr::Reduce { .. } => {
                        arity_stack.push(0);
                    }
                    _ => {}
                }
                let num_inputs = e.num_inputs();
                let input_arities = arity_stack.drain(arity_stack.len() - num_inputs..);
                let arity = e.arity_with_input_arities(input_arities);
                arity_stack.push(arity);
            },
        );
        assert_eq!(arity_stack.len(), 1);
        arity_stack.pop().unwrap()
    }

    /// Reports the arity of the relation given the schema of the input relations.
    ///
    /// `input_arities` is required to contain the arities for the input relations of
    /// the current relation in the same order as they are visited by `try_visit_children`
    /// method, even though not all may be used for computing the schema of the
    /// current relation. For example, `Let` expects two input types, one for the
    /// value relation and one for the body, in that order, but only the one for the
    /// body is used to determine the type of the `Let` relation.
    ///
    /// It is meant to be used during post-order traversals to compute arities
    /// incrementally.
    pub fn arity_with_input_arities<I>(&self, mut input_arities: I) -> usize
    where
        I: Iterator<Item = usize>,
    {
        use MirRelationExpr::*;

        match self {
            Constant { rows: _, typ } => typ.arity(),
            Get { typ, .. } => typ.arity(),
            Let { .. } => {
                input_arities.next();
                input_arities.next().unwrap()
            }
            LetRec { values, .. } => {
                for _ in 0..values.len() {
                    input_arities.next();
                }
                input_arities.next().unwrap()
            }
            Project { outputs, .. } => outputs.len(),
            Map { scalars, .. } => input_arities.next().unwrap() + scalars.len(),
            FlatMap { func, .. } => {
                input_arities.next().unwrap() + func.output_type().column_types.len()
            }
            Join { .. } => input_arities.sum(),
            Reduce {
                input: _,
                group_key,
                aggregates,
                ..
            } => group_key.len() + aggregates.len(),
            Filter { .. }
            | TopK { .. }
            | Negate { .. }
            | Threshold { .. }
            | Union { .. }
            | ArrangeBy { .. } => input_arities.next().unwrap(),
        }
    }

    /// The number of child relations this relation has.
    pub fn num_inputs(&self) -> usize {
        let mut count = 0;

        self.visit_children(|_| count += 1);

        count
    }

    /// Constructs a constant collection from specific rows and schema, where
    /// each row will have a multiplicity of one.
    pub fn constant(rows: Vec<Vec<Datum>>, typ: RelationType) -> Self {
        let rows = rows.into_iter().map(|row| (row, 1)).collect();
        MirRelationExpr::constant_diff(rows, typ)
    }

    /// Constructs a constant collection from specific rows and schema, where
    /// each row can have an arbitrary multiplicity.
    pub fn constant_diff(rows: Vec<(Vec<Datum>, Diff)>, typ: RelationType) -> Self {
        for (row, _diff) in &rows {
            for (datum, column_typ) in row.iter().zip(typ.column_types.iter()) {
                assert!(
                    datum.is_instance_of(column_typ),
                    "Expected datum of type {:?}, got value {:?}",
                    column_typ,
                    datum
                );
            }
        }
        let rows = Ok(rows
            .into_iter()
            .map(move |(row, diff)| (Row::pack_slice(&row), diff))
            .collect());
        MirRelationExpr::Constant { rows, typ }
    }

    /// If self is a constant, return the value and the type, otherwise `None`.
    /// Looks behind `ArrangeBy`s.
    pub fn as_const(&self) -> Option<(&Result<Vec<(Row, Diff)>, EvalError>, &RelationType)> {
        match self {
            MirRelationExpr::Constant { rows, typ } => Some((rows, typ)),
            MirRelationExpr::ArrangeBy { input, .. } => input.as_const(),
            _ => None,
        }
    }

    /// If self is a constant, mutably return the value and the type, otherwise `None`.
    /// Looks behind `ArrangeBy`s.
    pub fn as_const_mut(
        &mut self,
    ) -> Option<(&mut Result<Vec<(Row, Diff)>, EvalError>, &mut RelationType)> {
        match self {
            MirRelationExpr::Constant { rows, typ } => Some((rows, typ)),
            MirRelationExpr::ArrangeBy { input, .. } => input.as_const_mut(),
            _ => None,
        }
    }

    /// If self is a constant error, return the error, otherwise `None`.
    /// Looks behind `ArrangeBy`s.
    pub fn as_const_err(&self) -> Option<&EvalError> {
        match self {
            MirRelationExpr::Constant { rows: Err(e), .. } => Some(e),
            MirRelationExpr::ArrangeBy { input, .. } => input.as_const_err(),
            _ => None,
        }
    }

    /// Checks if `self` is the single element collection with no columns.
    pub fn is_constant_singleton(&self) -> bool {
        if let Some((Ok(rows), typ)) = self.as_const() {
            rows.len() == 1 && typ.column_types.len() == 0 && rows[0].1 == 1
        } else {
            false
        }
    }

    /// Constructs the expression for getting a local collection.
    pub fn local_get(id: LocalId, typ: RelationType) -> Self {
        MirRelationExpr::Get {
            id: Id::Local(id),
            typ,
            access_strategy: AccessStrategy::UnknownOrLocal,
        }
    }

    /// Constructs the expression for getting a global collection
    pub fn global_get(id: GlobalId, typ: RelationType) -> Self {
        MirRelationExpr::Get {
            id: Id::Global(id),
            typ,
            access_strategy: AccessStrategy::UnknownOrLocal,
        }
    }

    /// Retains only the columns specified by `output`.
    pub fn project(mut self, mut outputs: Vec<usize>) -> Self {
        if let MirRelationExpr::Project {
            outputs: columns, ..
        } = &mut self
        {
            // Update `outputs` to reference base columns of `input`.
            for column in outputs.iter_mut() {
                *column = columns[*column];
            }
            *columns = outputs;
            self
        } else {
            MirRelationExpr::Project {
                input: Box::new(self),
                outputs,
            }
        }
    }

    /// Append to each row the results of applying elements of `scalar`.
    pub fn map(mut self, scalars: Vec<MirScalarExpr>) -> Self {
        if let MirRelationExpr::Map { scalars: s, .. } = &mut self {
            s.extend(scalars);
            self
        } else if !scalars.is_empty() {
            MirRelationExpr::Map {
                input: Box::new(self),
                scalars,
            }
        } else {
            self
        }
    }

    /// Append to each row a single `scalar`.
    pub fn map_one(self, scalar: MirScalarExpr) -> Self {
        self.map(vec![scalar])
    }

    /// Like `map`, but yields zero-or-more output rows per input row
    pub fn flat_map(self, func: TableFunc, exprs: Vec<MirScalarExpr>) -> Self {
        MirRelationExpr::FlatMap {
            input: Box::new(self),
            func,
            exprs,
        }
    }

    /// Retain only the rows satisfying each of several predicates.
    pub fn filter<I>(mut self, predicates: I) -> Self
    where
        I: IntoIterator<Item = MirScalarExpr>,
    {
        // Extract existing predicates
        let mut new_predicates = if let MirRelationExpr::Filter { input, predicates } = self {
            self = *input;
            predicates
        } else {
            Vec::new()
        };
        // Normalize collection of predicates.
        new_predicates.extend(predicates);
        new_predicates.retain(|p| !p.is_literal_true());
        new_predicates.sort();
        new_predicates.dedup();
        // Introduce a `Filter` only if we have predicates.
        if !new_predicates.is_empty() {
            self = MirRelationExpr::Filter {
                input: Box::new(self),
                predicates: new_predicates,
            };
        }

        self
    }

    /// Form the Cartesian outer-product of rows in both inputs.
    pub fn product(mut self, right: Self) -> Self {
        if right.is_constant_singleton() {
            self
        } else if self.is_constant_singleton() {
            right
        } else if let MirRelationExpr::Join { inputs, .. } = &mut self {
            inputs.push(right);
            self
        } else {
            MirRelationExpr::join(vec![self, right], vec![])
        }
    }

    /// Performs a relational equijoin among the input collections.
    ///
    /// The sequence `inputs` each describe different input collections, and the sequence `variables` describes
    /// equality constraints that some of their columns must satisfy. Each element in `variable` describes a set
    /// of pairs  `(input_index, column_index)` where every value described by that set must be equal.
    ///
    /// For example, the pair `(input, column)` indexes into `inputs[input][column]`, extracting the `input`th
    /// input collection and for each row examining its `column`th column.
    ///
    /// # Example
    ///
    /// ```rust
    /// use mz_repr::{Datum, ColumnType, RelationType, ScalarType};
    /// use mz_expr::MirRelationExpr;
    ///
    /// // A common schema for each input.
    /// let schema = RelationType::new(vec![
    ///     ScalarType::Int32.nullable(false),
    ///     ScalarType::Int32.nullable(false),
    /// ]);
    ///
    /// // the specific data are not important here.
    /// let data = vec![Datum::Int32(0), Datum::Int32(1)];
    ///
    /// // Three collections that could have been different.
    /// let input0 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
    /// let input1 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
    /// let input2 = MirRelationExpr::constant(vec![data.clone()], schema.clone());
    ///
    /// // Join the three relations looking for triangles, like so.
    /// //
    /// //     Output(A,B,C) := Input0(A,B), Input1(B,C), Input2(A,C)
    /// let joined = MirRelationExpr::join(
    ///     vec![input0, input1, input2],
    ///     vec![
    ///         vec![(0,0), (2,0)], // fields A of inputs 0 and 2.
    ///         vec![(0,1), (1,0)], // fields B of inputs 0 and 1.
    ///         vec![(1,1), (2,1)], // fields C of inputs 1 and 2.
    ///     ],
    /// );
    ///
    /// // Technically the above produces `Output(A,B,B,C,A,C)` because the columns are concatenated.
    /// // A projection resolves this and produces the correct output.
    /// let result = joined.project(vec![0, 1, 3]);
    /// ```
    pub fn join(inputs: Vec<MirRelationExpr>, variables: Vec<Vec<(usize, usize)>>) -> Self {
        let input_mapper = join_input_mapper::JoinInputMapper::new(&inputs);

        let equivalences = variables
            .into_iter()
            .map(|vs| {
                vs.into_iter()
                    .map(|(r, c)| input_mapper.map_expr_to_global(MirScalarExpr::Column(c), r))
                    .collect::<Vec<_>>()
            })
            .collect::<Vec<_>>();

        Self::join_scalars(inputs, equivalences)
    }

    /// Constructs a join operator from inputs and required-equal scalar expressions.
    pub fn join_scalars(
        mut inputs: Vec<MirRelationExpr>,
        equivalences: Vec<Vec<MirScalarExpr>>,
    ) -> Self {
        // Remove all constant inputs that are the identity for join.
        // They neither introduce nor modify any column references.
        inputs.retain(|i| !i.is_constant_singleton());
        MirRelationExpr::Join {
            inputs,
            equivalences,
            implementation: JoinImplementation::Unimplemented,
        }
    }

    /// Perform a key-wise reduction / aggregation.
    ///
    /// The `group_key` argument indicates columns in the input collection that should
    /// be grouped, and `aggregates` lists aggregation functions each of which produces
    /// one output column in addition to the keys.
    pub fn reduce(
        self,
        group_key: Vec<usize>,
        aggregates: Vec<AggregateExpr>,
        expected_group_size: Option<u64>,
    ) -> Self {
        MirRelationExpr::Reduce {
            input: Box::new(self),
            group_key: group_key.into_iter().map(MirScalarExpr::Column).collect(),
            aggregates,
            monotonic: false,
            expected_group_size,
        }
    }

    /// Perform a key-wise reduction order by and limit.
    ///
    /// The `group_key` argument indicates columns in the input collection that should
    /// be grouped, the `order_key` argument indicates columns that should be further
    /// used to order records within groups, and the `limit` argument constrains the
    /// total number of records that should be produced in each group.
    pub fn top_k(
        self,
        group_key: Vec<usize>,
        order_key: Vec<ColumnOrder>,
        limit: Option<MirScalarExpr>,
        offset: usize,
        expected_group_size: Option<u64>,
    ) -> Self {
        MirRelationExpr::TopK {
            input: Box::new(self),
            group_key,
            order_key,
            limit,
            offset,
            expected_group_size,
            monotonic: false,
        }
    }

    /// Negates the occurrences of each row.
    pub fn negate(self) -> Self {
        if let MirRelationExpr::Negate { input } = self {
            *input
        } else {
            MirRelationExpr::Negate {
                input: Box::new(self),
            }
        }
    }

    /// Removes all but the first occurrence of each row.
    pub fn distinct(self) -> Self {
        let arity = self.arity();
        self.distinct_by((0..arity).collect())
    }

    /// Removes all but the first occurrence of each key. Columns not included
    /// in the `group_key` are discarded.
    pub fn distinct_by(self, group_key: Vec<usize>) -> Self {
        self.reduce(group_key, vec![], None)
    }

    /// Discards rows with a negative frequency.
    pub fn threshold(self) -> Self {
        if let MirRelationExpr::Threshold { .. } = &self {
            self
        } else {
            MirRelationExpr::Threshold {
                input: Box::new(self),
            }
        }
    }

    /// Unions together any number inputs.
    ///
    /// If `inputs` is empty, then an empty relation of type `typ` is
    /// constructed.
    pub fn union_many(mut inputs: Vec<Self>, typ: RelationType) -> Self {
        // Deconstruct `inputs` as `Union`s and reconstitute.
        let mut flat_inputs = Vec::with_capacity(inputs.len());
        for input in inputs {
            if let MirRelationExpr::Union { base, inputs } = input {
                flat_inputs.push(*base);
                flat_inputs.extend(inputs);
            } else {
                flat_inputs.push(input);
            }
        }
        inputs = flat_inputs;
        if inputs.len() == 0 {
            MirRelationExpr::Constant {
                rows: Ok(vec![]),
                typ,
            }
        } else if inputs.len() == 1 {
            inputs.into_element()
        } else {
            MirRelationExpr::Union {
                base: Box::new(inputs.remove(0)),
                inputs,
            }
        }
    }

    /// Produces one collection where each row is present with the sum of its frequencies in each input.
    pub fn union(self, other: Self) -> Self {
        // Deconstruct `self` and `other` as `Union`s and reconstitute.
        let mut flat_inputs = Vec::with_capacity(2);
        if let MirRelationExpr::Union { base, inputs } = self {
            flat_inputs.push(*base);
            flat_inputs.extend(inputs);
        } else {
            flat_inputs.push(self);
        }
        if let MirRelationExpr::Union { base, inputs } = other {
            flat_inputs.push(*base);
            flat_inputs.extend(inputs);
        } else {
            flat_inputs.push(other);
        }

        MirRelationExpr::Union {
            base: Box::new(flat_inputs.remove(0)),
            inputs: flat_inputs,
        }
    }

    /// Arranges the collection by the specified columns
    pub fn arrange_by(self, keys: &[Vec<MirScalarExpr>]) -> Self {
        MirRelationExpr::ArrangeBy {
            input: Box::new(self),
            keys: keys.to_owned(),
        }
    }

    /// Indicates if this is a constant empty collection.
    ///
    /// A false value does not mean the collection is known to be non-empty,
    /// only that we cannot currently determine that it is statically empty.
    pub fn is_empty(&self) -> bool {
        if let Some((Ok(rows), ..)) = self.as_const() {
            rows.is_empty()
        } else {
            false
        }
    }

    /// If the expression is a negated project, return the input and the projection.
    pub fn is_negated_project(&self) -> Option<(&MirRelationExpr, &[usize])> {
        if let MirRelationExpr::Negate { input } = self {
            if let MirRelationExpr::Project { input, outputs } = &**input {
                return Some((&**input, outputs));
            }
        }
        if let MirRelationExpr::Project { input, outputs } = self {
            if let MirRelationExpr::Negate { input } = &**input {
                return Some((&**input, outputs));
            }
        }
        None
    }

    /// Pretty-print this [MirRelationExpr] to a string.
    pub fn pretty(&self) -> String {
        let config = ExplainConfig::default();
        self.explain(&config, None)
    }

    /// Pretty-print this [MirRelationExpr] to a string using a custom
    /// [ExplainConfig] and an optionally provided [ExprHumanizer].
    pub fn explain(&self, config: &ExplainConfig, humanizer: Option<&dyn ExprHumanizer>) -> String {
        text_string_at(self, || PlanRenderingContext {
            indent: Indent::default(),
            humanizer: humanizer.unwrap_or(&DummyHumanizer),
            annotations: BTreeMap::default(),
            config,
        })
    }

    /// Take ownership of `self`, leaving an empty `MirRelationExpr::Constant` with the correct type.
    pub fn take_safely(&mut self) -> MirRelationExpr {
        let typ = self.typ();
        std::mem::replace(
            self,
            MirRelationExpr::Constant {
                rows: Ok(vec![]),
                typ,
            },
        )
    }
    /// Take ownership of `self`, leaving an empty `MirRelationExpr::Constant` with an **incorrect** type.
    ///
    /// This should only be used if `self` is about to be dropped or otherwise overwritten.
    pub fn take_dangerous(&mut self) -> MirRelationExpr {
        let empty = MirRelationExpr::Constant {
            rows: Ok(vec![]),
            typ: RelationType::new(Vec::new()),
        };
        std::mem::replace(self, empty)
    }

    /// Replaces `self` with some logic applied to `self`.
    pub fn replace_using<F>(&mut self, logic: F)
    where
        F: FnOnce(MirRelationExpr) -> MirRelationExpr,
    {
        let empty = MirRelationExpr::Constant {
            rows: Ok(vec![]),
            typ: RelationType::new(Vec::new()),
        };
        let expr = std::mem::replace(self, empty);
        *self = logic(expr);
    }

    /// Store `self` in a `Let` and pass the corresponding `Get` to `body`.
    pub fn let_in<Body, E>(self, id_gen: &mut IdGen, body: Body) -> Result<MirRelationExpr, E>
    where
        Body: FnOnce(&mut IdGen, MirRelationExpr) -> Result<MirRelationExpr, E>,
    {
        if let MirRelationExpr::Get { .. } = self {
            // already done
            body(id_gen, self)
        } else {
            let id = LocalId::new(id_gen.allocate_id());
            let get = MirRelationExpr::Get {
                id: Id::Local(id),
                typ: self.typ(),
                access_strategy: AccessStrategy::UnknownOrLocal,
            };
            let body = (body)(id_gen, get)?;
            Ok(MirRelationExpr::Let {
                id,
                value: Box::new(self),
                body: Box::new(body),
            })
        }
    }

    /// Return every row in `self` that does not have a matching row in the first columns of `keys_and_values`, using `default` to fill in the remaining columns
    /// (If `default` is a row of nulls, this is the 'outer' part of LEFT OUTER JOIN)
    pub fn anti_lookup<E>(
        self,
        id_gen: &mut IdGen,
        keys_and_values: MirRelationExpr,
        default: Vec<(Datum, ScalarType)>,
    ) -> Result<MirRelationExpr, E> {
        let (data, column_types): (Vec<_>, Vec<_>) = default
            .into_iter()
            .map(|(datum, scalar_type)| (datum, scalar_type.nullable(datum.is_null())))
            .unzip();
        assert_eq!(keys_and_values.arity() - self.arity(), data.len());
        self.let_in(id_gen, |_id_gen, get_keys| {
            Ok(MirRelationExpr::join(
                vec![
                    // all the missing keys (with count 1)
                    keys_and_values
                        .distinct_by((0..get_keys.arity()).collect())
                        .negate()
                        .union(get_keys.clone().distinct()),
                    // join with keys to get the correct counts
                    get_keys.clone(),
                ],
                (0..get_keys.arity())
                    .map(|i| vec![(0, i), (1, i)])
                    .collect(),
            )
            // get rid of the extra copies of columns from keys
            .project((0..get_keys.arity()).collect())
            // This join is logically equivalent to
            // `.map(<default_expr>)`, but using a join allows for
            // potential predicate pushdown and elision in the
            // optimizer.
            .product(MirRelationExpr::constant(
                vec![data],
                RelationType::new(column_types),
            )))
        })
    }

    /// Return:
    /// * every row in keys_and_values
    /// * every row in `self` that does not have a matching row in the first columns of
    ///   `keys_and_values`, using `default` to fill in the remaining columns
    /// (This is LEFT OUTER JOIN if:
    /// 1) `default` is a row of null
    /// 2) matching rows in `keys_and_values` and `self` have the same multiplicity.)
    pub fn lookup<E>(
        self,
        id_gen: &mut IdGen,
        keys_and_values: MirRelationExpr,
        default: Vec<(Datum<'static>, ScalarType)>,
    ) -> Result<MirRelationExpr, E> {
        keys_and_values.let_in(id_gen, |id_gen, get_keys_and_values| {
            Ok(get_keys_and_values.clone().union(self.anti_lookup(
                id_gen,
                get_keys_and_values,
                default,
            )?))
        })
    }

    /// True iff the expression contains a `NullaryFunc::MzLogicalTimestamp`.
    pub fn contains_temporal(&self) -> bool {
        let mut contains = false;
        self.visit_scalars(&mut |e| contains = contains || e.contains_temporal());
        contains
    }

    /// Fallible visitor for the [`MirScalarExpr`]s directly owned by this relation expression.
    ///
    /// The `f` visitor should not recursively descend into owned [`MirRelationExpr`]s.
    pub fn try_visit_scalars_mut1<F, E>(&mut self, f: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut MirScalarExpr) -> Result<(), E>,
    {
        use MirRelationExpr::*;
        match self {
            Map { scalars, .. } => {
                for s in scalars {
                    f(s)?;
                }
            }
            Filter { predicates, .. } => {
                for p in predicates {
                    f(p)?;
                }
            }
            FlatMap { exprs, .. } => {
                for expr in exprs {
                    f(expr)?;
                }
            }
            Join {
                inputs: _,
                equivalences,
                implementation,
            } => {
                for equivalence in equivalences {
                    for expr in equivalence {
                        f(expr)?;
                    }
                }
                match implementation {
                    JoinImplementation::Differential((_, start_key, _), order) => {
                        if let Some(start_key) = start_key {
                            for k in start_key {
                                f(k)?;
                            }
                        }
                        for (_, lookup_key, _) in order {
                            for k in lookup_key {
                                f(k)?;
                            }
                        }
                    }
                    JoinImplementation::DeltaQuery(paths) => {
                        for path in paths {
                            for (_, lookup_key, _) in path {
                                for k in lookup_key {
                                    f(k)?;
                                }
                            }
                        }
                    }
                    JoinImplementation::IndexedFilter(_coll_id, _idx_id, index_key, _) => {
                        for k in index_key {
                            f(k)?;
                        }
                    }
                    JoinImplementation::Unimplemented => {} // No scalar exprs
                }
            }
            ArrangeBy { keys, .. } => {
                for key in keys {
                    for s in key {
                        f(s)?;
                    }
                }
            }
            Reduce {
                group_key,
                aggregates,
                ..
            } => {
                for s in group_key {
                    f(s)?;
                }
                for agg in aggregates {
                    f(&mut agg.expr)?;
                }
            }
            TopK { limit, .. } => {
                if let Some(s) = limit {
                    f(s)?;
                }
            }
            Constant { .. }
            | Get { .. }
            | Let { .. }
            | LetRec { .. }
            | Project { .. }
            | Negate { .. }
            | Threshold { .. }
            | Union { .. } => (),
        }
        Ok(())
    }

    /// Fallible mutable visitor for the [`MirScalarExpr`]s in the [`MirRelationExpr`] subtree
    /// rooted at `self`.
    ///
    /// Note that this does not recurse into [`MirRelationExpr`] subtrees within [`MirScalarExpr`]
    /// nodes.
    pub fn try_visit_scalars_mut<F, E>(&mut self, f: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut MirScalarExpr) -> Result<(), E>,
        E: From<RecursionLimitError>,
    {
        self.try_visit_mut_post(&mut |expr| expr.try_visit_scalars_mut1(f))
    }

    /// Infallible mutable visitor for the [`MirScalarExpr`]s in the [`MirRelationExpr`] subtree
    /// rooted at `self`.
    ///
    /// Note that this does not recurse into [`MirRelationExpr`] subtrees within [`MirScalarExpr`]
    /// nodes.
    pub fn visit_scalars_mut<F>(&mut self, f: &mut F)
    where
        F: FnMut(&mut MirScalarExpr),
    {
        self.try_visit_scalars_mut(&mut |s| {
            f(s);
            Ok::<_, RecursionLimitError>(())
        })
        .expect("Unexpected error in `visit_scalars_mut` call");
    }

    /// Fallible visitor for the [`MirScalarExpr`]s directly owned by this relation expression.
    ///
    /// The `f` visitor should not recursively descend into owned [`MirRelationExpr`]s.
    pub fn try_visit_scalars_1<F, E>(&self, f: &mut F) -> Result<(), E>
    where
        F: FnMut(&MirScalarExpr) -> Result<(), E>,
    {
        use MirRelationExpr::*;
        match self {
            Map { scalars, .. } => {
                for s in scalars {
                    f(s)?;
                }
            }
            Filter { predicates, .. } => {
                for p in predicates {
                    f(p)?;
                }
            }
            FlatMap { exprs, .. } => {
                for expr in exprs {
                    f(expr)?;
                }
            }
            Join {
                inputs: _,
                equivalences,
                implementation,
            } => {
                for equivalence in equivalences {
                    for expr in equivalence {
                        f(expr)?;
                    }
                }
                match implementation {
                    JoinImplementation::Differential((_, start_key, _), order) => {
                        if let Some(start_key) = start_key {
                            for k in start_key {
                                f(k)?;
                            }
                        }
                        for (_, lookup_key, _) in order {
                            for k in lookup_key {
                                f(k)?;
                            }
                        }
                    }
                    JoinImplementation::DeltaQuery(paths) => {
                        for path in paths {
                            for (_, lookup_key, _) in path {
                                for k in lookup_key {
                                    f(k)?;
                                }
                            }
                        }
                    }
                    JoinImplementation::IndexedFilter(_coll_id, _idx_id, index_key, _) => {
                        for k in index_key {
                            f(k)?;
                        }
                    }
                    JoinImplementation::Unimplemented => {} // No scalar exprs
                }
            }
            ArrangeBy { keys, .. } => {
                for key in keys {
                    for s in key {
                        f(s)?;
                    }
                }
            }
            Reduce {
                group_key,
                aggregates,
                ..
            } => {
                for s in group_key {
                    f(s)?;
                }
                for agg in aggregates {
                    f(&agg.expr)?;
                }
            }
            TopK { limit, .. } => {
                if let Some(s) = limit {
                    f(s)?;
                }
            }
            Constant { .. }
            | Get { .. }
            | Let { .. }
            | LetRec { .. }
            | Project { .. }
            | Negate { .. }
            | Threshold { .. }
            | Union { .. } => (),
        }
        Ok(())
    }

    /// Fallible immutable visitor for the [`MirScalarExpr`]s in the [`MirRelationExpr`] subtree
    /// rooted at `self`.
    ///
    /// Note that this does not recurse into [`MirRelationExpr`] subtrees within [`MirScalarExpr`]
    /// nodes.
    pub fn try_visit_scalars<F, E>(&self, f: &mut F) -> Result<(), E>
    where
        F: FnMut(&MirScalarExpr) -> Result<(), E>,
        E: From<RecursionLimitError>,
    {
        self.try_visit_post(&mut |expr| expr.try_visit_scalars_1(f))
    }

    /// Infallible immutable visitor for the [`MirScalarExpr`]s in the [`MirRelationExpr`] subtree
    /// rooted at `self`.
    ///
    /// Note that this does not recurse into [`MirRelationExpr`] subtrees within [`MirScalarExpr`]
    /// nodes.
    pub fn visit_scalars<F>(&self, f: &mut F)
    where
        F: FnMut(&MirScalarExpr),
    {
        self.try_visit_scalars(&mut |s| {
            f(s);
            Ok::<_, RecursionLimitError>(())
        })
        .expect("Unexpected error in `visit_scalars` call");
    }

    /// Clears the contents of `self` even if it's so deep that simply dropping it would cause a
    /// stack overflow in `drop_in_place`.
    ///
    /// Leaves `self` in an unusable state, so this should only be used if `self` is about to be
    /// dropped or otherwise overwritten.
    pub fn destroy_carefully(&mut self) {
        let mut todo = vec![self.take_dangerous()];
        while let Some(mut expr) = todo.pop() {
            for child in expr.children_mut() {
                todo.push(child.take_dangerous());
            }
        }
    }

    /// Computes the size (total number of nodes) and maximum depth of a MirRelationExpr for
    /// debug printing purposes.
    pub fn debug_size_and_depth(&self) -> (usize, usize) {
        let mut size = 0;
        let mut max_depth = 0;
        let mut todo = vec![(self, 1)];
        while let Some((expr, depth)) = todo.pop() {
            size += 1;
            max_depth = max(max_depth, depth);
            todo.extend(expr.children().map(|c| (c, depth + 1)));
        }
        (size, max_depth)
    }

    /// The MirRelationExpr is considered potentially expensive if and only if
    /// at least one of the following conditions is true:
    ///
    ///  - It contains at least one FlatMap or a Reduce operator.
    ///  - It contains at least one MirScalarExpr with a function call.
    ///
    /// !!!WARNING!!!: this method has an HirRelationExpr counterpart. The two
    /// should be kept in sync w.r.t. HIR ⇒ MIR lowering!
    pub fn could_run_expensive_function(&self) -> bool {
        let mut result = false;
        self.visit_pre(|e: &MirRelationExpr| {
            use MirRelationExpr::*;
            use MirScalarExpr::*;
            if let Err(_) = self.try_visit_scalars::<_, RecursionLimitError>(&mut |scalar| {
                result |= match scalar {
                    Column(_) | Literal(_, _) | CallUnmaterializable(_) | If { .. } => false,
                    // Function calls are considered expensive
                    CallUnary { .. } | CallBinary { .. } | CallVariadic { .. } => true,
                };
                Ok(())
            }) {
                // Conservatively set `true` if on RecursionLimitError.
                result = true;
            }
            // FlatMap has a table function; Reduce has an aggregate function.
            // Other constructs use MirScalarExpr to run a function
            result |= matches!(e, FlatMap { .. } | Reduce { .. });
        });
        result
    }

    /// Hash to an u64 using Rust's default Hasher. (Which is a somewhat slower, but better Hasher
    /// than what `Hashable::hashed` would give us.)
    pub fn hash_to_u64(&self) -> u64 {
        let mut h = DefaultHasher::new();
        self.hash(&mut h);
        h.finish()
    }
}

// `LetRec` helpers
impl MirRelationExpr {
    /// True when `expr` contains a `LetRec` AST node.
    pub fn is_recursive(self: &MirRelationExpr) -> bool {
        let mut worklist = vec![self];
        while let Some(expr) = worklist.pop() {
            if let MirRelationExpr::LetRec { .. } = expr {
                return true;
            }
            worklist.extend(expr.children());
        }
        false
    }

    /// Return the number of sub-expressions in the tree (including self).
    pub fn size(&self) -> usize {
        let mut size = 0;
        self.visit_pre(|_| size += 1);
        size
    }

    /// Given the ids and values of a LetRec, it computes the subset of ids that are used across
    /// iterations. These are those ids that have a reference before they are defined, when reading
    /// all the bindings in order.
    ///
    /// For example:
    /// ```SQL
    /// WITH MUTUALLY RECURSIVE
    ///     x(...) AS f(z),
    ///     y(...) AS g(x),
    ///     z(...) AS h(y)
    /// ...;
    /// ```
    /// Here, only `z` is returned, because `x` and `y` are referenced only within the same
    /// iteration.
    ///
    /// Note that if a binding references itself, that is also returned.
    pub fn recursive_ids(ids: &[LocalId], values: &[MirRelationExpr]) -> BTreeSet<LocalId> {
        let mut used_across_iterations = BTreeSet::new();
        let mut defined = BTreeSet::new();
        for (binding_id, value) in itertools::zip_eq(ids.iter(), values.iter()) {
            value.visit_pre(|expr| {
                if let MirRelationExpr::Get {
                    id: Local(get_id), ..
                } = expr
                {
                    // If we haven't seen a definition for it yet, then this will refer
                    // to the previous iteration.
                    // The `ids.contains` part of the condition is needed to exclude
                    // those ids that are not really in this LetRec, but either an inner
                    // or outer one.
                    if !defined.contains(get_id) && ids.contains(get_id) {
                        used_across_iterations.insert(*get_id);
                    }
                }
            });
            defined.insert(*binding_id);
        }
        used_across_iterations
    }

    /// Replaces `LetRec` nodes with a stack of `Let` nodes.
    ///
    /// In each `Let` binding, uses of `Get` in `value` that are not at strictly greater
    /// identifiers are rewritten to be the constant collection.
    /// This makes the computation perform exactly "one" iteration.
    ///
    /// This was used only temporarily while developing `LetRec`.
    pub fn make_nonrecursive(self: &mut MirRelationExpr) {
        let mut deadlist = BTreeSet::new();
        let mut worklist = vec![self];
        while let Some(expr) = worklist.pop() {
            if let MirRelationExpr::LetRec {
                ids,
                values,
                limits: _,
                body,
            } = expr
            {
                let ids_values = values
                    .drain(..)
                    .zip(ids)
                    .map(|(value, id)| (*id, value))
                    .collect::<Vec<_>>();
                *expr = body.take_dangerous();
                for (id, mut value) in ids_values.into_iter().rev() {
                    // Remove references to potentially recursive identifiers.
                    deadlist.insert(id);
                    value.visit_pre_mut(|e| {
                        if let MirRelationExpr::Get {
                            id: crate::Id::Local(id),
                            ..
                        } = e
                        {
                            if deadlist.contains(id) {
                                e.take_safely();
                            }
                        }
                    });
                    *expr = MirRelationExpr::Let {
                        id,
                        value: Box::new(value),
                        body: Box::new(expr.take_dangerous()),
                    };
                }
                worklist.push(expr);
            } else {
                worklist.extend(expr.children_mut().rev());
            }
        }
    }

    /// For each Id `id'` referenced in `expr`, if it is larger or equal than `id`, then record in
    /// `expire_whens` that when `id'` is redefined, then we should expire the information that
    /// we are holding about `id`. Call `do_expirations` with `expire_whens` at each Id
    /// redefinition.
    ///
    /// IMPORTANT: Relies on the numbering of Ids to be what `renumber_bindings` gives.
    pub fn collect_expirations(
        id: LocalId,
        expr: &MirRelationExpr,
        expire_whens: &mut BTreeMap<LocalId, Vec<LocalId>>,
    ) {
        expr.visit_pre(|e| {
            if let MirRelationExpr::Get {
                id: Id::Local(referenced_id),
                ..
            } = e
            {
                // The following check needs `renumber_bindings` to have run recently
                if referenced_id >= &id {
                    expire_whens
                        .entry(*referenced_id)
                        .or_insert_with(Vec::new)
                        .push(id);
                }
            }
        });
    }

    /// Call this function when `id` is redefined. It modifies `id_infos` by removing information
    /// about such Ids whose information depended on the earlier definition of `id`, according to
    /// `expire_whens`. Also modifies `expire_whens`: it removes the currently processed entry.
    pub fn do_expirations<I>(
        redefined_id: LocalId,
        expire_whens: &mut BTreeMap<LocalId, Vec<LocalId>>,
        id_infos: &mut BTreeMap<LocalId, I>,
    ) -> Vec<(LocalId, I)> {
        let mut expired_infos = Vec::new();
        if let Some(expirations) = expire_whens.remove(&redefined_id) {
            for expired_id in expirations.into_iter() {
                if let Some(offer) = id_infos.remove(&expired_id) {
                    expired_infos.push((expired_id, offer));
                }
            }
        }
        expired_infos
    }
}
/// Augment non-nullability of columns, by observing either
/// 1. Predicates that explicitly test for null values, and
/// 2. Columns that if null would make a predicate be null.
pub fn non_nullable_columns(predicates: &[MirScalarExpr]) -> BTreeSet<usize> {
    let mut nonnull_required_columns = BTreeSet::new();
    for predicate in predicates {
        // Add any columns that being null would force the predicate to be null.
        // Should that happen, the row would be discarded.
        predicate.non_null_requirements(&mut nonnull_required_columns);

        /*
        Test for explicit checks that a column is non-null.

        This analysis is ad hoc, and will miss things:

        materialize=> create table a(x int, y int);
        CREATE TABLE
        materialize=> explain with(types) select x from a where (y=x and y is not null) or x is not null;
        Optimized Plan
        --------------------------------------------------------------------------------------------------------
        Explained Query:                                                                                      +
        Project (#0) // { types: "(integer?)" }                                                             +
        Filter ((#0) IS NOT NULL OR ((#1) IS NOT NULL AND (#0 = #1))) // { types: "(integer?, integer?)" }+
        Get materialize.public.a // { types: "(integer?, integer?)" }                                   +
                                                                                  +
        Source materialize.public.a                                                                           +
        filter=(((#0) IS NOT NULL OR ((#1) IS NOT NULL AND (#0 = #1))))                                     +

        (1 row)
        */

        if let MirScalarExpr::CallUnary {
            func: UnaryFunc::Not(scalar_func::Not),
            expr,
        } = predicate
        {
            if let MirScalarExpr::CallUnary {
                func: UnaryFunc::IsNull(scalar_func::IsNull),
                expr,
            } = &**expr
            {
                if let MirScalarExpr::Column(c) = &**expr {
                    nonnull_required_columns.insert(*c);
                }
            }
        }
    }

    nonnull_required_columns
}

impl CollectionPlan for MirRelationExpr {
    // !!!WARNING!!!: this method has an HirRelationExpr counterpart. The two
    // should be kept in sync w.r.t. HIR ⇒ MIR lowering!
    fn depends_on_into(&self, out: &mut BTreeSet<GlobalId>) {
        if let MirRelationExpr::Get {
            id: Id::Global(id), ..
        } = self
        {
            out.insert(*id);
        }
        self.visit_children(|expr| expr.depends_on_into(out))
    }
}

impl MirRelationExpr {
    /// Iterates through references to child expressions.
    pub fn children(&self) -> impl DoubleEndedIterator<Item = &Self> {
        let mut first = None;
        let mut second = None;
        let mut rest = None;
        let mut last = None;

        use MirRelationExpr::*;
        match self {
            Constant { .. } | Get { .. } => (),
            Let { value, body, .. } => {
                first = Some(&**value);
                second = Some(&**body);
            }
            LetRec { values, body, .. } => {
                rest = Some(values);
                last = Some(&**body);
            }
            Project { input, .. }
            | Map { input, .. }
            | FlatMap { input, .. }
            | Filter { input, .. }
            | Reduce { input, .. }
            | TopK { input, .. }
            | Negate { input }
            | Threshold { input }
            | ArrangeBy { input, .. } => {
                first = Some(&**input);
            }
            Join { inputs, .. } => {
                rest = Some(inputs);
            }
            Union { base, inputs } => {
                first = Some(&**base);
                rest = Some(inputs);
            }
        }

        first
            .into_iter()
            .chain(second)
            .chain(rest.into_iter().flatten())
            .chain(last)
    }

    /// Iterates through mutable references to child expressions.
    pub fn children_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Self> {
        let mut first = None;
        let mut second = None;
        let mut rest = None;
        let mut last = None;

        use MirRelationExpr::*;
        match self {
            Constant { .. } | Get { .. } => (),
            Let { value, body, .. } => {
                first = Some(&mut **value);
                second = Some(&mut **body);
            }
            LetRec { values, body, .. } => {
                rest = Some(values);
                last = Some(&mut **body);
            }
            Project { input, .. }
            | Map { input, .. }
            | FlatMap { input, .. }
            | Filter { input, .. }
            | Reduce { input, .. }
            | TopK { input, .. }
            | Negate { input }
            | Threshold { input }
            | ArrangeBy { input, .. } => {
                first = Some(&mut **input);
            }
            Join { inputs, .. } => {
                rest = Some(inputs);
            }
            Union { base, inputs } => {
                first = Some(&mut **base);
                rest = Some(inputs);
            }
        }

        first
            .into_iter()
            .chain(second)
            .chain(rest.into_iter().flatten())
            .chain(last)
    }

    /// Iterative pre-order visitor.
    pub fn visit_pre<'a, F: FnMut(&'a Self)>(&'a self, mut f: F) {
        let mut worklist = vec![self];
        while let Some(expr) = worklist.pop() {
            f(expr);
            worklist.extend(expr.children().rev());
        }
    }

    /// Iterative pre-order visitor.
    pub fn visit_pre_mut<F: FnMut(&mut Self)>(&mut self, mut f: F) {
        let mut worklist = vec![self];
        while let Some(expr) = worklist.pop() {
            f(expr);
            worklist.extend(expr.children_mut().rev());
        }
    }

    /// Return a vector of references to the subtrees of this expression
    /// in post-visit order (the last element is `&self`).
    pub fn post_order_vec(&self) -> Vec<&Self> {
        let mut stack = vec![self];
        let mut result = vec![];
        while let Some(expr) = stack.pop() {
            result.push(expr);
            stack.extend(expr.children());
        }
        result.reverse();
        result
    }
}

impl VisitChildren<Self> for MirRelationExpr {
    fn visit_children<F>(&self, mut f: F)
    where
        F: FnMut(&Self),
    {
        for child in self.children() {
            f(child)
        }
    }

    fn visit_mut_children<F>(&mut self, mut f: F)
    where
        F: FnMut(&mut Self),
    {
        for child in self.children_mut() {
            f(child)
        }
    }

    fn try_visit_children<F, E>(&self, mut f: F) -> Result<(), E>
    where
        F: FnMut(&Self) -> Result<(), E>,
        E: From<RecursionLimitError>,
    {
        for child in self.children() {
            f(child)?
        }
        Ok(())
    }

    fn try_visit_mut_children<F, E>(&mut self, mut f: F) -> Result<(), E>
    where
        F: FnMut(&mut Self) -> Result<(), E>,
        E: From<RecursionLimitError>,
    {
        for child in self.children_mut() {
            f(child)?
        }
        Ok(())
    }
}

/// Specification for an ordering by a column.
#[derive(
    Arbitrary,
    Debug,
    Clone,
    Copy,
    Eq,
    PartialEq,
    Ord,
    PartialOrd,
    Serialize,
    Deserialize,
    Hash,
    MzReflect,
)]
pub struct ColumnOrder {
    /// The column index.
    pub column: usize,
    /// Whether to sort in descending order.
    #[serde(default)]
    pub desc: bool,
    /// Whether to sort nulls last.
    #[serde(default)]
    pub nulls_last: bool,
}

impl Columnation for ColumnOrder {
    type InnerRegion = CopyRegion<Self>;
}

impl RustType<ProtoColumnOrder> for ColumnOrder {
    fn into_proto(&self) -> ProtoColumnOrder {
        ProtoColumnOrder {
            column: self.column.into_proto(),
            desc: self.desc,
            nulls_last: self.nulls_last,
        }
    }

    fn from_proto(proto: ProtoColumnOrder) -> Result<Self, TryFromProtoError> {
        Ok(ColumnOrder {
            column: proto.column.into_rust()?,
            desc: proto.desc,
            nulls_last: proto.nulls_last,
        })
    }
}

impl<'a, M> fmt::Display for HumanizedExpr<'a, ColumnOrder, M>
where
    M: HumanizerMode,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // If you modify this, then please also attend to Display for ColumnOrderWithExpr!
        write!(
            f,
            "{} {} {}",
            self.child(&self.expr.column),
            if self.expr.desc { "desc" } else { "asc" },
            if self.expr.nulls_last {
                "nulls_last"
            } else {
                "nulls_first"
            },
        )
    }
}

/// Describes an aggregation expression.
#[derive(
    Arbitrary, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect,
)]
pub struct AggregateExpr {
    /// Names the aggregation function.
    pub func: AggregateFunc,
    /// An expression which extracts from each row the input to `func`.
    pub expr: MirScalarExpr,
    /// Should the aggregation be applied only to distinct results in each group.
    #[serde(default)]
    pub distinct: bool,
}

impl RustType<ProtoAggregateExpr> for AggregateExpr {
    fn into_proto(&self) -> ProtoAggregateExpr {
        ProtoAggregateExpr {
            func: Some(self.func.into_proto()),
            expr: Some(self.expr.into_proto()),
            distinct: self.distinct,
        }
    }

    fn from_proto(proto: ProtoAggregateExpr) -> Result<Self, TryFromProtoError> {
        Ok(Self {
            func: proto.func.into_rust_if_some("ProtoAggregateExpr::func")?,
            expr: proto.expr.into_rust_if_some("ProtoAggregateExpr::expr")?,
            distinct: proto.distinct,
        })
    }
}

impl AggregateExpr {
    /// Computes the type of this `AggregateExpr`.
    pub fn typ(&self, column_types: &[ColumnType]) -> ColumnType {
        self.func.output_type(self.expr.typ(column_types))
    }

    /// Returns whether the expression has a constant result.
    pub fn is_constant(&self) -> bool {
        match self.func {
            AggregateFunc::MaxInt16
            | AggregateFunc::MaxInt32
            | AggregateFunc::MaxInt64
            | AggregateFunc::MaxUInt16
            | AggregateFunc::MaxUInt32
            | AggregateFunc::MaxUInt64
            | AggregateFunc::MaxMzTimestamp
            | AggregateFunc::MaxFloat32
            | AggregateFunc::MaxFloat64
            | AggregateFunc::MaxBool
            | AggregateFunc::MaxString
            | AggregateFunc::MaxDate
            | AggregateFunc::MaxTimestamp
            | AggregateFunc::MaxTimestampTz
            | AggregateFunc::MinInt16
            | AggregateFunc::MinInt32
            | AggregateFunc::MinInt64
            | AggregateFunc::MinUInt16
            | AggregateFunc::MinUInt32
            | AggregateFunc::MinUInt64
            | AggregateFunc::MinMzTimestamp
            | AggregateFunc::MinFloat32
            | AggregateFunc::MinFloat64
            | AggregateFunc::MinBool
            | AggregateFunc::MinString
            | AggregateFunc::MinDate
            | AggregateFunc::MinTimestamp
            | AggregateFunc::MinTimestampTz
            | AggregateFunc::Any
            | AggregateFunc::All
            | AggregateFunc::Dummy => self.expr.is_literal(),
            AggregateFunc::Count => self.expr.is_literal_null(),
            _ => self.expr.is_literal_err(),
        }
    }

    /// Returns an expression that computes `self` on a group that has exactly one row.
    /// Instead of performing a `Reduce` with `self`, one can perform a `Map` with the expression
    /// returned by `on_unique`, which is cheaper. (See `ReduceElision`.)
    pub fn on_unique(&self, input_type: &[ColumnType]) -> MirScalarExpr {
        match &self.func {
            // Count is one if non-null, and zero if null.
            AggregateFunc::Count => self
                .expr
                .clone()
                .call_unary(UnaryFunc::IsNull(crate::func::IsNull))
                .if_then_else(
                    MirScalarExpr::literal_ok(Datum::Int64(0), ScalarType::Int64),
                    MirScalarExpr::literal_ok(Datum::Int64(1), ScalarType::Int64),
                ),

            // SumInt16 takes Int16s as input, but outputs Int64s.
            AggregateFunc::SumInt16 => self
                .expr
                .clone()
                .call_unary(UnaryFunc::CastInt16ToInt64(scalar_func::CastInt16ToInt64)),

            // SumInt32 takes Int32s as input, but outputs Int64s.
            AggregateFunc::SumInt32 => self
                .expr
                .clone()
                .call_unary(UnaryFunc::CastInt32ToInt64(scalar_func::CastInt32ToInt64)),

            // SumInt64 takes Int64s as input, but outputs numerics.
            AggregateFunc::SumInt64 => self.expr.clone().call_unary(UnaryFunc::CastInt64ToNumeric(
                scalar_func::CastInt64ToNumeric(Some(NumericMaxScale::ZERO)),
            )),

            // SumUInt16 takes UInt16s as input, but outputs UInt64s.
            AggregateFunc::SumUInt16 => self.expr.clone().call_unary(
                UnaryFunc::CastUint16ToUint64(scalar_func::CastUint16ToUint64),
            ),

            // SumUInt32 takes UInt32s as input, but outputs UInt64s.
            AggregateFunc::SumUInt32 => self.expr.clone().call_unary(
                UnaryFunc::CastUint32ToUint64(scalar_func::CastUint32ToUint64),
            ),

            // SumUInt64 takes UInt64s as input, but outputs numerics.
            AggregateFunc::SumUInt64 => {
                self.expr.clone().call_unary(UnaryFunc::CastUint64ToNumeric(
                    scalar_func::CastUint64ToNumeric(Some(NumericMaxScale::ZERO)),
                ))
            }

            // JsonbAgg takes _anything_ as input, but must output a Jsonb array.
            AggregateFunc::JsonbAgg { .. } => MirScalarExpr::CallVariadic {
                func: VariadicFunc::JsonbBuildArray,
                exprs: vec![self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)))],
            },

            // JsonbAgg takes _anything_ as input, but must output a Jsonb object.
            AggregateFunc::JsonbObjectAgg { .. } => {
                let record = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));
                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::JsonbBuildObject,
                    exprs: (0..2)
                        .map(|i| {
                            record
                                .clone()
                                .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(i)))
                        })
                        .collect(),
                }
            }

            AggregateFunc::MapAgg { value_type, .. } => {
                let record = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));
                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::MapBuild {
                        value_type: value_type.clone(),
                    },
                    exprs: (0..2)
                        .map(|i| {
                            record
                                .clone()
                                .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(i)))
                        })
                        .collect(),
                }
            }

            // StringAgg takes nested records of strings and outputs a string
            AggregateFunc::StringAgg { .. } => self
                .expr
                .clone()
                .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)))
                .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0))),

            // ListConcat and ArrayConcat take a single level of records and output a list containing exactly 1 element
            AggregateFunc::ListConcat { .. } | AggregateFunc::ArrayConcat { .. } => self
                .expr
                .clone()
                .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0))),

            // RowNumber, Rank, DenseRank take a list of records and output a list containing exactly 1 element
            AggregateFunc::RowNumber { .. } => {
                self.on_unique_ranking_window_funcs(input_type, "?row_number?")
            }
            AggregateFunc::Rank { .. } => self.on_unique_ranking_window_funcs(input_type, "?rank?"),
            AggregateFunc::DenseRank { .. } => {
                self.on_unique_ranking_window_funcs(input_type, "?dense_rank?")
            }

            // The input type for LagLead is ((OriginalRow, (InputValue, Offset, Default)), OrderByExprs...)
            AggregateFunc::LagLead { lag_lead, .. } => {
                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Get the overall return type
                let return_type_with_orig_row = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();
                let lag_lead_return_type =
                    return_type_with_orig_row.unwrap_record_element_type()[0].clone();

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the encoded args
                let encoded_args =
                    tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let (result_expr, column_name) =
                    Self::on_unique_lag_lead(lag_lead, encoded_args, lag_lead_return_type.clone());

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type_with_orig_row,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![column_name, ColumnName::from("?record?")],
                        },
                        exprs: vec![result_expr, original_row],
                    }],
                }
            }

            // The input type for FirstValue is ((OriginalRow, InputValue), OrderByExprs...)
            AggregateFunc::FirstValue { window_frame, .. } => {
                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Get the overall return type
                let return_type_with_orig_row = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();
                let first_value_return_type =
                    return_type_with_orig_row.unwrap_record_element_type()[0].clone();

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the input value
                let arg = tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let (result_expr, column_name) = Self::on_unique_first_value_last_value(
                    window_frame,
                    arg,
                    first_value_return_type,
                );

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type_with_orig_row,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![column_name, ColumnName::from("?record?")],
                        },
                        exprs: vec![result_expr, original_row],
                    }],
                }
            }

            // The input type for LastValue is ((OriginalRow, InputValue), OrderByExprs...)
            AggregateFunc::LastValue { window_frame, .. } => {
                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Get the overall return type
                let return_type_with_orig_row = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();
                let last_value_return_type =
                    return_type_with_orig_row.unwrap_record_element_type()[0].clone();

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the input value
                let arg = tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let (result_expr, column_name) = Self::on_unique_first_value_last_value(
                    window_frame,
                    arg,
                    last_value_return_type,
                );

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type_with_orig_row,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![column_name, ColumnName::from("?record?")],
                        },
                        exprs: vec![result_expr, original_row],
                    }],
                }
            }

            // The input type for window aggs is ((OriginalRow, InputValue), OrderByExprs...)
            // See an example MIR in `window_func_applied_to`.
            AggregateFunc::WindowAggregate {
                wrapped_aggregate,
                window_frame,
                order_by: _,
            } => {
                // TODO: deduplicate code between the various window function cases.

                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Get the overall return type
                let return_type = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();
                let window_agg_return_type = return_type.unwrap_record_element_type()[0].clone();

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the input value
                let arg_expr = tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let (result, column_name) = Self::on_unique_window_agg(
                    window_frame,
                    arg_expr,
                    input_type,
                    window_agg_return_type,
                    wrapped_aggregate,
                );

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![column_name, ColumnName::from("?record?")],
                        },
                        exprs: vec![result, original_row],
                    }],
                }
            }

            // The input type is ((OriginalRow, (Arg1, Arg2, ...)), OrderByExprs...)
            AggregateFunc::FusedWindowAggregate {
                wrapped_aggregates,
                order_by: _,
                window_frame,
            } => {
                // Throw away OrderByExprs
                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the args of the fused call
                let all_args = tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let return_type_with_orig_row = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();

                let all_func_return_types =
                    return_type_with_orig_row.unwrap_record_element_type()[0].clone();
                let mut func_result_exprs = Vec::new();
                let mut col_names = Vec::new();
                for (idx, wrapped_aggr) in wrapped_aggregates.iter().enumerate() {
                    let arg = all_args
                        .clone()
                        .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(idx)));
                    let return_type =
                        all_func_return_types.unwrap_record_element_type()[idx].clone();
                    let (result, column_name) = Self::on_unique_window_agg(
                        window_frame,
                        arg,
                        input_type,
                        return_type,
                        wrapped_aggr,
                    );
                    func_result_exprs.push(result);
                    col_names.push(column_name);
                }

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type_with_orig_row,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![
                                ColumnName::from("?fused_window_aggr?"),
                                ColumnName::from("?record?"),
                            ],
                        },
                        exprs: vec![
                            MirScalarExpr::CallVariadic {
                                func: VariadicFunc::RecordCreate {
                                    field_names: col_names,
                                },
                                exprs: func_result_exprs,
                            },
                            original_row,
                        ],
                    }],
                }
            }

            // The input type is ((OriginalRow, (Args1, Args2, ...)), OrderByExprs...)
            AggregateFunc::FusedValueWindowFunc {
                funcs,
                order_by: outer_order_by,
            } => {
                // Throw away OrderByExprs
                let tuple = self
                    .expr
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the original row
                let original_row = tuple
                    .clone()
                    .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

                // Extract the encoded args of the fused call
                let all_encoded_args =
                    tuple.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));

                let return_type_with_orig_row = self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone();

                let all_func_return_types =
                    return_type_with_orig_row.unwrap_record_element_type()[0].clone();
                let mut func_result_exprs = Vec::new();
                let mut col_names = Vec::new();
                for (idx, func) in funcs.iter().enumerate() {
                    let args_for_func = all_encoded_args
                        .clone()
                        .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(idx)));
                    let return_type_for_func =
                        all_func_return_types.unwrap_record_element_type()[idx].clone();
                    let (result, column_name) = match func {
                        AggregateFunc::LagLead {
                            lag_lead,
                            order_by,
                            ignore_nulls: _,
                        } => {
                            assert_eq!(order_by, outer_order_by);
                            Self::on_unique_lag_lead(lag_lead, args_for_func, return_type_for_func)
                        }
                        AggregateFunc::FirstValue {
                            window_frame,
                            order_by,
                        } => {
                            assert_eq!(order_by, outer_order_by);
                            Self::on_unique_first_value_last_value(
                                window_frame,
                                args_for_func,
                                return_type_for_func,
                            )
                        }
                        AggregateFunc::LastValue {
                            window_frame,
                            order_by,
                        } => {
                            assert_eq!(order_by, outer_order_by);
                            Self::on_unique_first_value_last_value(
                                window_frame,
                                args_for_func,
                                return_type_for_func,
                            )
                        }
                        _ => panic!("unknown function in FusedValueWindowFunc"),
                    };
                    func_result_exprs.push(result);
                    col_names.push(column_name);
                }

                MirScalarExpr::CallVariadic {
                    func: VariadicFunc::ListCreate {
                        elem_type: return_type_with_orig_row,
                    },
                    exprs: vec![MirScalarExpr::CallVariadic {
                        func: VariadicFunc::RecordCreate {
                            field_names: vec![
                                ColumnName::from("?fused_value_window_func?"),
                                ColumnName::from("?record?"),
                            ],
                        },
                        exprs: vec![
                            MirScalarExpr::CallVariadic {
                                func: VariadicFunc::RecordCreate {
                                    field_names: col_names,
                                },
                                exprs: func_result_exprs,
                            },
                            original_row,
                        ],
                    }],
                }
            }

            // All other variants should return the argument to the aggregation.
            AggregateFunc::MaxNumeric
            | AggregateFunc::MaxInt16
            | AggregateFunc::MaxInt32
            | AggregateFunc::MaxInt64
            | AggregateFunc::MaxUInt16
            | AggregateFunc::MaxUInt32
            | AggregateFunc::MaxUInt64
            | AggregateFunc::MaxMzTimestamp
            | AggregateFunc::MaxFloat32
            | AggregateFunc::MaxFloat64
            | AggregateFunc::MaxBool
            | AggregateFunc::MaxString
            | AggregateFunc::MaxDate
            | AggregateFunc::MaxTimestamp
            | AggregateFunc::MaxTimestampTz
            | AggregateFunc::MaxInterval
            | AggregateFunc::MaxTime
            | AggregateFunc::MinNumeric
            | AggregateFunc::MinInt16
            | AggregateFunc::MinInt32
            | AggregateFunc::MinInt64
            | AggregateFunc::MinUInt16
            | AggregateFunc::MinUInt32
            | AggregateFunc::MinUInt64
            | AggregateFunc::MinMzTimestamp
            | AggregateFunc::MinFloat32
            | AggregateFunc::MinFloat64
            | AggregateFunc::MinBool
            | AggregateFunc::MinString
            | AggregateFunc::MinDate
            | AggregateFunc::MinTimestamp
            | AggregateFunc::MinTimestampTz
            | AggregateFunc::MinInterval
            | AggregateFunc::MinTime
            | AggregateFunc::SumFloat32
            | AggregateFunc::SumFloat64
            | AggregateFunc::SumNumeric
            | AggregateFunc::Any
            | AggregateFunc::All
            | AggregateFunc::Dummy => self.expr.clone(),
        }
    }

    /// `on_unique` for ROW_NUMBER, RANK, DENSE_RANK
    fn on_unique_ranking_window_funcs(
        &self,
        input_type: &[ColumnType],
        col_name: &str,
    ) -> MirScalarExpr {
        let list = self
            .expr
            .clone()
            // extract the list within the record
            .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));

        // extract the expression within the list
        let record = MirScalarExpr::CallVariadic {
            func: VariadicFunc::ListIndex,
            exprs: vec![
                list,
                MirScalarExpr::literal_ok(Datum::Int64(1), ScalarType::Int64),
            ],
        };

        MirScalarExpr::CallVariadic {
            func: VariadicFunc::ListCreate {
                elem_type: self
                    .typ(input_type)
                    .scalar_type
                    .unwrap_list_element_type()
                    .clone(),
            },
            exprs: vec![MirScalarExpr::CallVariadic {
                func: VariadicFunc::RecordCreate {
                    field_names: vec![ColumnName::from(col_name), ColumnName::from("?record?")],
                },
                exprs: vec![
                    MirScalarExpr::literal_ok(Datum::Int64(1), ScalarType::Int64),
                    record,
                ],
            }],
        }
    }

    /// `on_unique` for `lag` and `lead`
    fn on_unique_lag_lead(
        lag_lead: &LagLeadType,
        encoded_args: MirScalarExpr,
        return_type: ScalarType,
    ) -> (MirScalarExpr, ColumnName) {
        let expr = encoded_args
            .clone()
            .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(0)));
        let offset = encoded_args
            .clone()
            .call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(1)));
        let default_value =
            encoded_args.call_unary(UnaryFunc::RecordGet(scalar_func::RecordGet(2)));

        // In this case, the window always has only one element, so if the offset is not null and
        // not zero, the default value should be returned instead.
        let value = offset
            .clone()
            .call_binary(
                MirScalarExpr::literal_ok(Datum::Int32(0), ScalarType::Int32),
                crate::BinaryFunc::Eq,
            )
            .if_then_else(expr, default_value);
        let result_expr = offset
            .call_unary(UnaryFunc::IsNull(crate::func::IsNull))
            .if_then_else(MirScalarExpr::literal_null(return_type), value);

        let column_name = ColumnName::from(match lag_lead {
            LagLeadType::Lag => "?lag?",
            LagLeadType::Lead => "?lead?",
        });

        (result_expr, column_name)
    }

    /// `on_unique` for `first_value` and `last_value`
    fn on_unique_first_value_last_value(
        window_frame: &WindowFrame,
        arg: MirScalarExpr,
        return_type: ScalarType,
    ) -> (MirScalarExpr, ColumnName) {
        // If the window frame includes the current (single) row, return its value, null otherwise
        let result_expr = if window_frame.includes_current_row() {
            arg
        } else {
            MirScalarExpr::literal_null(return_type)
        };
        (result_expr, ColumnName::from("?first_value?"))
    }

    /// `on_unique` for window aggregations
    fn on_unique_window_agg(
        window_frame: &WindowFrame,
        arg_expr: MirScalarExpr,
        input_type: &[ColumnType],
        return_type: ScalarType,
        wrapped_aggr: &AggregateFunc,
    ) -> (MirScalarExpr, ColumnName) {
        // If the window frame includes the current (single) row, evaluate the wrapped aggregate on
        // that row. Otherwise, return the default value for the aggregate.
        let result_expr = if window_frame.includes_current_row() {
            AggregateExpr {
                func: wrapped_aggr.clone(),
                expr: arg_expr,
                distinct: false, // We have just one input element; DISTINCT doesn't matter.
            }
            .on_unique(input_type)
        } else {
            MirScalarExpr::literal_ok(wrapped_aggr.default(), return_type)
        };
        (result_expr, ColumnName::from("?window_agg?"))
    }

    /// Returns whether the expression is COUNT(*) or not.  Note that
    /// when we define the count builtin in sql::func, we convert
    /// COUNT(*) to COUNT(true), making it indistinguishable from
    /// literal COUNT(true), but we prefer to consider this as the
    /// former.
    pub fn is_count_asterisk(&self) -> bool {
        match self {
            AggregateExpr {
                func: AggregateFunc::Count,
                expr:
                    MirScalarExpr::Literal(
                        Ok(row),
                        mz_repr::ColumnType {
                            scalar_type: mz_repr::ScalarType::Bool,
                            nullable: false,
                        },
                    ),
                ..
            } => row.unpack_first() == mz_repr::Datum::True,
            _ => false,
        }
    }
}

/// Describe a join implementation in dataflow.
#[derive(
    Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect, Arbitrary,
)]
pub enum JoinImplementation {
    /// Perform a sequence of binary differential dataflow joins.
    ///
    /// The first argument indicates
    /// 1) the index of the starting collection,
    /// 2) if it should be arranged, the keys to arrange it by, and
    /// 3) the characteristics of the starting collection (for EXPLAINing).
    /// The sequence that follows lists other relation indexes, and the key for
    /// the arrangement we should use when joining it in.
    /// The JoinInputCharacteristics are for EXPLAINing the characteristics that
    /// were used for join ordering.
    ///
    /// Each collection index should occur exactly once, either as the starting collection
    /// or somewhere in the list.
    Differential(
        (
            usize,
            Option<Vec<MirScalarExpr>>,
            Option<JoinInputCharacteristics>,
        ),
        Vec<(usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>)>,
    ),
    /// Perform independent delta query dataflows for each input.
    ///
    /// The argument is a sequence of plans, for the input collections in order.
    /// Each plan starts from the corresponding index, and then in sequence joins
    /// against collections identified by index and with the specified arrangement key.
    /// The JoinInputCharacteristics are for EXPLAINing the characteristics that were
    /// used for join ordering.
    DeltaQuery(Vec<Vec<(usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>)>>),
    /// Join a user-created index with a constant collection to speed up the evaluation of a
    /// predicate such as `(f1 = 3 AND f2 = 5) OR (f1 = 7 AND f2 = 9)`.
    /// This gets translated to a Differential join during MIR -> LIR lowering, but we still want
    /// to represent it in MIR, because the fast path detection wants to match on this.
    ///
    /// Consists of (`<coll_id>`, `<index_id>`, `<index_key>`, `<constants>`)
    IndexedFilter(
        GlobalId,
        GlobalId,
        Vec<MirScalarExpr>,
        #[mzreflect(ignore)] Vec<Row>,
    ),
    /// No implementation yet selected.
    Unimplemented,
}

impl Default for JoinImplementation {
    fn default() -> Self {
        JoinImplementation::Unimplemented
    }
}

impl JoinImplementation {
    /// Returns `true` iff the value is not [`JoinImplementation::Unimplemented`].
    pub fn is_implemented(&self) -> bool {
        match self {
            Self::Unimplemented => false,
            _ => true,
        }
    }

    /// Returns an optional implementation name if the value is not [`JoinImplementation::Unimplemented`].
    pub fn name(&self) -> Option<&'static str> {
        match self {
            Self::Differential(..) => Some("differential"),
            Self::DeltaQuery(..) => Some("delta"),
            Self::IndexedFilter(..) => Some("indexed_filter"),
            Self::Unimplemented => None,
        }
    }
}

/// Characteristics of a join order candidate collection.
///
/// A candidate is described by a collection and a key, and may have various liabilities.
/// Primarily, the candidate may risk substantial inflation of records, which is something
/// that concerns us greatly. Additionally the candidate may be unarranged, and we would
/// prefer candidates that do not require additional memory. Finally, we prefer lower id
/// collections in the interest of consistent tie-breaking.
#[derive(
    Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Serialize, Deserialize, Hash, MzReflect, Arbitrary,
)]
pub struct JoinInputCharacteristics {
    /// An excellent indication that record count will not increase.
    pub unique_key: bool,
    /// A weaker signal that record count will not increase.
    pub key_length: usize,
    /// Indicates that there will be no additional in-memory footprint.
    pub arranged: bool,
    /// Estimated cardinality (lower is better)
    pub cardinality: Option<std::cmp::Reverse<usize>>,
    /// Characteristics of the filter that is applied at this input.
    pub filters: FilterCharacteristics,
    /// We want to prefer input earlier in the input list, for stability of ordering.
    pub input: std::cmp::Reverse<usize>,
}

impl JoinInputCharacteristics {
    /// Creates a new instance with the given characteristics.
    pub fn new(
        unique_key: bool,
        key_length: usize,
        arranged: bool,
        cardinality: Option<usize>,
        filters: FilterCharacteristics,
        input: usize,
    ) -> Self {
        Self {
            unique_key,
            key_length,
            arranged,
            cardinality: cardinality.map(std::cmp::Reverse),
            filters,
            input: std::cmp::Reverse(input),
        }
    }

    /// Turns the instance into a String to be printed in EXPLAIN.
    pub fn explain(&self) -> String {
        let mut e = "".to_owned();
        if self.unique_key {
            e.push_str("U");
        }
        for _ in 0..self.key_length {
            e.push_str("K");
        }
        if self.arranged {
            e.push_str("A");
        }
        if let Some(std::cmp::Reverse(cardinality)) = self.cardinality {
            e.push_str(&format!("|{cardinality}|"));
        }
        e.push_str(&self.filters.explain());
        e
    }
}

/// Instructions for finishing the result of a query.
///
/// The primary reason for the existence of this structure and attendant code
/// is that SQL's ORDER BY requires sorting rows (as already implied by the
/// keywords), whereas much of the rest of SQL is defined in terms of unordered
/// multisets. But as it turns out, the same idea can be used to optimize
/// trivial peeks.
#[derive(Arbitrary, Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct RowSetFinishing<L = NonNeg<i64>> {
    /// Order rows by the given columns.
    pub order_by: Vec<ColumnOrder>,
    /// Include only as many rows (after offset).
    pub limit: Option<L>,
    /// Omit as many rows.
    pub offset: usize,
    /// Include only given columns.
    pub project: Vec<usize>,
}

impl RustType<ProtoRowSetFinishing> for RowSetFinishing {
    fn into_proto(&self) -> ProtoRowSetFinishing {
        ProtoRowSetFinishing {
            order_by: self.order_by.into_proto(),
            limit: self.limit.into_proto(),
            offset: self.offset.into_proto(),
            project: self.project.into_proto(),
        }
    }

    fn from_proto(x: ProtoRowSetFinishing) -> Result<Self, TryFromProtoError> {
        Ok(RowSetFinishing {
            order_by: x.order_by.into_rust()?,
            limit: x.limit.into_rust()?,
            offset: x.offset.into_rust()?,
            project: x.project.into_rust()?,
        })
    }
}

impl<L> RowSetFinishing<L> {
    /// Returns a trivial finishing, i.e., that does nothing to the result set.
    pub fn trivial(arity: usize) -> RowSetFinishing<L> {
        RowSetFinishing {
            order_by: Vec::new(),
            limit: None,
            offset: 0,
            project: (0..arity).collect(),
        }
    }
    /// True if the finishing does nothing to any result set.
    pub fn is_trivial(&self, arity: usize) -> bool {
        self.limit.is_none()
            && self.order_by.is_empty()
            && self.offset == 0
            && self.project.iter().copied().eq(0..arity)
    }
}

impl RowSetFinishing {
    /// Applies finishing actions to a [`RowCollection`], and reports the total
    /// time it took to run.
    pub fn finish(
        &self,
        rows: RowCollection,
        max_result_size: u64,
        max_returned_query_size: Option<u64>,
        duration_histogram: &Histogram,
    ) -> Result<SortedRowCollectionIter, String> {
        let now = Instant::now();
        let result = self.finish_inner(rows, max_result_size, max_returned_query_size);
        let duration = now.elapsed();
        duration_histogram.observe(duration.as_secs_f64());

        result
    }

    /// Implementation for [`RowSetFinishing::finish`].
    fn finish_inner(
        &self,
        rows: RowCollection,
        max_result_size: u64,
        max_returned_query_size: Option<u64>,
    ) -> Result<SortedRowCollectionIter, String> {
        // How much additional memory is required to make a sorted view.
        let sorted_view_mem = rows.entries().saturating_mul(std::mem::size_of::<usize>());
        let required_memory = rows.byte_len().saturating_add(sorted_view_mem);

        // Bail if creating the sorted view would require us to use too much memory.
        if required_memory > usize::cast_from(max_result_size) {
            let max_bytes = ByteSize::b(max_result_size);
            return Err(format!("result exceeds max size of {max_bytes}",));
        }

        let sorted_view = rows.sorted_view(&self.order_by);
        let mut iter = sorted_view
            .into_row_iter()
            .apply_offset(self.offset)
            .with_projection(self.project.clone());

        if let Some(limit) = self.limit {
            let limit = u64::from(limit);
            let limit = usize::cast_from(limit);
            iter = iter.with_limit(limit);
        };

        // Bail if we would end up returning more data to the client than they can support.
        if let Some(max) = max_returned_query_size {
            // TODO(parkmycar): Re-implement out LIMIT and OFFSET logic so we can calculate
            // the remaining bytes via `(Row, Diff)` tuples.
            let remaining_bytes: usize = iter.clone().map(|row| row.data().len()).sum();

            if remaining_bytes > usize::cast_from(max) {
                let max_bytes = ByteSize::b(max);
                return Err(format!("result exceeds max size of {max_bytes}"));
            }
        }

        Ok(iter)
    }
}

/// Compare `left` and `right` using `order`. If that doesn't produce a strict
/// ordering, call `tiebreaker`.
pub fn compare_columns<F>(
    order: &[ColumnOrder],
    left: &[Datum],
    right: &[Datum],
    tiebreaker: F,
) -> Ordering
where
    F: Fn() -> Ordering,
{
    for order in order {
        let cmp = match (&left[order.column], &right[order.column]) {
            (Datum::Null, Datum::Null) => Ordering::Equal,
            (Datum::Null, _) => {
                if order.nulls_last {
                    Ordering::Greater
                } else {
                    Ordering::Less
                }
            }
            (_, Datum::Null) => {
                if order.nulls_last {
                    Ordering::Less
                } else {
                    Ordering::Greater
                }
            }
            (lval, rval) => {
                if order.desc {
                    rval.cmp(lval)
                } else {
                    lval.cmp(rval)
                }
            }
        };
        if cmp != Ordering::Equal {
            return cmp;
        }
    }
    tiebreaker()
}

/// Describe a window frame, e.g. `RANGE UNBOUNDED PRECEDING` or
/// `ROWS BETWEEN 5 PRECEDING AND CURRENT ROW`.
///
/// Window frames define a subset of the partition , and only a subset of
/// window functions make use of the window frame.
#[derive(
    Arbitrary, Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect,
)]
pub struct WindowFrame {
    /// ROWS, RANGE or GROUPS
    pub units: WindowFrameUnits,
    /// Where the frame starts
    pub start_bound: WindowFrameBound,
    /// Where the frame ends
    pub end_bound: WindowFrameBound,
}

impl Display for WindowFrame {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{} between {} and {}",
            self.units, self.start_bound, self.end_bound
        )
    }
}

impl WindowFrame {
    /// Return the default window frame used when one is not explicitly defined
    pub fn default() -> Self {
        WindowFrame {
            units: WindowFrameUnits::Range,
            start_bound: WindowFrameBound::UnboundedPreceding,
            end_bound: WindowFrameBound::CurrentRow,
        }
    }

    fn includes_current_row(&self) -> bool {
        use WindowFrameBound::*;
        match self.start_bound {
            UnboundedPreceding => match self.end_bound {
                UnboundedPreceding => false,
                OffsetPreceding(0) => true,
                OffsetPreceding(_) => false,
                CurrentRow => true,
                OffsetFollowing(_) => true,
                UnboundedFollowing => true,
            },
            OffsetPreceding(0) => match self.end_bound {
                UnboundedPreceding => unreachable!(),
                OffsetPreceding(0) => true,
                // Any nonzero offsets here will create an empty window
                OffsetPreceding(_) => false,
                CurrentRow => true,
                OffsetFollowing(_) => true,
                UnboundedFollowing => true,
            },
            OffsetPreceding(_) => match self.end_bound {
                UnboundedPreceding => unreachable!(),
                // Window ends at the current row
                OffsetPreceding(0) => true,
                OffsetPreceding(_) => false,
                CurrentRow => true,
                OffsetFollowing(_) => true,
                UnboundedFollowing => true,
            },
            CurrentRow => true,
            OffsetFollowing(0) => match self.end_bound {
                UnboundedPreceding => unreachable!(),
                OffsetPreceding(_) => unreachable!(),
                CurrentRow => unreachable!(),
                OffsetFollowing(_) => true,
                UnboundedFollowing => true,
            },
            OffsetFollowing(_) => match self.end_bound {
                UnboundedPreceding => unreachable!(),
                OffsetPreceding(_) => unreachable!(),
                CurrentRow => unreachable!(),
                OffsetFollowing(_) => false,
                UnboundedFollowing => false,
            },
            UnboundedFollowing => false,
        }
    }
}

impl RustType<ProtoWindowFrame> for WindowFrame {
    fn into_proto(&self) -> ProtoWindowFrame {
        ProtoWindowFrame {
            units: Some(self.units.into_proto()),
            start_bound: Some(self.start_bound.into_proto()),
            end_bound: Some(self.end_bound.into_proto()),
        }
    }

    fn from_proto(proto: ProtoWindowFrame) -> Result<Self, TryFromProtoError> {
        Ok(WindowFrame {
            units: proto.units.into_rust_if_some("ProtoWindowFrame::units")?,
            start_bound: proto
                .start_bound
                .into_rust_if_some("ProtoWindowFrame::start_bound")?,
            end_bound: proto
                .end_bound
                .into_rust_if_some("ProtoWindowFrame::end_bound")?,
        })
    }
}

/// Describe how frame bounds are interpreted
#[derive(
    Arbitrary, Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect,
)]
pub enum WindowFrameUnits {
    /// Each row is treated as the unit of work for bounds
    Rows,
    /// Each peer group is treated as the unit of work for bounds,
    /// and offset-based bounds use the value of the ORDER BY expression
    Range,
    /// Each peer group is treated as the unit of work for bounds.
    /// Groups is currently not supported, and it is rejected during planning.
    Groups,
}

impl Display for WindowFrameUnits {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            WindowFrameUnits::Rows => write!(f, "rows"),
            WindowFrameUnits::Range => write!(f, "range"),
            WindowFrameUnits::Groups => write!(f, "groups"),
        }
    }
}

impl RustType<proto_window_frame::ProtoWindowFrameUnits> for WindowFrameUnits {
    fn into_proto(&self) -> proto_window_frame::ProtoWindowFrameUnits {
        use proto_window_frame::proto_window_frame_units::Kind::*;
        proto_window_frame::ProtoWindowFrameUnits {
            kind: Some(match self {
                WindowFrameUnits::Rows => Rows(()),
                WindowFrameUnits::Range => Range(()),
                WindowFrameUnits::Groups => Groups(()),
            }),
        }
    }

    fn from_proto(
        proto: proto_window_frame::ProtoWindowFrameUnits,
    ) -> Result<Self, TryFromProtoError> {
        use proto_window_frame::proto_window_frame_units::Kind::*;
        Ok(match proto.kind {
            Some(Rows(())) => WindowFrameUnits::Rows,
            Some(Range(())) => WindowFrameUnits::Range,
            Some(Groups(())) => WindowFrameUnits::Groups,
            None => {
                return Err(TryFromProtoError::missing_field(
                    "ProtoWindowFrameUnits::kind",
                ))
            }
        })
    }
}

/// Specifies [WindowFrame]'s `start_bound` and `end_bound`
///
/// The order between frame bounds is significant, as Postgres enforces
/// some restrictions there.
#[derive(
    Arbitrary, Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, MzReflect, PartialOrd, Ord,
)]
pub enum WindowFrameBound {
    /// `UNBOUNDED PRECEDING`
    UnboundedPreceding,
    /// `<N> PRECEDING`
    OffsetPreceding(u64),
    /// `CURRENT ROW`
    CurrentRow,
    /// `<N> FOLLOWING`
    OffsetFollowing(u64),
    /// `UNBOUNDED FOLLOWING`.
    UnboundedFollowing,
}

impl Display for WindowFrameBound {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            WindowFrameBound::UnboundedPreceding => write!(f, "unbounded preceding"),
            WindowFrameBound::OffsetPreceding(offset) => write!(f, "{} preceding", offset),
            WindowFrameBound::CurrentRow => write!(f, "current row"),
            WindowFrameBound::OffsetFollowing(offset) => write!(f, "{} following", offset),
            WindowFrameBound::UnboundedFollowing => write!(f, "unbounded following"),
        }
    }
}

impl RustType<proto_window_frame::ProtoWindowFrameBound> for WindowFrameBound {
    fn into_proto(&self) -> proto_window_frame::ProtoWindowFrameBound {
        use proto_window_frame::proto_window_frame_bound::Kind::*;
        proto_window_frame::ProtoWindowFrameBound {
            kind: Some(match self {
                WindowFrameBound::UnboundedPreceding => UnboundedPreceding(()),
                WindowFrameBound::OffsetPreceding(offset) => OffsetPreceding(*offset),
                WindowFrameBound::CurrentRow => CurrentRow(()),
                WindowFrameBound::OffsetFollowing(offset) => OffsetFollowing(*offset),
                WindowFrameBound::UnboundedFollowing => UnboundedFollowing(()),
            }),
        }
    }

    fn from_proto(x: proto_window_frame::ProtoWindowFrameBound) -> Result<Self, TryFromProtoError> {
        use proto_window_frame::proto_window_frame_bound::Kind::*;
        Ok(match x.kind {
            Some(UnboundedPreceding(())) => WindowFrameBound::UnboundedPreceding,
            Some(OffsetPreceding(offset)) => WindowFrameBound::OffsetPreceding(offset),
            Some(CurrentRow(())) => WindowFrameBound::CurrentRow,
            Some(OffsetFollowing(offset)) => WindowFrameBound::OffsetFollowing(offset),
            Some(UnboundedFollowing(())) => WindowFrameBound::UnboundedFollowing,
            None => {
                return Err(TryFromProtoError::missing_field(
                    "ProtoWindowFrameBound::kind",
                ))
            }
        })
    }
}

/// Maximum iterations for a LetRec.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize, Arbitrary)]
pub struct LetRecLimit {
    /// Maximum number of iterations to evaluate.
    pub max_iters: NonZeroU64,
    /// Whether to throw an error when reaching the above limit.
    /// If true, we simply use the current contents of each Id as the final result.
    pub return_at_limit: bool,
}

impl LetRecLimit {
    /// Compute the smallest limit from a Vec of `LetRecLimit`s.
    pub fn min_max_iter(limits: &Vec<Option<LetRecLimit>>) -> Option<u64> {
        limits
            .iter()
            .filter_map(|l| l.as_ref().map(|l| l.max_iters.get()))
            .min()
    }

    /// The default value of `LetRecLimit::return_at_limit` when using the RECURSION LIMIT option of
    /// WMR without ERROR AT or RETURN AT.
    pub const RETURN_AT_LIMIT_DEFAULT: bool = false;
}

impl Display for LetRecLimit {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "[recursion_limit={}", self.max_iters)?;
        if self.return_at_limit != LetRecLimit::RETURN_AT_LIMIT_DEFAULT {
            write!(f, ", return_at_limit")?;
        }
        write!(f, "]")
    }
}

/// For a global Get, this indicates whether we are going to read from Persist or from an index.
/// (See comment in MirRelationExpr::Get.)
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, Arbitrary)]
pub enum AccessStrategy {
    /// It's either a local Get (a CTE), or unknown at the time.
    /// `prune_and_annotate_dataflow_index_imports` decides it for global Gets, and thus switches to
    /// one of the other variants.
    UnknownOrLocal,
    /// The Get will read from Persist.
    Persist,
    /// The Get will read from an index or indexes: (index id, how the index will be used).
    Index(Vec<(GlobalId, IndexUsageType)>),
    /// The Get will read a collection that is computed by the same dataflow, but in a different
    /// `BuildDesc` in `objects_to_build`.
    SameDataflow,
}

#[cfg(test)]
mod tests {
    use mz_ore::assert_ok;
    use mz_proto::protobuf_roundtrip;
    use mz_repr::explain::text::text_string_at;
    use proptest::prelude::*;

    use crate::explain::HumanizedExplain;

    use super::*;

    proptest! {
        #[mz_ore::test]
        fn column_order_protobuf_roundtrip(expect in any::<ColumnOrder>()) {
            let actual = protobuf_roundtrip::<_, ProtoColumnOrder>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }

    proptest! {
        #[mz_ore::test]
        #[cfg_attr(miri, ignore)] // error: unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
        fn aggregate_expr_protobuf_roundtrip(expect in any::<AggregateExpr>()) {
            let actual = protobuf_roundtrip::<_, ProtoAggregateExpr>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }

    proptest! {
        #[mz_ore::test]
        fn window_frame_units_protobuf_roundtrip(expect in any::<WindowFrameUnits>()) {
            let actual = protobuf_roundtrip::<_, proto_window_frame::ProtoWindowFrameUnits>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }

    proptest! {
        #[mz_ore::test]
        fn window_frame_bound_protobuf_roundtrip(expect in any::<WindowFrameBound>()) {
            let actual = protobuf_roundtrip::<_, proto_window_frame::ProtoWindowFrameBound>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }

    proptest! {
        #[mz_ore::test]
        fn window_frame_protobuf_roundtrip(expect in any::<WindowFrame>()) {
            let actual = protobuf_roundtrip::<_, ProtoWindowFrame>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }

    #[mz_ore::test]
    fn test_row_set_finishing_as_text() {
        let finishing = RowSetFinishing {
            order_by: vec![ColumnOrder {
                column: 4,
                desc: true,
                nulls_last: true,
            }],
            limit: Some(NonNeg::try_from(7).unwrap()),
            offset: Default::default(),
            project: vec![1, 3, 4, 5],
        };

        let mode = HumanizedExplain::new(false);
        let expr = mode.expr(&finishing, None);

        let act = text_string_at(&expr, mz_ore::str::Indent::default);

        let exp = {
            use mz_ore::fmt::FormatBuffer;
            let mut s = String::new();
            write!(&mut s, "Finish");
            write!(&mut s, " order_by=[#4 desc nulls_last]");
            write!(&mut s, " limit=7");
            write!(&mut s, " output=[#1, #3..=#5]");
            writeln!(&mut s, "");
            s
        };

        assert_eq!(act, exp);
    }
}

/// An iterator over AST structures, which calls out nodes in difference.
///
/// The iterators visit two ASTs in tandem, continuing as long as the AST node data matches,
/// and yielding an output pair as soon as the AST nodes do not match. Their intent is to call
/// attention to the moments in the ASTs where they differ, and incidentally a stack-free way
/// to compare two ASTs.
mod structured_diff {

    use super::MirRelationExpr;

    ///  An iterator over structured differences between two `MirRelationExpr` instances.
    pub struct MreDiff<'a> {
        /// Pairs of expressions that must still be compared.
        todo: Vec<(&'a MirRelationExpr, &'a MirRelationExpr)>,
    }

    impl<'a> MreDiff<'a> {
        /// Create a new `MirRelationExpr` structured difference.
        pub fn new(expr1: &'a MirRelationExpr, expr2: &'a MirRelationExpr) -> Self {
            MreDiff {
                todo: vec![(expr1, expr2)],
            }
        }
    }

    impl<'a> Iterator for MreDiff<'a> {
        // Pairs of expressions that do not match.
        type Item = (&'a MirRelationExpr, &'a MirRelationExpr);

        fn next(&mut self) -> Option<Self::Item> {
            while let Some((expr1, expr2)) = self.todo.pop() {
                match (expr1, expr2) {
                    (
                        MirRelationExpr::Constant {
                            rows: rows1,
                            typ: typ1,
                        },
                        MirRelationExpr::Constant {
                            rows: rows2,
                            typ: typ2,
                        },
                    ) => {
                        if rows1 != rows2 || typ1 != typ2 {
                            return Some((expr1, expr2));
                        }
                    }
                    (
                        MirRelationExpr::Get {
                            id: id1,
                            typ: typ1,
                            access_strategy: as1,
                        },
                        MirRelationExpr::Get {
                            id: id2,
                            typ: typ2,
                            access_strategy: as2,
                        },
                    ) => {
                        if id1 != id2 || typ1 != typ2 || as1 != as2 {
                            return Some((expr1, expr2));
                        }
                    }
                    (
                        MirRelationExpr::Let {
                            id: id1,
                            body: body1,
                            value: value1,
                        },
                        MirRelationExpr::Let {
                            id: id2,
                            body: body2,
                            value: value2,
                        },
                    ) => {
                        if id1 != id2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((body1, body2));
                            self.todo.push((value1, value2));
                        }
                    }
                    (
                        MirRelationExpr::LetRec {
                            ids: ids1,
                            body: body1,
                            values: values1,
                            limits: limits1,
                        },
                        MirRelationExpr::LetRec {
                            ids: ids2,
                            body: body2,
                            values: values2,
                            limits: limits2,
                        },
                    ) => {
                        if ids1 != ids2 || values1.len() != values2.len() || limits1 != limits2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((body1, body2));
                            self.todo.extend(values1.iter().zip(values2.iter()));
                        }
                    }
                    (
                        MirRelationExpr::Project {
                            outputs: outputs1,
                            input: input1,
                        },
                        MirRelationExpr::Project {
                            outputs: outputs2,
                            input: input2,
                        },
                    ) => {
                        if outputs1 != outputs2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    (
                        MirRelationExpr::Map {
                            scalars: scalars1,
                            input: input1,
                        },
                        MirRelationExpr::Map {
                            scalars: scalars2,
                            input: input2,
                        },
                    ) => {
                        if scalars1 != scalars2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    (
                        MirRelationExpr::Filter {
                            predicates: predicates1,
                            input: input1,
                        },
                        MirRelationExpr::Filter {
                            predicates: predicates2,
                            input: input2,
                        },
                    ) => {
                        if predicates1 != predicates2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    (
                        MirRelationExpr::FlatMap {
                            input: input1,
                            func: func1,
                            exprs: exprs1,
                        },
                        MirRelationExpr::FlatMap {
                            input: input2,
                            func: func2,
                            exprs: exprs2,
                        },
                    ) => {
                        if func1 != func2 || exprs1 != exprs2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    (
                        MirRelationExpr::Join {
                            inputs: inputs1,
                            equivalences: eq1,
                            implementation: impl1,
                        },
                        MirRelationExpr::Join {
                            inputs: inputs2,
                            equivalences: eq2,
                            implementation: impl2,
                        },
                    ) => {
                        if inputs1.len() != inputs2.len() || eq1 != eq2 || impl1 != impl2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.extend(inputs1.iter().zip(inputs2.iter()));
                        }
                    }
                    (
                        MirRelationExpr::Reduce {
                            aggregates: aggregates1,
                            input: inputs1,
                            group_key: gk1,
                            monotonic: m1,
                            expected_group_size: egs1,
                        },
                        MirRelationExpr::Reduce {
                            aggregates: aggregates2,
                            input: inputs2,
                            group_key: gk2,
                            monotonic: m2,
                            expected_group_size: egs2,
                        },
                    ) => {
                        if aggregates1 != aggregates2 || gk1 != gk2 || m1 != m2 || egs1 != egs2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((inputs1, inputs2));
                        }
                    }
                    (
                        MirRelationExpr::TopK {
                            group_key: gk1,
                            order_key: order1,
                            input: input1,
                            limit: l1,
                            offset: o1,
                            monotonic: m1,
                            expected_group_size: egs1,
                        },
                        MirRelationExpr::TopK {
                            group_key: gk2,
                            order_key: order2,
                            input: input2,
                            limit: l2,
                            offset: o2,
                            monotonic: m2,
                            expected_group_size: egs2,
                        },
                    ) => {
                        if order1 != order2
                            || gk1 != gk2
                            || l1 != l2
                            || o1 != o2
                            || m1 != m2
                            || egs1 != egs2
                        {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    (
                        MirRelationExpr::Negate { input: input1 },
                        MirRelationExpr::Negate { input: input2 },
                    ) => {
                        self.todo.push((input1, input2));
                    }
                    (
                        MirRelationExpr::Threshold { input: input1 },
                        MirRelationExpr::Threshold { input: input2 },
                    ) => {
                        self.todo.push((input1, input2));
                    }
                    (
                        MirRelationExpr::Union {
                            base: base1,
                            inputs: inputs1,
                        },
                        MirRelationExpr::Union {
                            base: base2,
                            inputs: inputs2,
                        },
                    ) => {
                        if inputs1.len() != inputs2.len() {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((base1, base2));
                            self.todo.extend(inputs1.iter().zip(inputs2.iter()));
                        }
                    }
                    (
                        MirRelationExpr::ArrangeBy {
                            keys: keys1,
                            input: input1,
                        },
                        MirRelationExpr::ArrangeBy {
                            keys: keys2,
                            input: input2,
                        },
                    ) => {
                        if keys1 != keys2 {
                            return Some((expr1, expr2));
                        } else {
                            self.todo.push((input1, input2));
                        }
                    }
                    _ => {
                        return Some((expr1, expr2));
                    }
                }
            }
            None
        }
    }
}