1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
//-
// Copyright 2017, 2018, 2019, 2020 The proptest developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::std_facade::{Arc, String, ToOwned, Vec};
use core::result::Result;
use core::{fmt, str, u8};
use byteorder::{ByteOrder, LittleEndian};
use rand::{self, Rng, RngCore, SeedableRng};
use rand_chacha::ChaChaRng;
use rand_xorshift::XorShiftRng;
/// Identifies a particular RNG algorithm supported by proptest.
///
/// Proptest supports dynamic configuration of algorithms to allow it to
/// continue operating with persisted regression files and to allow the
/// configuration to be expressed in the `Config` struct.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RngAlgorithm {
/// The [XorShift](https://rust-random.github.io/rand/rand_xorshift/struct.XorShiftRng.html)
/// algorithm. This was the default up through and including Proptest 0.9.0.
///
/// It is faster than ChaCha but produces lower quality randomness and has
/// some pathological cases where it may fail to produce outputs that are
/// random even to casual observation.
///
/// The seed must be exactly 16 bytes.
XorShift,
/// The [ChaCha](https://rust-random.github.io/rand/rand_chacha/struct.ChaChaRng.html)
/// algorithm. This became the default with Proptest 0.9.1.
///
/// The seed must be exactly 32 bytes.
ChaCha,
/// This is not an actual RNG algorithm, but instead returns data directly
/// from its "seed".
///
/// This is useful when Proptest is being driven from some other entropy
/// source, such as a fuzzer.
///
/// If the seed is depleted, the RNG will return 0s forever.
///
/// Note that in cases where a new RNG is to be derived from an existing
/// one, *the data is split evenly between them*, regardless of how much
/// entropy is actually needed. This means that combinators like
/// `prop_perturb` and `prop_flat_map` can require extremely large inputs.
PassThrough,
/// This is equivalent to the `ChaCha` RNG, with the addition that it
/// records the bytes used to create a value.
///
/// This is useful when Proptest is used for fuzzing, and a corpus of
/// initial inputs need to be created. Note that in these cases, you need
/// to use the `TestRunner` API directly yourself instead of using the
/// `proptest!` macro, as otherwise there is no way to obtain the bytes
/// this captures.
Recorder,
#[allow(missing_docs)]
#[doc(hidden)]
_NonExhaustive,
}
impl Default for RngAlgorithm {
fn default() -> Self {
RngAlgorithm::ChaCha
}
}
impl RngAlgorithm {
pub(crate) fn persistence_key(self) -> &'static str {
match self {
RngAlgorithm::XorShift => "xs",
RngAlgorithm::ChaCha => "cc",
RngAlgorithm::PassThrough => "pt",
RngAlgorithm::Recorder => "rc",
RngAlgorithm::_NonExhaustive => unreachable!(),
}
}
pub(crate) fn from_persistence_key(k: &str) -> Option<Self> {
match k {
"xs" => Some(RngAlgorithm::XorShift),
"cc" => Some(RngAlgorithm::ChaCha),
"pt" => Some(RngAlgorithm::PassThrough),
"rc" => Some(RngAlgorithm::Recorder),
_ => None,
}
}
}
// These two are only used for parsing the environment variable
// PROPTEST_RNG_ALGORITHM.
impl str::FromStr for RngAlgorithm {
type Err = ();
fn from_str(s: &str) -> Result<Self, ()> {
RngAlgorithm::from_persistence_key(s).ok_or(())
}
}
impl fmt::Display for RngAlgorithm {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.persistence_key())
}
}
/// Proptest's random number generator.
#[derive(Clone, Debug)]
pub struct TestRng {
rng: TestRngImpl,
}
#[derive(Clone, Debug)]
enum TestRngImpl {
XorShift(XorShiftRng),
ChaCha(ChaChaRng),
PassThrough {
off: usize,
end: usize,
data: Arc<[u8]>,
},
Recorder {
rng: ChaChaRng,
record: Vec<u8>,
},
}
impl RngCore for TestRng {
fn next_u32(&mut self) -> u32 {
match &mut self.rng {
&mut TestRngImpl::XorShift(ref mut rng) => rng.next_u32(),
&mut TestRngImpl::ChaCha(ref mut rng) => rng.next_u32(),
&mut TestRngImpl::PassThrough { .. } => {
let mut buf = [0; 4];
self.fill_bytes(&mut buf[..]);
LittleEndian::read_u32(&buf[..])
}
&mut TestRngImpl::Recorder {
ref mut rng,
ref mut record,
} => {
let read = rng.next_u32();
record.extend_from_slice(&read.to_le_bytes());
read
}
}
}
fn next_u64(&mut self) -> u64 {
match &mut self.rng {
&mut TestRngImpl::XorShift(ref mut rng) => rng.next_u64(),
&mut TestRngImpl::ChaCha(ref mut rng) => rng.next_u64(),
&mut TestRngImpl::PassThrough { .. } => {
let mut buf = [0; 8];
self.fill_bytes(&mut buf[..]);
LittleEndian::read_u64(&buf[..])
}
&mut TestRngImpl::Recorder {
ref mut rng,
ref mut record,
} => {
let read = rng.next_u64();
record.extend_from_slice(&read.to_le_bytes());
read
}
}
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
match &mut self.rng {
&mut TestRngImpl::XorShift(ref mut rng) => rng.fill_bytes(dest),
&mut TestRngImpl::ChaCha(ref mut rng) => rng.fill_bytes(dest),
&mut TestRngImpl::PassThrough {
ref mut off,
end,
ref data,
} => {
let bytes_to_copy = dest.len().min(end - *off);
dest[..bytes_to_copy]
.copy_from_slice(&data[*off..*off + bytes_to_copy]);
*off += bytes_to_copy;
for i in bytes_to_copy..dest.len() {
dest[i] = 0;
}
}
&mut TestRngImpl::Recorder {
ref mut rng,
ref mut record,
} => {
let res = rng.fill_bytes(dest);
record.extend_from_slice(&dest);
res
}
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
match self.rng {
TestRngImpl::XorShift(ref mut rng) => rng.try_fill_bytes(dest),
TestRngImpl::ChaCha(ref mut rng) => rng.try_fill_bytes(dest),
TestRngImpl::PassThrough { .. } => {
self.fill_bytes(dest);
Ok(())
}
TestRngImpl::Recorder {
ref mut rng,
ref mut record,
} => {
let res = rng.try_fill_bytes(dest);
if res.is_ok() {
record.extend_from_slice(&dest);
}
res
}
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum Seed {
XorShift([u8; 16]),
ChaCha([u8; 32]),
PassThrough(Option<(usize, usize)>, Arc<[u8]>),
Recorder([u8; 32]),
}
impl Seed {
pub(crate) fn from_bytes(algorithm: RngAlgorithm, seed: &[u8]) -> Self {
match algorithm {
RngAlgorithm::XorShift => {
assert_eq!(16, seed.len(), "XorShift requires a 16-byte seed");
let mut buf = [0; 16];
buf.copy_from_slice(seed);
Seed::XorShift(buf)
}
RngAlgorithm::ChaCha => {
assert_eq!(32, seed.len(), "ChaCha requires a 32-byte seed");
let mut buf = [0; 32];
buf.copy_from_slice(seed);
Seed::ChaCha(buf)
}
RngAlgorithm::PassThrough => Seed::PassThrough(None, seed.into()),
RngAlgorithm::Recorder => {
assert_eq!(32, seed.len(), "Recorder requires a 32-byte seed");
let mut buf = [0; 32];
buf.copy_from_slice(seed);
Seed::Recorder(buf)
}
RngAlgorithm::_NonExhaustive => unreachable!(),
}
}
pub(crate) fn from_persistence(string: &str) -> Option<Seed> {
fn from_base16(dst: &mut [u8], src: &str) -> Option<()> {
if dst.len() * 2 != src.len() {
return None;
}
for (dst_byte, src_pair) in
dst.into_iter().zip(src.as_bytes().chunks(2))
{
*dst_byte =
u8::from_str_radix(str::from_utf8(src_pair).ok()?, 16)
.ok()?;
}
Some(())
}
let parts =
string.trim().split(char::is_whitespace).collect::<Vec<_>>();
RngAlgorithm::from_persistence_key(&parts[0]).and_then(
|alg| match alg {
RngAlgorithm::XorShift => {
if 5 != parts.len() {
return None;
}
let mut dwords = [0u32; 4];
for (dword, part) in
(&mut dwords[..]).into_iter().zip(&parts[1..])
{
*dword = part.parse().ok()?;
}
let mut seed = [0u8; 16];
LittleEndian::write_u32_into(&dwords[..], &mut seed[..]);
Some(Seed::XorShift(seed))
}
RngAlgorithm::ChaCha => {
if 2 != parts.len() {
return None;
}
let mut seed = [0u8; 32];
from_base16(&mut seed, &parts[1])?;
Some(Seed::ChaCha(seed))
}
RngAlgorithm::PassThrough => {
if 1 == parts.len() {
return Some(Seed::PassThrough(None, vec![].into()));
}
if 2 != parts.len() {
return None;
}
let mut seed = vec![0u8; parts[1].len() / 2];
from_base16(&mut seed, &parts[1])?;
Some(Seed::PassThrough(None, seed.into()))
}
RngAlgorithm::Recorder => {
if 2 != parts.len() {
return None;
}
let mut seed = [0u8; 32];
from_base16(&mut seed, &parts[1])?;
Some(Seed::Recorder(seed))
}
RngAlgorithm::_NonExhaustive => unreachable!(),
},
)
}
pub(crate) fn to_persistence(&self) -> String {
fn to_base16(dst: &mut String, src: &[u8]) {
for byte in src {
dst.push_str(&format!("{:02x}", byte));
}
}
match *self {
Seed::XorShift(ref seed) => {
let mut dwords = [0u32; 4];
LittleEndian::read_u32_into(seed, &mut dwords[..]);
format!(
"{} {} {} {} {}",
RngAlgorithm::XorShift.persistence_key(),
dwords[0],
dwords[1],
dwords[2],
dwords[3]
)
}
Seed::ChaCha(ref seed) => {
let mut string =
RngAlgorithm::ChaCha.persistence_key().to_owned();
string.push(' ');
to_base16(&mut string, seed);
string
}
Seed::PassThrough(bounds, ref data) => {
let data =
bounds.map_or(&data[..], |(start, end)| &data[start..end]);
let mut string =
RngAlgorithm::PassThrough.persistence_key().to_owned();
string.push(' ');
to_base16(&mut string, data);
string
}
Seed::Recorder(ref seed) => {
let mut string =
RngAlgorithm::Recorder.persistence_key().to_owned();
string.push(' ');
to_base16(&mut string, seed);
string
}
}
}
}
impl TestRng {
/// Create a new RNG with the given algorithm and seed.
///
/// Any RNG created with the same algorithm-seed pair will produce the same
/// sequence of values on all systems and all supporting versions of
/// proptest.
///
/// ## Panics
///
/// Panics if `seed` is not an appropriate length for `algorithm`.
pub fn from_seed(algorithm: RngAlgorithm, seed: &[u8]) -> Self {
TestRng::from_seed_internal(Seed::from_bytes(algorithm, seed))
}
/// Dumps the bytes obtained from the RNG so far (only works if the RNG is
/// set to `Recorder`).
///
/// ## Panics
///
/// Panics if this RNG does not capture generated data.
pub fn bytes_used(&self) -> Vec<u8> {
match self.rng {
TestRngImpl::Recorder { ref record, .. } => record.clone(),
_ => panic!("bytes_used() called on non-Recorder RNG"),
}
}
/// Construct a default TestRng from entropy.
pub(crate) fn default_rng(algorithm: RngAlgorithm) -> Self {
#[cfg(feature = "std")]
{
Self {
rng: match algorithm {
RngAlgorithm::XorShift => {
TestRngImpl::XorShift(XorShiftRng::from_entropy())
}
RngAlgorithm::ChaCha => {
TestRngImpl::ChaCha(ChaChaRng::from_entropy())
}
RngAlgorithm::PassThrough => {
panic!("cannot create default instance of PassThrough")
}
RngAlgorithm::Recorder => TestRngImpl::Recorder {
rng: ChaChaRng::from_entropy(),
record: Vec::new(),
},
RngAlgorithm::_NonExhaustive => unreachable!(),
},
}
}
#[cfg(all(
not(feature = "std"),
any(target_arch = "x86", target_arch = "x86_64"),
feature = "hardware-rng"
))]
{
return Self::hardware_rng(algorithm);
}
#[cfg(not(feature = "std"))]
{
return Self::deterministic_rng(algorithm);
}
}
const SEED_FOR_XOR_SHIFT: [u8; 16] = [
0xf4, 0x16, 0x16, 0x48, 0xc3, 0xac, 0x77, 0xac, 0x72, 0x20, 0x0b, 0xea,
0x99, 0x67, 0x2d, 0x6d,
];
const SEED_FOR_CHA_CHA: [u8; 32] = [
0xf4, 0x16, 0x16, 0x48, 0xc3, 0xac, 0x77, 0xac, 0x72, 0x20, 0x0b, 0xea,
0x99, 0x67, 0x2d, 0x6d, 0xca, 0x9f, 0x76, 0xaf, 0x1b, 0x09, 0x73, 0xa0,
0x59, 0x22, 0x6d, 0xc5, 0x46, 0x39, 0x1c, 0x4a,
];
/// Returns a `TestRng` with a seed generated with the
/// RdRand instruction on x86 machines.
///
/// This is useful in `no_std` scenarios on x86 where we don't
/// have a random number infrastructure but the `rdrand` instruction is
/// available.
#[cfg(all(
not(feature = "std"),
any(target_arch = "x86", target_arch = "x86_64"),
feature = "hardware-rng"
))]
pub fn hardware_rng(algorithm: RngAlgorithm) -> Self {
use x86::random::{rdrand_slice, RdRand};
Self::from_seed_internal(match algorithm {
RngAlgorithm::XorShift => {
// Initialize to a sane seed just in case
let mut seed: [u8; 16] = TestRng::SEED_FOR_XOR_SHIFT;
unsafe {
let r = rdrand_slice(&mut seed);
debug_assert!(r, "hardware_rng should only be called on machines with support for rdrand");
}
Seed::XorShift(seed)
}
RngAlgorithm::ChaCha => {
// Initialize to a sane seed just in case
let mut seed: [u8; 32] = TestRng::SEED_FOR_CHA_CHA;
unsafe {
let r = rdrand_slice(&mut seed);
debug_assert!(r, "hardware_rng should only be called on machines with support for rdrand");
}
Seed::ChaCha(seed)
}
RngAlgorithm::PassThrough => {
panic!("deterministic RNG not available for PassThrough")
}
RngAlgorithm::Recorder => {
// Initialize to a sane seed just in case
let mut seed: [u8; 32] = TestRng::SEED_FOR_CHA_CHA;
unsafe {
let r = rdrand_slice(&mut seed);
debug_assert!(r, "hardware_rng should only be called on machines with support for rdrand");
}
Seed::Recorder(seed)
}
RngAlgorithm::_NonExhaustive => unreachable!(),
})
}
/// Returns a `TestRng` with a particular hard-coded seed.
///
/// The seed value will always be the same for a particular version of
/// Proptest and algorithm, but may change across releases.
///
/// This is useful for testing things like strategy implementations without
/// risking getting "unlucky" RNGs which deviate from average behaviour
/// enough to cause spurious failures. For example, a strategy for `bool`
/// which is supposed to produce `true` 50% of the time might have a test
/// which checks that the distribution is "close enough" to 50%. If every
/// test run starts with a different RNG, occasionally there will be
/// spurious test failures when the RNG happens to produce a very skewed
/// distribution. Using this or `TestRunner::deterministic()` avoids such
/// issues.
pub fn deterministic_rng(algorithm: RngAlgorithm) -> Self {
Self::from_seed_internal(match algorithm {
RngAlgorithm::XorShift => {
Seed::XorShift(TestRng::SEED_FOR_XOR_SHIFT)
}
RngAlgorithm::ChaCha => Seed::ChaCha(TestRng::SEED_FOR_CHA_CHA),
RngAlgorithm::PassThrough => {
panic!("deterministic RNG not available for PassThrough")
}
RngAlgorithm::Recorder => Seed::Recorder(TestRng::SEED_FOR_CHA_CHA),
RngAlgorithm::_NonExhaustive => unreachable!(),
})
}
/// Construct a TestRng by the perturbed randomized seed
/// from an existing TestRng.
pub(crate) fn gen_rng(&mut self) -> Self {
Self::from_seed_internal(self.new_rng_seed())
}
/// Overwrite the given TestRng with the provided seed.
pub(crate) fn set_seed(&mut self, seed: Seed) {
*self = Self::from_seed_internal(seed);
}
/// Generate a new randomized seed, set it to this TestRng,
/// and return the seed.
pub(crate) fn gen_get_seed(&mut self) -> Seed {
let seed = self.new_rng_seed();
self.set_seed(seed.clone());
seed
}
/// Randomize a perturbed randomized seed from the given TestRng.
pub(crate) fn new_rng_seed(&mut self) -> Seed {
match self.rng {
TestRngImpl::XorShift(ref mut rng) => {
let mut seed = rng.gen::<[u8; 16]>();
// Directly using XorShiftRng::from_seed() at this point would
// result in rng and the returned value being exactly the same.
// Perturb the seed with some arbitrary values to prevent this.
for word in seed.chunks_mut(4) {
word[3] ^= 0xde;
word[2] ^= 0xad;
word[1] ^= 0xbe;
word[0] ^= 0xef;
}
Seed::XorShift(seed)
}
TestRngImpl::ChaCha(ref mut rng) => Seed::ChaCha(rng.gen()),
TestRngImpl::PassThrough {
ref mut off,
ref mut end,
ref data,
} => {
let len = *end - *off;
let child_start = *off + len / 2;
let child_end = *off + len;
*end = child_start;
Seed::PassThrough(
Some((child_start, child_end)),
Arc::clone(data),
)
}
TestRngImpl::Recorder { ref mut rng, .. } => {
Seed::Recorder(rng.gen())
}
}
}
/// Construct a TestRng from a given seed.
fn from_seed_internal(seed: Seed) -> Self {
Self {
rng: match seed {
Seed::XorShift(seed) => {
TestRngImpl::XorShift(XorShiftRng::from_seed(seed))
}
Seed::ChaCha(seed) => {
TestRngImpl::ChaCha(ChaChaRng::from_seed(seed))
}
Seed::PassThrough(bounds, data) => {
let (start, end) = bounds.unwrap_or((0, data.len()));
TestRngImpl::PassThrough {
off: start,
end,
data,
}
}
Seed::Recorder(seed) => TestRngImpl::Recorder {
rng: ChaChaRng::from_seed(seed),
record: Vec::new(),
},
},
}
}
}
#[cfg(test)]
mod test {
use crate::std_facade::Vec;
use rand::{Rng, RngCore};
use super::{RngAlgorithm, Seed, TestRng};
use crate::arbitrary::any;
use crate::strategy::*;
proptest! {
#[test]
fn gen_parse_seeds(
seed in prop_oneof![
any::<[u8;16]>().prop_map(Seed::XorShift),
any::<[u8;32]>().prop_map(Seed::ChaCha),
any::<Vec<u8>>().prop_map(|data| Seed::PassThrough(None, data.into())),
any::<[u8;32]>().prop_map(Seed::Recorder),
])
{
assert_eq!(seed, Seed::from_persistence(&seed.to_persistence()).unwrap());
}
#[test]
fn rngs_dont_clone_self_on_genrng(
seed in prop_oneof![
any::<[u8;16]>().prop_map(Seed::XorShift),
any::<[u8;32]>().prop_map(Seed::ChaCha),
Just(()).prop_perturb(|_, mut rng| {
let mut buf = vec![0u8; 2048];
rng.fill_bytes(&mut buf);
Seed::PassThrough(None, buf.into())
}),
any::<[u8;32]>().prop_map(Seed::Recorder),
])
{
type Value = [u8;32];
let orig = TestRng::from_seed_internal(seed);
{
let mut rng1 = orig.clone();
let mut rng2 = rng1.gen_rng();
assert_ne!(rng1.gen::<Value>(), rng2.gen::<Value>());
}
{
let mut rng1 = orig.clone();
let mut rng2 = rng1.gen_rng();
let mut rng3 = rng1.gen_rng();
let mut rng4 = rng2.gen_rng();
let a = rng1.gen::<Value>();
let b = rng2.gen::<Value>();
let c = rng3.gen::<Value>();
let d = rng4.gen::<Value>();
assert_ne!(a, b);
assert_ne!(a, c);
assert_ne!(a, d);
assert_ne!(b, c);
assert_ne!(b, d);
assert_ne!(c, d);
}
}
}
#[test]
fn passthrough_rng_behaves_properly() {
let mut rng = TestRng::from_seed(
RngAlgorithm::PassThrough,
&[
0xDE, 0xC0, 0x12, 0x34, 0x56, 0x78, 0xFE, 0xCA, 0xEF, 0xBE,
0xAD, 0xDE, 0x01, 0x02, 0x03,
],
);
assert_eq!(0x3412C0DE, rng.next_u32());
assert_eq!(0xDEADBEEFCAFE7856, rng.next_u64());
let mut buf = [0u8; 4];
rng.try_fill_bytes(&mut buf[0..4]).unwrap();
assert_eq!([1, 2, 3, 0], buf);
rng.try_fill_bytes(&mut buf[0..4]).unwrap();
assert_eq!([0, 0, 0, 0], buf);
}
}