1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A cache of the txn shard contents.

use std::cmp::{max, min};
use std::collections::{BTreeMap, VecDeque};
use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;

use differential_dataflow::hashable::Hashable;
use differential_dataflow::lattice::Lattice;
use itertools::Itertools;
use mz_ore::cast::CastFrom;
use mz_ore::collections::HashMap;
use mz_ore::instrument;
use mz_persist_client::cfg::USE_CRITICAL_SINCE_TXN;
use mz_persist_client::fetch::LeasedBatchPart;
use mz_persist_client::metrics::encode_ts_metric;
use mz_persist_client::read::{ListenEvent, ReadHandle, Subscribe};
use mz_persist_client::write::WriteHandle;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::txn::{TxnsCodec, TxnsEntry};
use mz_persist_types::{Codec64, StepForward};
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use tracing::debug;

use crate::metrics::Metrics;
use crate::txn_read::{DataListenNext, DataRemapEntry, DataSnapshot, DataSubscribe};
use crate::TxnsCodecDefault;

/// A cache of the txn shard contents, optimized for various in-memory
/// operations.
///
/// # Implementation Details
///
/// Reads of data shards are almost as straightforward as writes. A data shard
/// may be read normally, using snapshots, subscriptions, shard_source, etc,
/// through the most recent non-empty write. However, the upper of the txns
/// shard (and thus the logical upper of the data shard) may be arbitrarily far
/// ahead of the physical upper of the data shard. As a result, we do the
/// following:
///
/// - To take a snapshot of a data shard, the `as_of` is passed through
///   unchanged if the timestamp of that shard's latest non-empty write is past
///   it. Otherwise, we know the times between them have no writes and can fill
///   them with empty updates. Concretely, to read a snapshot as of `T`:
///   - We read the txns shard contents up through and including `T`, blocking
///     until the upper passes `T` if necessary.
///   - We then find, for the requested data shard, the latest non-empty write
///     at a timestamp `T' <= T`.
///   - We wait for `T'` to be applied by watching the data shard upper.
///   - We `compare_and_append` empty updates for `(T', T]`, which is known by
///     the txn system to not have writes for this shard (otherwise we'd have
///     picked a different `T'`).
///   - We read the snapshot at `T` as normal.
/// - To iterate a listen on a data shard, when writes haven't been read yet
///   they are passed through unchanged, otherwise if the txns shard indicates
///   that there are ranges of empty time progress is returned, otherwise
///   progress to the txns shard will indicate when new information is
///   available.
///
/// Note that all of the above can be determined solely by information in the
/// txns shard. In particular, non-empty writes are indicated by updates with
/// positive diffs.
///
/// Also note that the above is structured such that it is possible to write a
/// timely operator with the data shard as an input, passing on all payloads
/// unchanged and simply manipulating capabilities in response to data and txns
/// shard progress. See [crate::operator::txns_progress].
#[derive(Debug)]
pub struct TxnsCacheState<T> {
    txns_id: ShardId,
    /// The since of the txn_shard when this cache was initialized.
    /// Some writes with a timestamp < than this may have been applied and
    /// tidied, so this cache has no way of learning about them.
    ///
    /// Invariant: never changes.
    pub(crate) init_ts: T,
    /// The contents of this cache are updated up to, but not including, this time.
    pub(crate) progress_exclusive: T,

    next_batch_id: usize,
    /// The batches needing application as of the current progress.
    ///
    /// This is indexed by a "batch id" that is internal to this object because
    /// timestamps are not unique.
    ///
    /// Invariant: Values are sorted by timestamp.
    pub(crate) unapplied_batches: BTreeMap<usize, (ShardId, Vec<u8>, T)>,
    /// An index into `unapplied_batches` keyed by the serialized batch.
    batch_idx: HashMap<Vec<u8>, usize>,
    /// The times at which each data shard has been written.
    ///
    /// Invariant: Contains all unapplied writes and registers.
    /// Invariant: Contains the latest write and registertaion >= init_ts for all shards.
    pub(crate) datas: BTreeMap<ShardId, DataTimes<T>>,
    /// The registers and forgets needing application as of the current progress.
    ///
    /// Invariant: Values are sorted by timestamp.
    pub(crate) unapplied_registers: VecDeque<(ShardId, T)>,

    /// If Some, this cache only tracks the indicated data shard as a
    /// performance optimization. When used, only some methods (in particular,
    /// the ones necessary for the txns_progress operator) are supported.
    ///
    /// TODO: It'd be nice to make this a compile time thing. I have some ideas,
    /// but they're decently invasive, so leave it for a followup.
    only_data_id: Option<ShardId>,
}

/// A self-updating [TxnsCacheState].
#[derive(Debug)]
pub struct TxnsCache<T, C: TxnsCodec = TxnsCodecDefault> {
    /// A subscribe over the txn shard.
    pub(crate) txns_subscribe: Subscribe<C::Key, C::Val, T, i64>,
    /// Pending updates for timestamps that haven't closed.
    pub(crate) buf: Vec<(TxnsEntry, T, i64)>,
    state: TxnsCacheState<T>,
}

impl<T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync> TxnsCacheState<T> {
    /// Creates a new empty [`TxnsCacheState`].
    ///
    /// `init_ts` must be == the critical handle's since of the txn shard.
    fn new(txns_id: ShardId, init_ts: T, only_data_id: Option<ShardId>) -> Self {
        TxnsCacheState {
            txns_id,
            init_ts,
            progress_exclusive: T::minimum(),
            next_batch_id: 0,
            unapplied_batches: BTreeMap::new(),
            batch_idx: HashMap::new(),
            datas: BTreeMap::new(),
            unapplied_registers: VecDeque::new(),
            only_data_id,
        }
    }

    /// Creates and initializes a new [`TxnsCacheState`].
    ///
    /// `txns_read` is a [`ReadHandle`] on the txn shard.
    pub(crate) async fn init<C: TxnsCodec>(
        only_data_id: Option<ShardId>,
        txns_read: ReadHandle<C::Key, C::Val, T, i64>,
    ) -> (Self, Subscribe<C::Key, C::Val, T, i64>) {
        let txns_id = txns_read.shard_id();
        let as_of = txns_read.since().clone();
        let since_ts = as_of.as_option().expect("txns shard is not closed").clone();
        let mut txns_subscribe = txns_read
            .subscribe(as_of)
            .await
            .expect("handle holds a capability");
        let mut state = Self::new(txns_id, since_ts.clone(), only_data_id.clone());
        let mut buf = Vec::new();
        // The cache must be updated to `since_ts` to maintain the invariant
        // that `state.since_ts <= state.progress_exclusive`.
        TxnsCache::<T, C>::update(
            &mut state,
            &mut txns_subscribe,
            &mut buf,
            only_data_id,
            |progress_exclusive| progress_exclusive >= &since_ts,
        )
        .await;
        debug_assert_eq!(state.validate(), Ok(()));
        (state, txns_subscribe)
    }

    /// Returns the [ShardId] of the txns shard.
    pub fn txns_id(&self) -> ShardId {
        self.txns_id
    }

    /// Returns whether the data shard was registered to the txns set as of the
    /// current progress.
    ///
    /// Specifically, a data shard is registered if the most recent register
    /// timestamp is set but the most recent forget timestamp is not set.
    ///
    /// This function accepts a timestamp as input, but that timestamp must be
    /// equal to the progress exclusive, or else the function panics. It mainly
    /// acts as a way for the caller to think about the logical time at which
    /// this function executes. Times in the past may have been compacted away,
    /// and we can't always return an accurate answer. If this function isn't
    /// sufficient, you can usually find what you're looking for by inspecting
    /// the times in the most recent registration.
    pub fn registered_at_progress(&self, data_id: &ShardId, ts: &T) -> bool {
        self.assert_only_data_id(data_id);
        assert_eq!(self.progress_exclusive, *ts);
        let Some(data_times) = self.datas.get(data_id) else {
            return false;
        };
        data_times.last_reg().forget_ts.is_none()
    }

    /// Returns the set of all data shards registered to the txns set as of the
    /// current progress. See [Self::registered_at_progress].
    pub(crate) fn all_registered_at_progress(&self, ts: &T) -> Vec<ShardId> {
        assert_eq!(self.only_data_id, None);
        assert_eq!(self.progress_exclusive, *ts);
        self.datas
            .iter()
            .filter(|(_, data_times)| data_times.last_reg().forget_ts.is_none())
            .map(|(data_id, _)| *data_id)
            .collect()
    }

    /// Returns a token exchangeable for a snapshot of a data shard.
    ///
    /// A data shard might be definite at times past the physical upper because
    /// of invariants maintained by this txn system. As a result, this method
    /// discovers the latest potentially unapplied write before the `as_of`.
    ///
    /// Callers must first wait for [`TxnsCache::update_gt`] with the same or
    /// later timestamp to return. Panics otherwise.
    pub fn data_snapshot(&self, data_id: ShardId, as_of: T) -> DataSnapshot<T> {
        self.assert_only_data_id(&data_id);
        assert!(self.progress_exclusive > as_of);
        // `empty_to` will often be used as the input to `data_listen_next`.
        // `data_listen_next` needs a timestamp that is greater than or equal
        // to the init_ts. See the comment above the assert in
        // `data_listen_next` for more details.
        //
        // TODO: Once the txn shard itself always tracks the most recent write
        // for every shard, we can remove this and always use
        // `as_of.step_forward()`.
        let empty_to = max(as_of.step_forward(), self.init_ts.clone());
        let Some(all) = self.datas.get(&data_id) else {
            // Not registered currently, so we know there are no unapplied
            // writes.
            return DataSnapshot {
                data_id,
                latest_write: None,
                as_of,
                empty_to,
            };
        };

        let min_unapplied_ts = self
            .unapplied_batches
            .first_key_value()
            .map(|(_, (_, _, ts))| ts)
            .unwrap_or(&self.progress_exclusive);
        let latest_write = all
            .writes
            .iter()
            .rev()
            .find(|x| **x <= as_of && *x >= min_unapplied_ts)
            .cloned();

        debug!(
            "data_snapshot {:.9} latest_write={:?} as_of={:?} empty_to={:?}: all={:?}",
            data_id.to_string(),
            latest_write,
            as_of,
            empty_to,
            all,
        );
        let ret = DataSnapshot {
            data_id: data_id.clone(),
            latest_write,
            as_of,
            empty_to,
        };
        assert_eq!(ret.validate(), Ok(()));
        ret
    }

    // TODO(jkosh44) This method can likely be simplified to return
    // DataRemapEntry directly.
    /// Returns the next action to take when iterating a Listen on a data shard.
    ///
    /// A data shard Listen is executed by repeatedly calling this method with
    /// an exclusive progress frontier. The returned value indicates an action
    /// to take. Some of these actions advance the progress frontier, which
    /// results in calling this method again with a higher timestamp, and thus a
    /// new action. See [DataListenNext] for specifications of the actions.
    ///
    /// Note that this is a state machine on `self.progress_exclusive` and the
    /// listen progress. DataListenNext indicates which state transitions to
    /// take.
    pub fn data_listen_next(&self, data_id: &ShardId, ts: &T) -> DataListenNext<T> {
        self.assert_only_data_id(data_id);
        assert!(
            &self.progress_exclusive >= ts,
            "ts {:?} is past progress_exclusive {:?}",
            ts,
            self.progress_exclusive
        );
        // There may be applied and tidied writes before the init_ts that the
        // cache is unaware of. So if this method is called with a timestamp
        // less than the initial since, it may mistakenly tell the caller to
        // `EmitLogicalProgress(self.progress_exclusive)` instead of the
        // correct answer of `ReadTo(tidied_write_ts)`.
        //
        // We know for a fact that there are no unapplied writes, registers, or
        // forgets before the init_ts because the since of the txn shard is
        // always held back to the earliest unapplied event. There may be some
        // untidied events with a lower timestamp than the init_ts, but they
        // are guaranteed to be applied.
        //
        // TODO: Once the txn shard itself always tracks the most recent write
        // for every shard, we can remove this assert. It will always be
        // correct to return ReadTo(latest_write_ts) if there are any writes,
        // and then `EmitLogicalProgress(self.progress_exclusive)`.
        assert!(
            ts >= &self.init_ts,
            "ts {:?} is not past initial since {:?}",
            ts,
            self.init_ts
        );
        use DataListenNext::*;
        let data_times = self.datas.get(data_id);
        debug!(
            "data_listen_next {:.9} {:?}: progress={:?} times={:?}",
            data_id.to_string(),
            ts,
            self.progress_exclusive,
            data_times,
        );
        let Some(data_times) = data_times else {
            // Not registered, maybe it will be in the future? In the meantime,
            // treat it like a normal shard (i.e. pass through reads) and check
            // again later.
            if ts < &self.progress_exclusive {
                return ReadDataTo(self.progress_exclusive.clone());
            } else {
                return WaitForTxnsProgress;
            }
        };
        let physical_ts = data_times.latest_physical_ts();
        let last_reg = data_times.last_reg();
        if ts >= &self.progress_exclusive {
            // All caught up, we have to wait.
            WaitForTxnsProgress
        } else if ts <= physical_ts {
            // There was some physical write, so read up to that time.
            ReadDataTo(physical_ts.step_forward())
        } else if last_reg.forget_ts.is_none() {
            // Emitting logical progress at the wrong time is a correctness bug,
            // so be extra defensive about the necessary conditions: the most
            // recent registration is still active, and we're in it.
            assert!(last_reg.contains(ts));
            EmitLogicalProgress(self.progress_exclusive.clone())
        } else {
            // The most recent forget is set, which means it's not registered as of
            // the latest information we have. Read to the current progress point
            // normally.

            assert!(ts > &last_reg.register_ts && last_reg.forget_ts.is_some());
            ReadDataTo(self.progress_exclusive.clone())
        }
    }

    /// Returns a token exchangeable for a subscribe of a data shard.
    ///
    /// Callers must first wait for [`TxnsCache::update_gt`] with the same or
    /// later timestamp to return. Panics otherwise.
    pub(crate) fn data_subscribe(&self, data_id: ShardId, as_of: T) -> DataSubscribe<T> {
        self.assert_only_data_id(&data_id);
        assert!(self.progress_exclusive > as_of);
        let snapshot = self.data_snapshot(data_id, as_of);
        let remap = DataRemapEntry {
            physical_upper: snapshot.empty_to.clone(),
            logical_upper: snapshot.empty_to.clone(),
        };
        DataSubscribe {
            data_id,
            snapshot: Some(snapshot),
            remap,
        }
    }

    /// Returns the minimum timestamp not known to be applied by this cache.
    pub fn min_unapplied_ts(&self) -> &T {
        assert_eq!(self.only_data_id, None);
        self.min_unapplied_ts_inner()
    }

    fn min_unapplied_ts_inner(&self) -> &T {
        // We maintain an invariant that the values in the unapplied_batches map
        // are sorted by timestamp, thus the first one must be the minimum.
        let min_batch_ts = self
            .unapplied_batches
            .first_key_value()
            .map(|(_, (_, _, ts))| ts)
            // If we don't have any known unapplied batches, then the next
            // timestamp that could be written must potentially have an
            // unapplied batch.
            .unwrap_or(&self.progress_exclusive);
        let min_register_ts = self
            .unapplied_registers
            .front()
            .map(|(_, ts)| ts)
            .unwrap_or(&self.progress_exclusive);

        min(min_batch_ts, min_register_ts)
    }

    /// Returns the operations needing application as of the current progress.
    pub(crate) fn unapplied(&self) -> impl Iterator<Item = (&ShardId, Unapplied, &T)> {
        assert_eq!(self.only_data_id, None);
        let registers = self
            .unapplied_registers
            .iter()
            .map(|(data_id, ts)| (data_id, Unapplied::RegisterForget, ts));
        let batches = self
            .unapplied_batches
            .values()
            .fold(
                BTreeMap::new(),
                |mut accum: BTreeMap<_, Vec<_>>, (data_id, batch, ts)| {
                    accum.entry((ts, data_id)).or_default().push(batch);
                    accum
                },
            )
            .into_iter()
            .map(|((ts, data_id), batches)| (data_id, Unapplied::Batch(batches), ts));
        // This will emit registers and forgets before batches at the same timestamp. Currently,
        // this is fine because for a single data shard you can't combine registers, forgets, and
        // batches at the same timestamp. In the future if we allow combining these operations in
        // a single op, then we probably want to emit registers, then batches, then forgets or we
        // can make forget exclusive in which case we'd emit it before batches.
        registers.merge_by(batches, |(_, _, ts1), (_, _, ts2)| ts1 <= ts2)
    }

    /// Filters out retractions known to have made it into the txns shard.
    ///
    /// This is called with a set of things that are known to have been applied
    /// and in preparation for retracting them. The caller will attempt to
    /// retract everything not filtered out by this method in a CaA with an
    /// expected upper of `expected_txns_upper`. So, we catch up to that point,
    /// and keep everything that is still outstanding. If the CaA fails with an
    /// expected upper mismatch, then it must call this method again on the next
    /// attempt with the new expected upper (new retractions may have made it
    /// into the txns shard in the meantime).
    ///
    /// Callers must first wait for [`TxnsCache::update_ge`] with the same or
    /// later timestamp to return. Panics otherwise.
    pub(crate) fn filter_retractions<'a>(
        &'a self,
        expected_txns_upper: &T,
        retractions: impl Iterator<Item = (&'a Vec<u8>, &'a ([u8; 8], ShardId))>,
    ) -> impl Iterator<Item = (&'a Vec<u8>, &'a ([u8; 8], ShardId))> {
        assert_eq!(self.only_data_id, None);
        assert!(&self.progress_exclusive >= expected_txns_upper);
        retractions.filter(|(batch_raw, _)| self.batch_idx.contains_key(*batch_raw))
    }

    /// Update contents with `entries` and mark this cache as progressed up to `progress`.
    pub(crate) fn push_entries(&mut self, mut entries: Vec<(TxnsEntry, T, i64)>, progress: T) {
        // Persist emits the times sorted by little endian encoding,
        // which is not what we want. If we ever expose an interface for
        // registering and committing to a data shard at the same
        // timestamp, this will also have to sort registrations first.
        entries.sort_by(|(a, _, _), (b, _, _)| a.ts::<T>().cmp(&b.ts::<T>()));
        for (e, t, d) in entries {
            match e {
                TxnsEntry::Register(data_id, ts) => {
                    let ts = T::decode(ts);
                    debug_assert!(ts <= t);
                    self.push_register(data_id, ts, d, t);
                }
                TxnsEntry::Append(data_id, ts, batch) => {
                    let ts = T::decode(ts);
                    debug_assert!(ts <= t);
                    self.push_append(data_id, batch, ts, d)
                }
            }
        }
        self.progress_exclusive = progress;
        debug_assert_eq!(self.validate(), Ok(()));
    }

    fn push_register(&mut self, data_id: ShardId, ts: T, diff: i64, compacted_ts: T) {
        self.assert_only_data_id(&data_id);
        // Since we keep the original non-advanced timestamp around, retractions
        // necessarily might be for times in the past, so `|| diff < 0`.
        debug_assert!(ts >= self.progress_exclusive || diff < 0);
        if let Some(only_data_id) = self.only_data_id.as_ref() {
            if only_data_id != &data_id {
                return;
            }
        }

        // The shard has not compacted past the register/forget ts, so it may not have been applied.
        if ts == compacted_ts {
            self.unapplied_registers.push_back((data_id, ts.clone()));
        }

        if diff == 1 {
            debug!(
                "cache learned {:.9} registered t={:?}",
                data_id.to_string(),
                ts
            );
            let entry = self.datas.entry(data_id).or_default();
            // Sanity check that if there is a registration, then we've closed
            // it off.
            if let Some(last_reg) = entry.registered.back() {
                assert!(last_reg.forget_ts.is_some())
            }
            entry.registered.push_back(DataRegistered {
                register_ts: ts,
                forget_ts: None,
            });
        } else if diff == -1 {
            debug!(
                "cache learned {:.9} forgotten t={:?}",
                data_id.to_string(),
                ts
            );
            let active_reg = self
                .datas
                .get_mut(&data_id)
                .and_then(|x| x.registered.back_mut())
                .expect("data shard should be registered before forget");
            assert_eq!(active_reg.forget_ts.replace(ts), None);
        } else {
            unreachable!("only +1/-1 diffs are used");
        }
        debug_assert_eq!(self.validate(), Ok(()));
    }

    fn push_append(&mut self, data_id: ShardId, batch: Vec<u8>, ts: T, diff: i64) {
        self.assert_only_data_id(&data_id);
        // Since we keep the original non-advanced timestamp around, retractions
        // necessarily might be for times in the past, so `|| diff < 0`.
        debug_assert!(ts >= self.progress_exclusive || diff < 0);
        if let Some(only_data_id) = self.only_data_id.as_ref() {
            if only_data_id != &data_id {
                return;
            }
        }

        if diff == 1 {
            debug!(
                "cache learned {:.9} committed t={:?} b={}",
                data_id.to_string(),
                ts,
                batch.hashed(),
            );
            let idx = self.next_batch_id;
            self.next_batch_id += 1;
            let prev = self.batch_idx.insert(batch.clone(), idx);
            assert_eq!(prev, None);
            let prev = self
                .unapplied_batches
                .insert(idx, (data_id, batch, ts.clone()));
            assert_eq!(prev, None);
            let times = self.datas.get_mut(&data_id).expect("data is initialized");
            // Sanity check that shard is registered.
            assert_eq!(times.last_reg().forget_ts, None);
            times.writes.push_back(ts);
        } else if diff == -1 {
            debug!(
                "cache learned {:.9} applied t={:?} b={}",
                data_id.to_string(),
                ts,
                batch.hashed(),
            );
            let idx = self
                .batch_idx
                .remove(&batch)
                .expect("invariant violation: batch should exist");
            let prev = self
                .unapplied_batches
                .remove(&idx)
                .expect("invariant violation: batch index should exist");
            debug_assert_eq!(data_id, prev.0);
            debug_assert_eq!(batch, prev.1);
            // Insertion timestamp should be less equal retraction timestamp.
            debug_assert!(prev.2 <= ts);
        } else {
            unreachable!("only +1/-1 diffs are used");
        }
        self.compact_data_times(&data_id);
        debug_assert_eq!(self.validate(), Ok(()));
    }

    /// Informs the cache that all registers and forgets less than ts have been
    /// applied.
    pub(crate) fn mark_register_applied(&mut self, ts: &T) {
        self.unapplied_registers
            .retain(|(_, register_ts)| ts < register_ts);
        debug_assert_eq!(self.validate(), Ok(()));
    }

    /// Compact the internal representation for `data_id` by removing all data
    /// that is not needed to maintain the following invariants:
    ///
    ///   - The latest write and registration for each shard are kept in
    ///     `self.datas`.
    ///   - All unapplied writes and registrations are kept in `self.datas`.
    ///   - All writes in `self.datas` are contained by some registration in
    ///     `self.datas`.
    fn compact_data_times(&mut self, data_id: &ShardId) {
        let Some(times) = self.datas.get_mut(data_id) else {
            return;
        };

        debug!("cache compact {:.9} times={:?}", data_id.to_string(), times);

        if let Some(unapplied_write_ts) = self
            .unapplied_batches
            .first_key_value()
            .map(|(_, (_, _, ts))| ts)
        {
            debug!(
                "cache compact {:.9} unapplied_write_ts={:?}",
                data_id.to_string(),
                unapplied_write_ts,
            );
            while let Some(write_ts) = times.writes.front() {
                if times.writes.len() == 1 || write_ts >= unapplied_write_ts {
                    break;
                }
                times.writes.pop_front();
            }
        } else {
            times.writes.drain(..times.writes.len() - 1);
        }
        let unapplied_reg_ts = self.unapplied_registers.front().map(|(_, ts)| ts);
        let min_write_ts = times.writes.front();
        let min_reg_ts = [unapplied_reg_ts, min_write_ts].into_iter().flatten().min();
        if let Some(min_reg_ts) = min_reg_ts {
            debug!(
                "cache compact {:.9} unapplied_reg_ts={:?} min_write_ts={:?} min_reg_ts={:?}",
                data_id.to_string(),
                unapplied_reg_ts,
                min_write_ts,
                min_reg_ts,
            );
            while let Some(reg) = times.registered.front() {
                match &reg.forget_ts {
                    Some(forget_ts) if forget_ts >= min_reg_ts => break,
                    _ if times.registered.len() == 1 => break,
                    _ => {
                        assert!(
                            reg.forget_ts.is_some(),
                            "only the latest reg can have no forget ts"
                        );
                        times.registered.pop_front();
                    }
                }
            }
        } else {
            times.registered.drain(..times.registered.len() - 1);
        }

        debug!(
            "cache compact DONE {:.9} times={:?}",
            data_id.to_string(),
            times
        );
    }

    pub(crate) fn update_gauges(&self, metrics: &Metrics) {
        metrics
            .data_shard_count
            .set(u64::cast_from(self.datas.len()));
        metrics
            .batches
            .unapplied_count
            .set(u64::cast_from(self.unapplied_batches.len()));
        let unapplied_batches_bytes = self
            .unapplied_batches
            .values()
            .map(|(_, x, _)| x.len())
            .sum::<usize>();
        metrics
            .batches
            .unapplied_bytes
            .set(u64::cast_from(unapplied_batches_bytes));
        metrics
            .batches
            .unapplied_min_ts
            .set(encode_ts_metric(&Antichain::from_elem(
                self.min_unapplied_ts().clone(),
            )));
    }

    fn assert_only_data_id(&self, data_id: &ShardId) {
        if let Some(only_data_id) = self.only_data_id.as_ref() {
            assert_eq!(data_id, only_data_id);
        }
    }

    pub(crate) fn validate(&self) -> Result<(), String> {
        // Unapplied batches are all indexed and sorted.
        if self.batch_idx.len() != self.unapplied_batches.len() {
            return Err(format!(
                "expected index len {} to match what it's indexing {}",
                self.batch_idx.len(),
                self.unapplied_batches.len()
            ));
        }

        let mut prev_batch_ts = T::minimum();
        for (idx, (_, batch, ts)) in self.unapplied_batches.iter() {
            if self.batch_idx.get(batch) != Some(idx) {
                return Err(format!(
                    "expected batch to be indexed at {} got {:?}",
                    idx,
                    self.batch_idx.get(batch)
                ));
            }
            if ts < &prev_batch_ts {
                return Err(format!(
                    "unapplied batch timestamp {:?} out of order after {:?}",
                    ts, prev_batch_ts
                ));
            }
            prev_batch_ts = ts.clone();
        }

        // Unapplied registers are sorted.
        let mut prev_register_ts = T::minimum();
        for (_, ts) in self.unapplied_registers.iter() {
            if ts < &prev_register_ts {
                return Err(format!(
                    "unapplied register timestamp {:?} out of order after {:?}",
                    ts, prev_register_ts
                ));
            }
            prev_register_ts = ts.clone();
        }

        let min_unapplied_ts = self.min_unapplied_ts_inner();

        for (data_id, data_times) in self.datas.iter() {
            let () = data_times.validate()?;

            if let Some(ts) = data_times.writes.front() {
                // Writes are compacted.
                if min_unapplied_ts > ts && data_times.writes.len() > 1 {
                    return Err(format!(
                        "{:?} write ts {:?} not past min unapplied ts {:?}",
                        data_id, ts, min_unapplied_ts
                    ));
                }
            }

            // datas contains all unapplied writes.
            if let Some((_, (_, _, unapplied_ts))) = self
                .unapplied_batches
                .iter()
                .find(|(_, (shard_id, _, _))| shard_id == data_id)
            {
                if let Some(write_ts) = data_times.writes.front() {
                    if write_ts > unapplied_ts {
                        return Err(format!(
                            "{:?} min write ts {:?} past min unapplied batch ts {:?}",
                            data_id, write_ts, unapplied_ts
                        ));
                    }
                }
            }

            // datas contains all unapplied register/forgets.
            if let Some((_, unapplied_ts)) = self
                .unapplied_registers
                .iter()
                .find(|(shard_id, _)| shard_id == data_id)
            {
                let register_ts = &data_times.first_reg().register_ts;
                if register_ts > unapplied_ts {
                    return Err(format!(
                        "{:?} min register ts {:?} past min unapplied register ts {:?}",
                        data_id, register_ts, unapplied_ts
                    ));
                }
            }
        }

        Ok(())
    }
}

impl<T, C> TxnsCache<T, C>
where
    T: Timestamp + Lattice + TotalOrder + StepForward + Codec64 + Sync,
    C: TxnsCodec,
{
    /// Initialize the txn shard at `init_ts` and returns a [TxnsCache] reading
    /// from that shard.
    pub(crate) async fn init(
        init_ts: T,
        txns_read: ReadHandle<C::Key, C::Val, T, i64>,
        txns_write: &mut WriteHandle<C::Key, C::Val, T, i64>,
    ) -> Self {
        let () = crate::empty_caa(|| "txns init", txns_write, init_ts.clone()).await;
        let mut ret = Self::from_read(txns_read, None).await;
        let _ = ret.update_gt(&init_ts).await;
        ret
    }

    /// Returns a [TxnsCache] reading from the given txn shard.
    ///
    /// `txns_id` identifies which shard will be used as the txns WAL. MZ will
    /// likely have one of these per env, used by all processes and the same
    /// across restarts.
    pub async fn open(
        client: &PersistClient,
        txns_id: ShardId,
        only_data_id: Option<ShardId>,
    ) -> Self {
        let (txns_key_schema, txns_val_schema) = C::schemas();
        let txns_read = client
            .open_leased_reader(
                txns_id,
                Arc::new(txns_key_schema),
                Arc::new(txns_val_schema),
                Diagnostics {
                    shard_name: "txns".to_owned(),
                    handle_purpose: "read txns".to_owned(),
                },
                USE_CRITICAL_SINCE_TXN.get(client.dyncfgs()),
            )
            .await
            .expect("txns schema shouldn't change");
        Self::from_read(txns_read, only_data_id).await
    }

    async fn from_read(
        txns_read: ReadHandle<C::Key, C::Val, T, i64>,
        only_data_id: Option<ShardId>,
    ) -> Self {
        let (state, txns_subscribe) = TxnsCacheState::init::<C>(only_data_id, txns_read).await;
        TxnsCache {
            txns_subscribe,
            buf: Vec::new(),
            state,
        }
    }

    /// Invariant: afterward, self.progress_exclusive will be > ts
    ///
    /// Returns the `progress_exclusive` of the cache after updating.
    #[must_use]
    #[instrument(level = "debug", fields(ts = ?ts))]
    pub async fn update_gt(&mut self, ts: &T) -> &T {
        let only_data_id = self.only_data_id.clone();
        Self::update(
            &mut self.state,
            &mut self.txns_subscribe,
            &mut self.buf,
            only_data_id,
            |progress_exclusive| progress_exclusive > ts,
        )
        .await;
        debug_assert!(&self.progress_exclusive > ts);
        debug_assert_eq!(self.validate(), Ok(()));
        &self.progress_exclusive
    }

    /// Invariant: afterward, self.progress_exclusive will be >= ts
    ///
    /// Returns the `progress_exclusive` of the cache after updating.
    #[must_use]
    #[instrument(level = "debug", fields(ts = ?ts))]
    pub async fn update_ge(&mut self, ts: &T) -> &T {
        let only_data_id = self.only_data_id.clone();
        Self::update(
            &mut self.state,
            &mut self.txns_subscribe,
            &mut self.buf,
            only_data_id,
            |progress_exclusive| progress_exclusive >= ts,
        )
        .await;
        debug_assert!(&self.progress_exclusive >= ts);
        debug_assert_eq!(self.validate(), Ok(()));
        &self.progress_exclusive
    }

    /// Listen to the txns shard for events until `done` returns true.
    async fn update<F: Fn(&T) -> bool>(
        state: &mut TxnsCacheState<T>,
        txns_subscribe: &mut Subscribe<C::Key, C::Val, T, i64>,
        buf: &mut Vec<(TxnsEntry, T, i64)>,
        only_data_id: Option<ShardId>,
        done: F,
    ) {
        while !done(&state.progress_exclusive) {
            let events = txns_subscribe.next(None).await;
            for event in events {
                match event {
                    ListenEvent::Progress(frontier) => {
                        let progress = frontier
                            .into_option()
                            .expect("nothing should close the txns shard");
                        state.push_entries(std::mem::take(buf), progress);
                    }
                    ListenEvent::Updates(parts) => {
                        Self::fetch_parts(only_data_id, txns_subscribe, parts, buf).await;
                    }
                };
            }
        }
        debug_assert_eq!(state.validate(), Ok(()));
        debug!(
            "cache correct before {:?} len={} least_ts={:?}",
            state.progress_exclusive,
            state.unapplied_batches.len(),
            state
                .unapplied_batches
                .first_key_value()
                .map(|(_, (_, _, ts))| ts),
        );
    }

    pub(crate) async fn fetch_parts(
        only_data_id: Option<ShardId>,
        txns_subscribe: &mut Subscribe<C::Key, C::Val, T, i64>,
        parts: Vec<LeasedBatchPart<T>>,
        updates: &mut Vec<(TxnsEntry, T, i64)>,
    ) {
        // We filter out unrelated data in two passes. The first is
        // `should_fetch_part`, which allows us to skip entire fetches
        // from s3/Blob. Then, if a part does need to be fetched, it
        // still might contain info about unrelated data shards, and we
        // filter those out before buffering in `updates`.
        for part in parts {
            let should_fetch_part = Self::should_fetch_part(only_data_id.as_ref(), &part);
            debug!(
                "should_fetch_part={} for {:?} {:?}",
                should_fetch_part,
                only_data_id,
                part.stats()
            );
            if !should_fetch_part {
                drop(part);
                continue;
            }
            let part_updates = txns_subscribe.fetch_batch_part(part).await;
            let part_updates = part_updates.map(|((k, v), t, d)| {
                let (k, v) = (k.expect("valid key"), v.expect("valid val"));
                (C::decode(k, v), t, d)
            });
            if let Some(only_data_id) = only_data_id.as_ref() {
                updates.extend(part_updates.filter(|(x, _, _)| x.data_id() == only_data_id));
            } else {
                updates.extend(part_updates);
            }
        }
    }

    fn should_fetch_part(only_data_id: Option<&ShardId>, part: &LeasedBatchPart<T>) -> bool {
        let Some(only_data_id) = only_data_id else {
            return true;
        };
        // This `part.stats()` call involves decoding and the only_data_id=None
        // case is common-ish, so make sure to keep it after that early return.
        let Some(stats) = part.stats() else {
            return true;
        };
        C::should_fetch_part(only_data_id, &stats).unwrap_or(true)
    }
}

impl<T, C: TxnsCodec> Deref for TxnsCache<T, C> {
    type Target = TxnsCacheState<T>;
    fn deref(&self) -> &Self::Target {
        &self.state
    }
}

impl<T, C: TxnsCodec> DerefMut for TxnsCache<T, C> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.state
    }
}

#[derive(Debug)]
pub(crate) struct DataTimes<T> {
    /// The times at which the data shard was in the txns set.
    ///
    /// Invariants:
    ///
    /// - At least one registration (otherwise we filter this out of the cache).
    /// - These are in increasing order.
    /// - These are non-overlapping intervals.
    /// - Everything in writes is in one of these intervals.
    pub(crate) registered: VecDeque<DataRegistered<T>>,
    /// Invariant: These are in increasing order.
    pub(crate) writes: VecDeque<T>,
}

impl<T> Default for DataTimes<T> {
    fn default() -> Self {
        Self {
            registered: Default::default(),
            writes: Default::default(),
        }
    }
}

#[derive(Debug)]
pub(crate) struct DataRegistered<T> {
    /// The inclusive time at which the data shard was added to the txns set.
    ///
    /// If this time has been advanced by compaction, writes might be at times
    /// equal to it.
    pub(crate) register_ts: T,
    /// The inclusive time at which the data shard was removed from the txns
    /// set, or None if it hasn't yet been removed.
    pub(crate) forget_ts: Option<T>,
}

impl<T: Timestamp + TotalOrder> DataRegistered<T> {
    pub(crate) fn contains(&self, ts: &T) -> bool {
        &self.register_ts <= ts && self.forget_ts.as_ref().map_or(true, |x| ts <= x)
    }
}

impl<T: Timestamp + TotalOrder> DataTimes<T> {
    pub(crate) fn last_reg(&self) -> &DataRegistered<T> {
        self.registered.back().expect("at least one registration")
    }

    fn first_reg(&self) -> &DataRegistered<T> {
        self.registered.front().expect("at least one registration")
    }

    /// Returns the latest known physical upper of a data shard.
    fn latest_physical_ts(&self) -> &T {
        let last_reg = self.last_reg();
        let mut physical_ts = &last_reg.register_ts;
        if let Some(forget_ts) = &last_reg.forget_ts {
            physical_ts = max(physical_ts, forget_ts);
        }
        if let Some(latest_write) = self.writes.back() {
            physical_ts = max(physical_ts, latest_write);
        }
        physical_ts
    }

    pub(crate) fn validate(&self) -> Result<(), String> {
        // Writes are sorted.
        let mut prev_ts = T::minimum();
        for ts in self.writes.iter() {
            if ts < &prev_ts {
                return Err(format!(
                    "write ts {:?} out of order after {:?}",
                    ts, prev_ts
                ));
            }
            prev_ts = ts.clone();
        }

        // Registered is sorted and non-overlapping.
        let mut prev_ts = T::minimum();
        let mut writes_idx = 0;
        for x in self.registered.iter() {
            if x.register_ts < prev_ts {
                return Err(format!(
                    "register ts {:?} out of order after {:?}",
                    x.register_ts, prev_ts
                ));
            }
            if let Some(forget_ts) = x.forget_ts.as_ref() {
                if !(&x.register_ts <= forget_ts) {
                    return Err(format!(
                        "register ts {:?} not less_equal forget ts {:?}",
                        x.register_ts, forget_ts
                    ));
                }
                prev_ts.clone_from(forget_ts);
            }
            // Also peel off any writes in this interval.
            while let Some(write_ts) = self.writes.get(writes_idx) {
                if write_ts < &x.register_ts {
                    return Err(format!(
                        "write ts {:?} not in any register interval {:?}",
                        write_ts, self.registered
                    ));
                }
                if let Some(forget_ts) = x.forget_ts.as_ref() {
                    if write_ts <= forget_ts {
                        writes_idx += 1;
                        continue;
                    }
                }
                break;
            }
        }

        // Check for writes after the last interval.
        let Some(reg_back) = self.registered.back() else {
            return Err("registered was empty".into());
        };
        if writes_idx != self.writes.len() && reg_back.forget_ts.is_some() {
            return Err(format!(
                "write ts {:?} not in any register interval {:?}",
                self.writes, self.registered
            ));
        }

        Ok(())
    }
}

#[derive(Debug)]
pub(crate) enum Unapplied<'a> {
    RegisterForget,
    Batch(Vec<&'a Vec<u8>>),
}

#[cfg(test)]
mod tests {
    use mz_ore::assert_err;
    use mz_persist_client::PersistClient;
    use mz_persist_types::codec_impls::{ShardIdSchema, VecU8Schema};
    use DataListenNext::*;

    use crate::operator::DataSubscribe;
    use crate::tests::reader;
    use crate::txns::TxnsHandle;

    use super::*;

    impl TxnsCache<u64, TxnsCodecDefault> {
        pub(crate) async fn expect_open(
            init_ts: u64,
            txns: &TxnsHandle<String, (), u64, i64>,
        ) -> Self {
            let mut ret = TxnsCache::open(&txns.datas.client, txns.txns_id(), None).await;
            let _ = ret.update_gt(&init_ts).await;
            ret
        }

        pub(crate) async fn expect_snapshot(
            &mut self,
            client: &PersistClient,
            data_id: ShardId,
            as_of: u64,
        ) -> Vec<String> {
            let mut data_read = reader(client, data_id).await;
            let _ = self.update_gt(&as_of).await;
            let mut snapshot = self
                .data_snapshot(data_read.shard_id(), as_of)
                .snapshot_and_fetch(&mut data_read)
                .await
                .unwrap();
            snapshot.sort();
            snapshot
                .into_iter()
                .flat_map(|((k, v), _t, d)| {
                    let (k, ()) = (k.unwrap(), v.unwrap());
                    std::iter::repeat(k).take(usize::try_from(d).unwrap())
                })
                .collect()
        }

        pub(crate) fn expect_subscribe(
            &self,
            client: &PersistClient,
            data_id: ShardId,
            as_of: u64,
        ) -> DataSubscribe {
            DataSubscribe::new(
                "test",
                client.clone(),
                self.txns_id,
                data_id,
                as_of,
                Antichain::new(),
                true,
            )
        }
    }

    #[mz_ore::test]
    fn txns_cache_data_snapshot_and_listen_next() {
        let d0 = ShardId::new();
        let ds = |latest_write: Option<u64>, as_of: u64, empty_to: u64| -> DataSnapshot<u64> {
            DataSnapshot {
                data_id: d0,
                latest_write,
                as_of,
                empty_to,
            }
        };
        #[track_caller]
        fn testcase(
            cache: &mut TxnsCacheState<u64>,
            ts: u64,
            data_id: ShardId,
            snap_expected: DataSnapshot<u64>,
            listen_expected: DataListenNext<u64>,
        ) {
            cache.progress_exclusive = ts + 1;
            assert_eq!(cache.data_snapshot(data_id, ts), snap_expected);
            assert_eq!(cache.data_listen_next(&data_id, &ts), listen_expected);
            assert_eq!(
                cache.data_listen_next(&data_id, &(ts + 1)),
                WaitForTxnsProgress
            );
        }

        // This attempts to exercise all the various interesting edge cases of
        // data_snapshot and data_listen_subscribe using the following sequence
        // of events:
        //
        // - Registrations at: [2,8], [15,16]
        // - Direct writes at: 1, 13
        // - Writes via txns at: 4, 5, 7
        let mut c = TxnsCacheState::new(ShardId::new(), 0, None);

        // empty
        assert_eq!(c.progress_exclusive, 0);
        assert_err!(mz_ore::panic::catch_unwind(|| c.data_snapshot(d0, 0)));
        assert_eq!(c.data_listen_next(&d0, &0), WaitForTxnsProgress);

        // ts 0 (never registered)
        testcase(&mut c, 0, d0, ds(None, 0, 1), ReadDataTo(1));

        // ts 1 (direct write)
        // - The cache knows everything < 2.
        // - d0 is not registered in the cache.
        // - We know the shard can't be written to via txn < 2.
        // - So go read the shard normally up to 2.
        testcase(&mut c, 1, d0, ds(None, 1, 2), ReadDataTo(2));

        // ts 2 (register)
        c.push_register(d0, 2, 1, 2);
        testcase(&mut c, 2, d0, ds(None, 2, 3), ReadDataTo(3));

        // ts 3 (registered, not written)
        testcase(&mut c, 3, d0, ds(None, 3, 4), EmitLogicalProgress(4));

        // ts 4 (written via txns)
        c.push_append(d0, vec![4], 4, 1);
        testcase(&mut c, 4, d0, ds(Some(4), 4, 5), ReadDataTo(5));

        // ts 5 (written via txns, write at preceding ts)
        c.push_append(d0, vec![5], 5, 1);
        testcase(&mut c, 5, d0, ds(Some(5), 5, 6), ReadDataTo(6));

        // ts 6 (registered, not written, write at preceding ts)
        testcase(&mut c, 6, d0, ds(Some(5), 6, 7), EmitLogicalProgress(7));

        // ts 7 (written via txns, write at non-preceding ts)
        c.push_append(d0, vec![7], 7, 1);
        testcase(&mut c, 7, d0, ds(Some(7), 7, 8), ReadDataTo(8));

        // ts 8 (apply and tidy write from ts 4)
        c.push_append(d0, vec![4], 8, -1);
        testcase(&mut c, 8, d0, ds(Some(7), 8, 9), EmitLogicalProgress(9));

        // ts 9 (apply and tidy write from ts 5)
        c.push_append(d0, vec![5], 9, -1);
        testcase(&mut c, 9, d0, ds(Some(7), 9, 10), EmitLogicalProgress(10));

        // ts 10 (apply and tidy write from ts 7)
        c.push_append(d0, vec![7], 10, -1);
        testcase(&mut c, 10, d0, ds(None, 10, 11), EmitLogicalProgress(11));

        // ts 11 (forget)
        // Revisit when
        // https://github.com/MaterializeInc/database-issues/issues/7746 is fixed,
        // it's unclear how to encode the register timestamp in a forget.
        c.push_register(d0, 11, -1, 11);
        testcase(&mut c, 11, d0, ds(None, 11, 12), ReadDataTo(12));

        // ts 12 (not registered, not written). This ReadDataTo would block until
        // the write happens at ts 13.
        testcase(&mut c, 12, d0, ds(None, 12, 13), ReadDataTo(13));

        // ts 13 (written directly)
        testcase(&mut c, 13, d0, ds(None, 13, 14), ReadDataTo(14));

        // ts 14 (not registered, not written) This ReadDataTo would block until
        // the register happens at 15.
        testcase(&mut c, 14, d0, ds(None, 14, 15), ReadDataTo(15));

        // ts 15 (registered, previously forgotten)
        c.push_register(d0, 15, 1, 15);
        testcase(&mut c, 15, d0, ds(None, 15, 16), ReadDataTo(16));

        // ts 16 (forgotten, registered at preceding ts)
        // Revisit when
        // https://github.com/MaterializeInc/database-issues/issues/7746 is fixed,
        // it's unclear how to encode the register timestamp in a forget.
        c.push_register(d0, 16, -1, 16);
        testcase(&mut c, 16, d0, ds(None, 16, 17), ReadDataTo(17));

        // Now that we have more history, some of the old answers change! In
        // particular, we have more information on unapplied writes, empty
        // times, and can ReadDataTo much later times.

        assert_eq!(c.data_snapshot(d0, 0), ds(None, 0, 1));
        assert_eq!(c.data_snapshot(d0, 1), ds(None, 1, 2));
        assert_eq!(c.data_snapshot(d0, 2), ds(None, 2, 3));
        assert_eq!(c.data_snapshot(d0, 3), ds(None, 3, 4));
        assert_eq!(c.data_snapshot(d0, 4), ds(None, 4, 5));
        assert_eq!(c.data_snapshot(d0, 5), ds(None, 5, 6));
        assert_eq!(c.data_snapshot(d0, 6), ds(None, 6, 7));
        assert_eq!(c.data_snapshot(d0, 7), ds(None, 7, 8));
        assert_eq!(c.data_snapshot(d0, 8), ds(None, 8, 9));
        assert_eq!(c.data_snapshot(d0, 9), ds(None, 9, 10));
        assert_eq!(c.data_snapshot(d0, 10), ds(None, 10, 11));
        assert_eq!(c.data_snapshot(d0, 11), ds(None, 11, 12));
        assert_eq!(c.data_snapshot(d0, 12), ds(None, 12, 13));
        assert_eq!(c.data_snapshot(d0, 13), ds(None, 13, 14));
        assert_eq!(c.data_snapshot(d0, 14), ds(None, 14, 15));
        assert_eq!(c.data_snapshot(d0, 15), ds(None, 15, 16));
        assert_eq!(c.data_snapshot(d0, 16), ds(None, 16, 17));

        assert_eq!(c.data_listen_next(&d0, &0), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &1), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &2), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &3), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &4), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &5), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &6), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &7), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &8), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &9), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &10), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &11), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &12), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &13), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &14), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &15), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &16), ReadDataTo(17));
        assert_eq!(c.data_listen_next(&d0, &17), WaitForTxnsProgress);
    }

    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // too slow
    async fn empty_to() {
        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let d0 = txns.expect_register(1).await;

        // During code review, we discussed an alternate implementation of
        // empty_to that was an Option: None when we knew about a write > the
        // as_of, and Some when we didn't. The None case would mean that we
        // don't need to CaA empty updates in. This is quite appealing, but
        // would cause an issue with the guarantee that `apply_le(as_of)` is
        // sufficient to unblock a read. Specifically:
        //
        // - Write at 3, but don't apply.
        // - Write at 5, but don't apply.
        // - Catch the cache up past the write at 5.
        // - Run apply_le(4) to unblock a read a 4.
        // - Run a snapshot at 4.
        // - If nothing else applies the write at 5, the snapshot would
        //   deadlock.
        for ts in [3, 5] {
            let mut txn = txns.begin();
            txn.write(&d0, "3".into(), (), 1).await;
            let _apply = txn.commit_at(&mut txns, ts).await.unwrap();
        }
        let _ = txns.txns_cache.update_gt(&5).await;
        txns.apply_le(&4).await;
        let snap = txns.txns_cache.data_snapshot(d0, 4);
        let mut data_read = reader(&client, d0).await;
        // This shouldn't deadlock.
        let contents = snap.snapshot_and_fetch(&mut data_read).await.unwrap();
        assert_eq!(contents.len(), 1);

        // Sanity check that the scenario played out like we said above.
        assert_eq!(snap.empty_to, 5);
    }

    #[mz_ore::test]
    fn data_times_validate() {
        fn dt(register_forget_ts: &[u64], write_ts: &[u64]) -> Result<(), ()> {
            let mut dt = DataTimes::default();
            for x in register_forget_ts {
                if let Some(back) = dt.registered.back_mut() {
                    if back.forget_ts == None {
                        back.forget_ts = Some(*x);
                        continue;
                    }
                }
                dt.registered.push_back(DataRegistered {
                    register_ts: *x,
                    forget_ts: None,
                })
            }
            dt.writes = write_ts.into_iter().cloned().collect();
            dt.validate().map_err(|_| ())
        }

        // Valid
        assert_eq!(dt(&[1], &[2, 3]), Ok(()));
        assert_eq!(dt(&[1, 3], &[2]), Ok(()));
        assert_eq!(dt(&[1, 3, 5], &[2, 6, 7]), Ok(()));
        assert_eq!(dt(&[1, 3, 5], &[2, 6, 7]), Ok(()));
        assert_eq!(dt(&[1, 1], &[1]), Ok(()));

        // Invalid
        assert_eq!(dt(&[], &[]), Err(()));
        assert_eq!(dt(&[1], &[0]), Err(()));
        assert_eq!(dt(&[1, 3], &[4]), Err(()));
        assert_eq!(dt(&[1, 3, 5], &[4]), Err(()));
        assert_eq!(dt(&[1, 4], &[3, 2]), Err(()));
    }

    /// Regression test for a bug caught by higher level tests in CI:
    /// - Commit a write at 5
    /// - Apply it and commit the tidy retraction at 20.
    /// - Catch up to both of these in the TxnsHandle and call compact_to(10).
    ///   The TxnsHandle knows the write has been applied and lets it CaDS the
    ///   txns shard since to 10.
    /// - Open a TxnsCache starting at the txns shard since (10) to serve a
    ///   snapshot at 12. Catch it up through 12, but _not_ the tidy at 20.
    /// - This TxnsCache gets the write with a ts compacted forward to 10, but
    ///   no retraction. The snapshot resolves with an incorrect latest_write of
    ///   `Some(10)`.
    /// - The unblock read waits for this write to be applied before doing the
    ///   empty CaA, but this write never existed so it hangs forever.
    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn regression_compact_latest_write() {
        let client = PersistClient::new_for_tests().await;
        let mut txns = TxnsHandle::expect_open(client.clone()).await;
        let log = txns.new_log();
        let d0 = txns.expect_register(1).await;

        let tidy_5 = txns.expect_commit_at(5, d0, &["5"], &log).await;
        let _ = txns.expect_commit_at(15, d0, &["15"], &log).await;
        txns.tidy_at(20, tidy_5).await.unwrap();
        let _ = txns.txns_cache.update_gt(&20).await;
        assert_eq!(txns.txns_cache.min_unapplied_ts(), &15);
        txns.compact_to(10).await;

        let mut txns_read = client
            .open_leased_reader(
                txns.txns_id(),
                Arc::new(ShardIdSchema),
                Arc::new(VecU8Schema),
                Diagnostics::for_tests(),
                true,
            )
            .await
            .expect("txns schema shouldn't change");
        txns_read.downgrade_since(&Antichain::from_elem(10)).await;
        let mut cache = TxnsCache::<_, TxnsCodecDefault>::from_read(txns_read, None).await;
        let _ = cache.update_gt(&15).await;
        let snap = cache.data_snapshot(d0, 12);
        assert_eq!(snap.latest_write, Some(5));
    }

    // Regression test for a bug where we were sorting TxnEvents by the
    // compacted timestamp instead of the original one when applying them to a
    // cache. This caused them to be applied in a surprising order (e.g. forget
    // before register).
    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn regression_ts_sort() {
        let client = PersistClient::new_for_tests().await;
        let txns = TxnsHandle::expect_open(client.clone()).await;
        let mut cache = TxnsCache::expect_open(0, &txns).await;
        let d0 = ShardId::new();

        // With the bug, this panics via an internal sanity assertion.
        cache.push_entries(
            vec![
                (TxnsEntry::Register(d0, u64::encode(&2)), 2, -1),
                (TxnsEntry::Register(d0, u64::encode(&1)), 2, 1),
            ],
            3,
        );
    }

    /// Tests that `data_snapshot` and `data_listen_next` properly handle an
    /// `init_ts` > 0.
    #[mz_ore::test(tokio::test)]
    #[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
    async fn data_compacted() {
        let d0 = ShardId::new();
        let mut c = TxnsCacheState::new(ShardId::new(), 10, None);
        c.progress_exclusive = 20;

        assert_err!(mz_ore::panic::catch_unwind(|| c.data_listen_next(&d0, &0)));

        let ds = c.data_snapshot(d0, 0);
        assert_eq!(
            ds,
            DataSnapshot {
                data_id: d0,
                latest_write: None,
                as_of: 0,
                empty_to: 10,
            }
        );
    }
}