libm/math/
j1f.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
2/*
3 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4 */
5/*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16use super::{cosf, fabsf, logf, sinf, sqrtf};
17
18const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
19const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
20
21fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 {
22    let z: f64;
23    let mut s: f64;
24    let c: f64;
25    let mut ss: f64;
26    let mut cc: f64;
27
28    s = sinf(x) as f64;
29    if y1 {
30        s = -s;
31    }
32    c = cosf(x) as f64;
33    cc = s - c;
34    if ix < 0x7f000000 {
35        ss = -s - c;
36        z = cosf(2.0 * x) as f64;
37        if s * c > 0.0 {
38            cc = z / ss;
39        } else {
40            ss = z / cc;
41        }
42        if ix < 0x58800000 {
43            if y1 {
44                ss = -ss;
45            }
46            cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss;
47        }
48    }
49    if sign {
50        cc = -cc;
51    }
52    return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32;
53}
54
55/* R0/S0 on [0,2] */
56const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */
57const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */
58const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */
59const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */
60const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */
61const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */
62const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */
63const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */
64const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */
65
66pub fn j1f(x: f32) -> f32 {
67    let mut z: f32;
68    let r: f32;
69    let s: f32;
70    let mut ix: u32;
71    let sign: bool;
72
73    ix = x.to_bits();
74    sign = (ix >> 31) != 0;
75    ix &= 0x7fffffff;
76    if ix >= 0x7f800000 {
77        return 1.0 / (x * x);
78    }
79    if ix >= 0x40000000 {
80        /* |x| >= 2 */
81        return common(ix, fabsf(x), false, sign);
82    }
83    if ix >= 0x39000000 {
84        /* |x| >= 2**-13 */
85        z = x * x;
86        r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
87        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
88        z = 0.5 + r / s;
89    } else {
90        z = 0.5;
91    }
92    return z * x;
93}
94
95const U0: [f32; 5] = [
96    -1.9605709612e-01, /* 0xbe48c331 */
97    5.0443872809e-02,  /* 0x3d4e9e3c */
98    -1.9125689287e-03, /* 0xbafaaf2a */
99    2.3525259166e-05,  /* 0x37c5581c */
100    -9.1909917899e-08, /* 0xb3c56003 */
101];
102const V0: [f32; 5] = [
103    1.9916731864e-02, /* 0x3ca3286a */
104    2.0255257550e-04, /* 0x3954644b */
105    1.3560879779e-06, /* 0x35b602d4 */
106    6.2274145840e-09, /* 0x31d5f8eb */
107    1.6655924903e-11, /* 0x2d9281cf */
108];
109
110pub fn y1f(x: f32) -> f32 {
111    let z: f32;
112    let u: f32;
113    let v: f32;
114    let ix: u32;
115
116    ix = x.to_bits();
117    if (ix & 0x7fffffff) == 0 {
118        return -1.0 / 0.0;
119    }
120    if (ix >> 31) != 0 {
121        return 0.0 / 0.0;
122    }
123    if ix >= 0x7f800000 {
124        return 1.0 / x;
125    }
126    if ix >= 0x40000000 {
127        /* |x| >= 2.0 */
128        return common(ix, x, true, false);
129    }
130    if ix < 0x33000000 {
131        /* x < 2**-25 */
132        return -TPI / x;
133    }
134    z = x * x;
135    u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
136    v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
137    return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x);
138}
139
140/* For x >= 8, the asymptotic expansions of pone is
141 *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
142 * We approximate pone by
143 *      pone(x) = 1 + (R/S)
144 * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
145 *        S = 1 + ps0*s^2 + ... + ps4*s^10
146 * and
147 *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
148 */
149
150const PR8: [f32; 6] = [
151    /* for x in [inf, 8]=1/[0,0.125] */
152    0.0000000000e+00, /* 0x00000000 */
153    1.1718750000e-01, /* 0x3df00000 */
154    1.3239480972e+01, /* 0x4153d4ea */
155    4.1205184937e+02, /* 0x43ce06a3 */
156    3.8747453613e+03, /* 0x45722bed */
157    7.9144794922e+03, /* 0x45f753d6 */
158];
159const PS8: [f32; 5] = [
160    1.1420736694e+02, /* 0x42e46a2c */
161    3.6509309082e+03, /* 0x45642ee5 */
162    3.6956207031e+04, /* 0x47105c35 */
163    9.7602796875e+04, /* 0x47bea166 */
164    3.0804271484e+04, /* 0x46f0a88b */
165];
166
167const PR5: [f32; 6] = [
168    /* for x in [8,4.5454]=1/[0.125,0.22001] */
169    1.3199052094e-11, /* 0x2d68333f */
170    1.1718749255e-01, /* 0x3defffff */
171    6.8027510643e+00, /* 0x40d9b023 */
172    1.0830818176e+02, /* 0x42d89dca */
173    5.1763616943e+02, /* 0x440168b7 */
174    5.2871520996e+02, /* 0x44042dc6 */
175];
176const PS5: [f32; 5] = [
177    5.9280597687e+01, /* 0x426d1f55 */
178    9.9140142822e+02, /* 0x4477d9b1 */
179    5.3532670898e+03, /* 0x45a74a23 */
180    7.8446904297e+03, /* 0x45f52586 */
181    1.5040468750e+03, /* 0x44bc0180 */
182];
183
184const PR3: [f32; 6] = [
185    3.0250391081e-09, /* 0x314fe10d */
186    1.1718686670e-01, /* 0x3defffab */
187    3.9329774380e+00, /* 0x407bb5e7 */
188    3.5119403839e+01, /* 0x420c7a45 */
189    9.1055007935e+01, /* 0x42b61c2a */
190    4.8559066772e+01, /* 0x42423c7c */
191];
192const PS3: [f32; 5] = [
193    3.4791309357e+01, /* 0x420b2a4d */
194    3.3676245117e+02, /* 0x43a86198 */
195    1.0468714600e+03, /* 0x4482dbe3 */
196    8.9081134033e+02, /* 0x445eb3ed */
197    1.0378793335e+02, /* 0x42cf936c */
198];
199
200const PR2: [f32; 6] = [
201    /* for x in [2.8570,2]=1/[0.3499,0.5] */
202    1.0771083225e-07, /* 0x33e74ea8 */
203    1.1717621982e-01, /* 0x3deffa16 */
204    2.3685150146e+00, /* 0x401795c0 */
205    1.2242610931e+01, /* 0x4143e1bc */
206    1.7693971634e+01, /* 0x418d8d41 */
207    5.0735230446e+00, /* 0x40a25a4d */
208];
209const PS2: [f32; 5] = [
210    2.1436485291e+01, /* 0x41ab7dec */
211    1.2529022980e+02, /* 0x42fa9499 */
212    2.3227647400e+02, /* 0x436846c7 */
213    1.1767937469e+02, /* 0x42eb5bd7 */
214    8.3646392822e+00, /* 0x4105d590 */
215];
216
217fn ponef(x: f32) -> f32 {
218    let p: &[f32; 6];
219    let q: &[f32; 5];
220    let z: f32;
221    let r: f32;
222    let s: f32;
223    let mut ix: u32;
224
225    ix = x.to_bits();
226    ix &= 0x7fffffff;
227    if ix >= 0x41000000 {
228        p = &PR8;
229        q = &PS8;
230    } else if ix >= 0x409173eb {
231        p = &PR5;
232        q = &PS5;
233    } else if ix >= 0x4036d917 {
234        p = &PR3;
235        q = &PS3;
236    } else
237    /*ix >= 0x40000000*/
238    {
239        p = &PR2;
240        q = &PS2;
241    }
242    z = 1.0 / (x * x);
243    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
244    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
245    return 1.0 + r / s;
246}
247
248/* For x >= 8, the asymptotic expansions of qone is
249 *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
250 * We approximate pone by
251 *      qone(x) = s*(0.375 + (R/S))
252 * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
253 *        S = 1 + qs1*s^2 + ... + qs6*s^12
254 * and
255 *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
256 */
257
258const QR8: [f32; 6] = [
259    /* for x in [inf, 8]=1/[0,0.125] */
260    0.0000000000e+00,  /* 0x00000000 */
261    -1.0253906250e-01, /* 0xbdd20000 */
262    -1.6271753311e+01, /* 0xc1822c8d */
263    -7.5960174561e+02, /* 0xc43de683 */
264    -1.1849806641e+04, /* 0xc639273a */
265    -4.8438511719e+04, /* 0xc73d3683 */
266];
267const QS8: [f32; 6] = [
268    1.6139537048e+02,  /* 0x43216537 */
269    7.8253862305e+03,  /* 0x45f48b17 */
270    1.3387534375e+05,  /* 0x4802bcd6 */
271    7.1965775000e+05,  /* 0x492fb29c */
272    6.6660125000e+05,  /* 0x4922be94 */
273    -2.9449025000e+05, /* 0xc88fcb48 */
274];
275
276const QR5: [f32; 6] = [
277    /* for x in [8,4.5454]=1/[0.125,0.22001] */
278    -2.0897993405e-11, /* 0xadb7d219 */
279    -1.0253904760e-01, /* 0xbdd1fffe */
280    -8.0564479828e+00, /* 0xc100e736 */
281    -1.8366960144e+02, /* 0xc337ab6b */
282    -1.3731937256e+03, /* 0xc4aba633 */
283    -2.6124443359e+03, /* 0xc523471c */
284];
285const QS5: [f32; 6] = [
286    8.1276550293e+01,  /* 0x42a28d98 */
287    1.9917987061e+03,  /* 0x44f8f98f */
288    1.7468484375e+04,  /* 0x468878f8 */
289    4.9851425781e+04,  /* 0x4742bb6d */
290    2.7948074219e+04,  /* 0x46da5826 */
291    -4.7191835938e+03, /* 0xc5937978 */
292];
293
294const QR3: [f32; 6] = [
295    -5.0783124372e-09, /* 0xb1ae7d4f */
296    -1.0253783315e-01, /* 0xbdd1ff5b */
297    -4.6101160049e+00, /* 0xc0938612 */
298    -5.7847221375e+01, /* 0xc267638e */
299    -2.2824453735e+02, /* 0xc3643e9a */
300    -2.1921012878e+02, /* 0xc35b35cb */
301];
302const QS3: [f32; 6] = [
303    4.7665153503e+01,  /* 0x423ea91e */
304    6.7386511230e+02,  /* 0x4428775e */
305    3.3801528320e+03,  /* 0x45534272 */
306    5.5477290039e+03,  /* 0x45ad5dd5 */
307    1.9031191406e+03,  /* 0x44ede3d0 */
308    -1.3520118713e+02, /* 0xc3073381 */
309];
310
311const QR2: [f32; 6] = [
312    /* for x in [2.8570,2]=1/[0.3499,0.5] */
313    -1.7838172539e-07, /* 0xb43f8932 */
314    -1.0251704603e-01, /* 0xbdd1f475 */
315    -2.7522056103e+00, /* 0xc0302423 */
316    -1.9663616180e+01, /* 0xc19d4f16 */
317    -4.2325313568e+01, /* 0xc2294d1f */
318    -2.1371921539e+01, /* 0xc1aaf9b2 */
319];
320const QS2: [f32; 6] = [
321    2.9533363342e+01,  /* 0x41ec4454 */
322    2.5298155212e+02,  /* 0x437cfb47 */
323    7.5750280762e+02,  /* 0x443d602e */
324    7.3939318848e+02,  /* 0x4438d92a */
325    1.5594900513e+02,  /* 0x431bf2f2 */
326    -4.9594988823e+00, /* 0xc09eb437 */
327];
328
329fn qonef(x: f32) -> f32 {
330    let p: &[f32; 6];
331    let q: &[f32; 6];
332    let s: f32;
333    let r: f32;
334    let z: f32;
335    let mut ix: u32;
336
337    ix = x.to_bits();
338    ix &= 0x7fffffff;
339    if ix >= 0x41000000 {
340        p = &QR8;
341        q = &QS8;
342    } else if ix >= 0x409173eb {
343        p = &QR5;
344        q = &QS5;
345    } else if ix >= 0x4036d917 {
346        p = &QR3;
347        q = &QS3;
348    } else
349    /*ix >= 0x40000000*/
350    {
351        p = &QR2;
352        q = &QS2;
353    }
354    z = 1.0 / (x * x);
355    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
356    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
357    return (0.375 + r / s) / x;
358}
359
360// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
361#[cfg(not(target_arch = "powerpc64"))]
362#[cfg(test)]
363mod tests {
364    use super::{j1f, y1f};
365    #[test]
366    fn test_j1f_2488() {
367        // 0x401F3E49
368        assert_eq!(j1f(2.4881766_f32), 0.49999475_f32);
369    }
370    #[test]
371    fn test_y1f_2002() {
372        //allow slightly different result on x87
373        let res = y1f(2.0000002_f32);
374        if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) && (res == -0.10703231_f32)
375        {
376            return;
377        }
378        assert_eq!(res, -0.10703229_f32);
379    }
380}