1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
// Copyright Materialize, Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Auxiliary classes used for I/O.
//!
//! The Protocol Buffer library uses the classes in this package to deal with
//! I/O and encoding/decoding raw bytes. Most users will not need to deal with
//! this package. However, users who want to adapt the system to work with their
//! own I/O abstractions – e.g., to allow Protocol Buffers to be read from a
//! different kind of input stream without the need for a temporary buffer –
//! should take a closer look.
//!
//! # Zero-copy streams
//!
//! The [`ZeroCopyInputStream`] and [`ZeroCopyOutputStream`] interfaces
//! represent abstract I/O streams to and from which protocol buffers can be
//! read and written.
//!
//! These interfaces are different from classic I/O streams in that they try to
//! minimize the amount of data copying that needs to be done. To accomplish
//! this, responsibility for allocating buffers is moved to the stream object,
//! rather than being the responsibility of the caller. So, the stream can
//! return a buffer which actually points directly into the final data structure
//! where the bytes are to be stored, and the caller can interact directly with
//! that buffer, eliminating an intermediate copy operation.
//!
//! As an example, consider the common case in which you are reading bytes from
//! an array that is already in memory (or perhaps an `mmap`ed file).
//!
//! With classic I/O streams, you would do something like:
//!
//! ```
//! # use std::io::Read;
//! # use protobuf_native::io::ZeroCopyInputStream;
//! # const BUFFER_SIZE: usize = 1024;
//! # fn f(input: &mut dyn Read) {
//! let mut buffer = [0; BUFFER_SIZE];
//! input.read(&mut buffer);
//! // Do something with `buffer`.
//! # }
//! ```
//!
//! Then the stream basically just calls `memcpy` to copy the data from the
//! array into your buffer. With a `ZeroCopyInputStream`, you would do this
//! instead:
//!
//! ```
//! # use std::pin::Pin;
//! # use protobuf_native::io::ZeroCopyInputStream;
//! # fn f(input: Pin<&mut dyn ZeroCopyInputStream>) {
//! let buffer = input.next();
//! // Do something with `buffer`.
//! # }
//! ```
//! Here, no copy is performed. The input stream returns a slice directly into
//! the backing array, and the caller ends up reading directly from it.
//
//! If you want to be able to read the old-fashioned way, you can create a
//! [`CodedInputStream`] or [`CodedOutputStream`] wrapping these objects and use
//! their [`Read`]/[`Write`] implementations. These will, of course, add a copy
//! step, but the coded streams will handle buffering so at least it will be
//! reasonably efficient.
//
//! # Coded streams
//!
//! The [`CodedInputStream`] and [`CodedOutputStream`] classes, which wrap a
//! [`ZeroCopyInputStream`] or [`ZeroCopyOutputStream`], respectively, and allow
//! you to read or write individual pieces of data in various formats. In
//! particular, these implement the varint encoding for integers, a simple
//! variable-length encoding in which smaller numbers take fewer bytes.
//!
//! Typically these classes will only be used internally by the protocol buffer
//! library in order to encode and decode protocol buffers. Clients of the
//! library only need to know about this class if they wish to write custom
//! message parsing or serialization procedures.
//!
//! For those who are interested, varint encoding is defined as follows:
//!
//! The encoding operates on unsigned integers of up to 64 bits in length. Each
//! byte of the encoded value has the format:
//!
//! * bits 0-6: Seven bits of the number being encoded.
//!
//! * bit 7: Zero if this is the last byte in the encoding (in which case all
//! remaining bits of the number are zero) or 1 if more bytes follow. The
//! first byte contains the least-significant 7 bits of the number, the second
//! byte (if present) contains the next-least-significant 7 bits, and so on.
//! So, the binary number 1011000101011 would be encoded in two bytes as
//! "10101011 00101100".
//!
//! In theory, varint could be used to encode integers of any length. However,
//! for practicality we set a limit at 64 bits. The maximum encoded length of a
//! number is thus 10 bytes.
use std::io::{self, Read, Write};
use std::marker::{PhantomData, PhantomPinned};
use std::mem::{self, MaybeUninit};
use std::pin::Pin;
use std::slice;
use crate::internal::{unsafe_ffi_conversions, BoolExt, CInt, CVoid, ReadAdaptor, WriteAdaptor};
use crate::OperationFailedError;
#[cxx::bridge(namespace = "protobuf_native::io")]
pub(crate) mod ffi {
extern "Rust" {
type ReadAdaptor<'a>;
fn read(self: &mut ReadAdaptor<'_>, buf: &mut [u8]) -> isize;
type WriteAdaptor<'a>;
fn write(self: &mut WriteAdaptor<'_>, buf: &[u8]) -> bool;
}
unsafe extern "C++" {
include!("protobuf-native/src/internal.h");
include!("protobuf-native/src/io.h");
#[namespace = "protobuf_native::internal"]
type CVoid = crate::internal::CVoid;
#[namespace = "protobuf_native::internal"]
type CInt = crate::internal::CInt;
#[namespace = "google::protobuf::io"]
type ZeroCopyInputStream;
unsafe fn DeleteZeroCopyInputStream(stream: *mut ZeroCopyInputStream);
unsafe fn Next(
self: Pin<&mut ZeroCopyInputStream>,
data: *mut *const CVoid,
size: *mut CInt,
) -> bool;
fn BackUp(self: Pin<&mut ZeroCopyInputStream>, count: CInt);
fn Skip(self: Pin<&mut ZeroCopyInputStream>, count: CInt) -> bool;
fn ByteCount(self: &ZeroCopyInputStream) -> i64;
type ReaderStream;
fn NewReaderStream(adaptor: Box<ReadAdaptor<'_>>) -> *mut ReaderStream;
unsafe fn DeleteReaderStream(stream: *mut ReaderStream);
#[namespace = "google::protobuf::io"]
type ArrayInputStream;
unsafe fn NewArrayInputStream(data: *const u8, size: CInt) -> *mut ArrayInputStream;
unsafe fn DeleteArrayInputStream(stream: *mut ArrayInputStream);
#[namespace = "google::protobuf::io"]
type ZeroCopyOutputStream;
unsafe fn Next(
self: Pin<&mut ZeroCopyOutputStream>,
data: *mut *mut CVoid,
size: *mut CInt,
) -> bool;
fn BackUp(self: Pin<&mut ZeroCopyOutputStream>, count: CInt);
fn ByteCount(self: &ZeroCopyOutputStream) -> i64;
type WriterStream;
fn NewWriterStream(adaptor: Box<WriteAdaptor<'_>>) -> *mut WriterStream;
unsafe fn DeleteWriterStream(stream: *mut WriterStream);
#[namespace = "google::protobuf::io"]
type ArrayOutputStream;
unsafe fn NewArrayOutputStream(data: *mut u8, size: CInt) -> *mut ArrayOutputStream;
unsafe fn DeleteArrayOutputStream(stream: *mut ArrayOutputStream);
type VecOutputStream;
fn NewVecOutputStream(target: &mut Vec<u8>) -> *mut VecOutputStream;
unsafe fn DeleteVecOutputStream(stream: *mut VecOutputStream);
#[namespace = "google::protobuf::io"]
type CodedInputStream;
unsafe fn NewCodedInputStream(ptr: *mut ZeroCopyInputStream) -> *mut CodedInputStream;
unsafe fn DeleteCodedInputStream(stream: *mut CodedInputStream);
fn IsFlat(self: &CodedInputStream) -> bool;
unsafe fn ReadRaw(self: Pin<&mut CodedInputStream>, buffer: *mut CVoid, size: CInt)
-> bool;
unsafe fn ReadVarint32(self: Pin<&mut CodedInputStream>, value: *mut u32) -> bool;
unsafe fn ReadVarint64(self: Pin<&mut CodedInputStream>, value: *mut u64) -> bool;
fn ReadTag(self: Pin<&mut CodedInputStream>) -> u32;
fn ReadTagNoLastTag(self: Pin<&mut CodedInputStream>) -> u32;
fn LastTagWas(self: Pin<&mut CodedInputStream>, expected: u32) -> bool;
fn ConsumedEntireMessage(self: Pin<&mut CodedInputStream>) -> bool;
fn CurrentPosition(self: &CodedInputStream) -> CInt;
#[namespace = "google::protobuf::io"]
type CodedOutputStream;
unsafe fn DeleteCodedOutputStream(stream: *mut CodedOutputStream);
}
impl UniquePtr<ZeroCopyOutputStream> {}
impl UniquePtr<CodedOutputStream> {}
}
/// Abstract interface similar to an input stream but designed to minimize
/// copying.
///
/// # Examples
///
/// Read in a file and print its contents to stdout:
///
/// ```no_run
/// use std::fs::File;
/// use std::io::{self, Write};
/// use protobuf_native::io::{ReaderStream, ZeroCopyInputStream};
///
/// let mut f = File::open("myfile")?;
/// let mut input = ReaderStream::new(&mut f);
/// while let Ok(buf) = input.as_mut().next() {
/// io::stdout().write_all(buf)?;
/// }
/// # Ok::<_, io::Error>(())
/// ```
pub trait ZeroCopyInputStream: zero_copy_input_stream::Sealed {
/// Obtains a chunk of data from the stream.
///
/// If the function returns an error, either there is no more data to return
/// or an I/O error occurred. All errors are permanent.
///
/// It is legal for the returned buffer to have zero size, as long as
/// repeatedly calling `next` eventually yields a buffer with non-zero size.
fn next(self: Pin<&mut Self>) -> Result<&[u8], OperationFailedError> {
let mut data = MaybeUninit::uninit();
let mut size = MaybeUninit::uninit();
unsafe {
// SAFETY: `data` and `size` are non-null, as required.
self.upcast_mut()
.Next(data.as_mut_ptr(), size.as_mut_ptr())
.as_result()?;
// SAFETY: `Next` has succeeded and so has promised to provide us
// with a valid buffer.
let data = data.assume_init() as *const u8;
let size = size.assume_init().to_usize()?;
Ok(slice::from_raw_parts(data, size))
}
}
/// Backs up a number of bytes, so that the next call to [`next`] returns
/// data again that was already returned by the last call to `next`.
///
/// This is useful when writing procedures that are only supposed to read up
/// to a certain point in the input, then return. If `next` returns a buffer
/// that goes beyond what you wanted to read, you can use `back_up` to
/// return to the point where you intended to finish.
///
/// The last method called must have been `next`. The `count` parameter
/// must be less than or equal to the size of the last buffer returned
/// by `next`.
///
/// [`next`]: ZeroCopyInputStream::next
fn back_up(self: Pin<&mut Self>, count: usize) {
// `count` is required to be less than the size of the buffer returned
// by the last call to `next`. Since `count` originated as a C int, if
// it's valid it must be representible as a C int. No point doing
// something more graceful than panicking since `BackUp` will often
// crash the process on too-large input.
let count = CInt::try_from(count).expect("count did not fit in a C int");
self.upcast_mut().BackUp(count)
}
/// Skips `count` bytes.
///
/// Returns an error if the end of stream is reached or an I/O error
/// occurred. In the end-of-stream case, the stream is advanced to its end,
/// so [`byte_count`] will return the total size of the stream.
///
/// [`byte_count`]: ZeroCopyInputStream::byte_count
fn skip(self: Pin<&mut Self>, count: usize) -> Result<(), OperationFailedError> {
let count = CInt::try_from(count).map_err(|_| OperationFailedError)?;
self.upcast_mut().Skip(count).as_result()
}
/// Returns the total number of bytes read since this stream was created.
fn byte_count(&self) -> i64 {
self.upcast().ByteCount()
}
}
mod zero_copy_input_stream {
use std::pin::Pin;
use crate::io::ffi;
pub trait Sealed {
fn upcast(&self) -> &ffi::ZeroCopyInputStream;
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyInputStream>;
unsafe fn upcast_mut_ptr(self: Pin<&mut Self>) -> *mut ffi::ZeroCopyInputStream {
self.upcast_mut().get_unchecked_mut() as *mut _
}
}
}
/// Converts an [`Read`] implementor to a [`ZeroCopyInputStream`].
pub struct ReaderStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> Drop for ReaderStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteReaderStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> ReaderStream<'a> {
/// Creates a reader stream from the specified [`Read`] implementor.
pub fn new(reader: &'a mut dyn Read) -> Pin<Box<ReaderStream<'a>>> {
let stream = ffi::NewReaderStream(Box::new(ReadAdaptor(reader)));
unsafe { Self::from_ffi_owned(stream) }
}
unsafe_ffi_conversions!(ffi::ReaderStream);
}
impl<'a> ZeroCopyInputStream for ReaderStream<'a> {}
impl<'a> zero_copy_input_stream::Sealed for ReaderStream<'a> {
fn upcast(&self) -> &ffi::ZeroCopyInputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyInputStream> {
unsafe { mem::transmute(self) }
}
}
/// A [`ZeroCopyInputStream`] specialized for reading from byte slices.
///
/// Using this type is more efficient than using a [`ReaderStream`] when the
/// underlying reader is a type that exposes a simple byte slice.
pub struct SliceInputStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> Drop for SliceInputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteArrayInputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> SliceInputStream<'a> {
/// Creates a new `SliceInputStream` from the provided byte slice.
pub fn new(slice: &[u8]) -> Pin<Box<SliceInputStream<'a>>> {
let size = CInt::expect_from(slice.len());
let stream = unsafe { ffi::NewArrayInputStream(slice.as_ptr(), size) };
unsafe { Self::from_ffi_owned(stream) }
}
unsafe_ffi_conversions!(ffi::ArrayInputStream);
}
impl<'a> ZeroCopyInputStream for SliceInputStream<'a> {}
impl<'a> zero_copy_input_stream::Sealed for SliceInputStream<'a> {
fn upcast(&self) -> &ffi::ZeroCopyInputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyInputStream> {
unsafe { mem::transmute(self) }
}
}
/// An arbitrary stream that implements [`ZeroCopyInputStream`].
///
/// This is like `Box<dyn ZeroCopyInputStream>` but it avoids additional virtual
/// method calls on the Rust side of the FFI boundary.
pub struct DynZeroCopyInputStream<'a> {
_opaque: PhantomPinned,
lifetime_: PhantomData<&'a ()>,
}
impl<'a> Drop for DynZeroCopyInputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteZeroCopyInputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> DynZeroCopyInputStream<'a> {
unsafe_ffi_conversions!(ffi::ZeroCopyInputStream);
}
impl ZeroCopyInputStream for DynZeroCopyInputStream<'_> {}
impl zero_copy_input_stream::Sealed for DynZeroCopyInputStream<'_> {
fn upcast(&self) -> &ffi::ZeroCopyInputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyInputStream> {
unsafe { mem::transmute(self) }
}
}
/// Abstract interface similar to an output stream but designed to minimize
/// copying.
///
/// # Examples
///
/// Copy the contents of infile to outfile, using plain [`Read`] for infile
/// but a `ZeroCopyOutputStream` for outfile:
///
/// ```ignore
/// use std::fs::File;
/// use std::io::{self, Read, Write};
/// use protobuf_native::io::{WriterStream, ZeroCopyOutputStream};
///
/// let mut infile = File::open("infile")?;
/// let mut outfile = File::create("outfile")?;
/// let mut output = WriterStream::new(&mut outfile);
///
/// while let Ok(buf) = output.next() {
/// // Reading into uninitialized memory requires the unstable `ReadBuf` API.
/// // See: https://rust-lang.github.io/rfcs/2930-read-buf.html
/// let buf = ReadBuf::uninit(buf);
/// infile.read_buf(buf)?;
/// output.back_up(buf.remaining());
/// if buf.filled().is_empty() {
/// break;
/// }
/// }
///
/// # Ok::<_, io::Error>(())
/// ```
pub trait ZeroCopyOutputStream: zero_copy_output_stream::Sealed {
/// Obtains a buffer into which data can be written.
///
/// Any data written into this buffer will eventually (maybe instantly,
/// maybe later on) be written to the output.
///
/// # Safety
///
/// If this function returns `Ok`, you **must** initialize the returned byte
/// slice before you either call `next` again or drop the slice. You can
/// choose to initialize only a portion of the byte slice by calling
/// [`back_up`].
///
/// This is a very unusual invariant to maintain in Rust.
///
/// [`back_up`]: ZeroCopyOutputStream::back_up
unsafe fn next(self: Pin<&mut Self>) -> Result<&mut [MaybeUninit<u8>], OperationFailedError> {
let mut data = MaybeUninit::uninit();
let mut size = MaybeUninit::uninit();
self.upcast_mut()
.Next(data.as_mut_ptr(), size.as_mut_ptr())
.as_result()?;
let data = data.assume_init() as *mut MaybeUninit<u8>;
let size = size.assume_init().to_usize()?;
Ok(slice::from_raw_parts_mut(data, size))
}
/// Backs up a number of bytes, so that the end of the last buffer returned
/// by [`next`] is not actually written.
///
/// This is needed when you finish writing all the data you want to write,
/// but the last buffer was bigger than you needed. You don't want to write
/// a bunch of garbage after the end of your data, so you use `back_up` to
/// back up.
///
/// [`next`]: ZeroCopyOutputStream::next
fn back_up(self: Pin<&mut Self>, count: usize) {
// See comment in `ZeroCopyInputStream::back_up` for why we tolerate
// panics here.
let count = CInt::try_from(count).expect("count did not fit in a C int");
self.upcast_mut().BackUp(count)
}
/// Returns the total number of bytes written since this object was created.
fn byte_count(&self) -> i64 {
self.upcast().ByteCount()
}
}
mod zero_copy_output_stream {
use std::pin::Pin;
use crate::io::ffi;
pub trait Sealed {
fn upcast(&self) -> &ffi::ZeroCopyOutputStream;
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyOutputStream>;
unsafe fn upcast_mut_ptr(self: Pin<&mut Self>) -> *mut ffi::ZeroCopyOutputStream {
self.upcast_mut().get_unchecked_mut() as *mut _
}
}
}
/// Converts an [`Write`] implementor to a [`ZeroCopyOutputStream`].
pub struct WriterStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a mut ()>,
}
impl<'a> WriterStream<'a> {
/// Creates a writer stream from the specified [`Write`] implementor.
pub fn new(writer: &'a mut dyn Write) -> Pin<Box<WriterStream<'a>>> {
let stream = ffi::NewWriterStream(Box::new(WriteAdaptor(writer)));
unsafe { Self::from_ffi_owned(stream) }
}
unsafe_ffi_conversions!(ffi::WriterStream);
}
impl<'a> Drop for WriterStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteWriterStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> ZeroCopyOutputStream for WriterStream<'a> {}
impl<'a> zero_copy_output_stream::Sealed for WriterStream<'a> {
fn upcast(&self) -> &ffi::ZeroCopyOutputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyOutputStream> {
unsafe { mem::transmute(self) }
}
}
/// A [`ZeroCopyOutputStream`] specialized for writing to byte slices.
///
/// Using this type is more efficient than using a [`WriterStream`] when the
/// underlying writer is a type that exposes a simple mutable byte slice.
pub struct SliceOutputStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> SliceOutputStream<'a> {
/// Creates a new `SliceOutputStream` from the provided byte slice.
pub fn new(slice: &mut [u8]) -> Pin<Box<SliceOutputStream<'a>>> {
let size = CInt::expect_from(slice.len());
let stream = unsafe { ffi::NewArrayOutputStream(slice.as_mut_ptr(), size) };
unsafe { Self::from_ffi_owned(stream) }
}
unsafe_ffi_conversions!(ffi::ArrayOutputStream);
}
impl<'a> Drop for SliceOutputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteArrayOutputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> ZeroCopyOutputStream for SliceOutputStream<'a> {}
impl<'a> zero_copy_output_stream::Sealed for SliceOutputStream<'a> {
fn upcast(&self) -> &ffi::ZeroCopyOutputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyOutputStream> {
unsafe { mem::transmute(self) }
}
}
/// A [`ZeroCopyOutputStream`] specialized for writing to byte vectors.
///
/// Using this type is more efficient than using a [`WriterStream`] when the
/// underlying writer is a byte vector.
pub struct VecOutputStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> VecOutputStream<'a> {
/// Creates a new `VecOutputStream` from the provided byte vector.
pub fn new(vec: &mut Vec<u8>) -> Pin<Box<VecOutputStream<'a>>> {
let stream = ffi::NewVecOutputStream(vec);
unsafe { Self::from_ffi_owned(stream) }
}
unsafe_ffi_conversions!(ffi::VecOutputStream);
}
impl<'a> Drop for VecOutputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteVecOutputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> ZeroCopyOutputStream for VecOutputStream<'a> {}
impl<'a> zero_copy_output_stream::Sealed for VecOutputStream<'a> {
fn upcast(&self) -> &ffi::ZeroCopyOutputStream {
unsafe { mem::transmute(self) }
}
fn upcast_mut(self: Pin<&mut Self>) -> Pin<&mut ffi::ZeroCopyOutputStream> {
unsafe { mem::transmute(self) }
}
}
/// Type which reads and decodes binary data which is composed of varint-
/// encoded integers and fixed-width pieces.
///
/// Wraps a [`ZeroCopyInputStream`]. Most users will not need to deal with
/// `CodedInputStream`.
///
/// Most methods of `CodedInputStream` that return a `Result` return an error if
/// an underlying I/O error occurs or if the data is malformed. Once such a
/// failure occurs, the `CodedInputStream` is broken and is no longer useful.
pub struct CodedInputStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> Drop for CodedInputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteCodedInputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}
impl<'a> CodedInputStream<'a> {
/// Creates a `CodedInputStream` that reads from the given
/// [`ZeroCopyInputStream`].
pub fn new(input: Pin<&'a mut dyn ZeroCopyInputStream>) -> Pin<Box<CodedInputStream<'a>>> {
let stream = unsafe { ffi::NewCodedInputStream(input.upcast_mut_ptr()) };
unsafe { Self::from_ffi_owned(stream) }
}
/// Reports whether this coded input stream reads from a flat array instead
/// of a [`ZeroCopyInputStream`].
pub fn is_flat(&self) -> bool {
self.as_ffi().IsFlat()
}
/// Reads an unsigned integer with varint encoding, truncating to 32 bits.
///
/// Reading a 32-bit value is equivalent to reading a 64-bit one and casting
/// it to `u32`, but may be more efficient.
pub fn read_varint32(self: Pin<&mut Self>) -> Result<u32, OperationFailedError> {
let mut value = MaybeUninit::uninit();
// SAFETY: `ReadVarint32` promises to initialize `value` if it returns
// true.
unsafe {
match self.as_ffi_mut().ReadVarint32(value.as_mut_ptr()) {
true => Ok(value.assume_init()),
false => Err(OperationFailedError),
}
}
}
/// Reads an unsigned 64-bit integer with varint encoding.
pub fn read_varint64(self: Pin<&mut Self>) -> Result<u64, OperationFailedError> {
let mut value = MaybeUninit::uninit();
// SAFETY: `ReadVarint32` promises to initialize `value` if it returns
// true.
unsafe {
match self.as_ffi_mut().ReadVarint64(value.as_mut_ptr()) {
true => Ok(value.assume_init()),
false => Err(OperationFailedError),
}
}
}
/// Reads a tag.
///
/// This calls [`read_varint32`] and returns the result. Also updates the
/// last tag value, which can be checked with [`last_tag_was`].
///
/// [`read_varint32`]: CodedInputStream::read_varint32
/// [`last_tag_was`]: CodedInputStream::last_tag_was
pub fn read_tag(self: Pin<&mut Self>) -> Result<u32, OperationFailedError> {
match self.as_ffi_mut().ReadTag() {
0 => Err(OperationFailedError), // 0 is error sentinel
tag => Ok(tag),
}
}
/// Like [`read_tag`], but does not update the last tag
/// value.
///
/// [`read_tag`]: `CodedInputStream::read_tag`
pub fn read_tag_no_last_tag(self: Pin<&mut Self>) -> Result<u32, OperationFailedError> {
match self.as_ffi_mut().ReadTag() {
0 => Err(OperationFailedError), // 0 is error sentinel
tag => Ok(tag),
}
}
/// Reports whether the last call to [`read_tag`] or
/// [`read_tag_with_cutoff`] returned the given value.
///
/// [`read_tag_no_last_tag`] and [`read_tag_with_cutoff_no_last_tag`] do not
/// preserve the last returned value.
///
/// This is needed because parsers for some types of embedded messages (with
/// field type `TYPE_GROUP`) don't actually know that they've reached the
/// end of a message until they see an `ENDGROUP` tag, which was actually
/// part of the enclosing message. The enclosing message would like to check
/// that tag to make sure it had the right number, so it calls
/// `last_tag_was` on return from the embedded parser to check.
///
/// [`read_tag`]: CodedInputStream::read_tag
/// [`read_tag_with_cutoff`]: CodedInputStream::read_tag_with_cutoff
/// [`read_tag_no_last_tag`]: CodedInputStream::read_tag_no_last_tag
/// [`read_tag_with_cutoff_no_last_tag`]: CodedInputStream::read_tag_with_cutoff_no_last_tag
pub fn last_tag_was(self: Pin<&mut Self>, expected: u32) -> bool {
self.as_ffi_mut().LastTagWas(expected)
}
/// When parsing a message (but NOT a group), this method must be called
/// immediately after [`MessageLite::merge_from_coded_stream`] returns (if
/// it returns true) to further verify that the message ended in a
/// legitimate way.
///
/// For example, this verifies that parsing did not end on an end-group tag.
/// It also checks for some cases where, due to optimizations,
/// `merge_from_coded_stream` can incorrectly return true.
///
/// [`MessageLite::merge_from_coded_stream`]: crate::MessageLite::merge_from_coded_stream
pub fn consumed_entire_message(self: Pin<&mut Self>) -> bool {
self.as_ffi_mut().ConsumedEntireMessage()
}
/// Returns the stream's current position relative to the beginning of the
/// input.
pub fn current_position(&self) -> usize {
self.as_ffi()
.CurrentPosition()
.to_usize()
.expect("stream position not representable as usize")
}
unsafe_ffi_conversions!(ffi::CodedInputStream);
}
impl<'a> Read for Pin<&mut CodedInputStream<'a>> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, io::Error> {
let start = self.current_position();
let data = buf.as_mut_ptr() as *mut CVoid;
let size = CInt::try_from(buf.len()).map_err(|_| {
io::Error::new(
io::ErrorKind::InvalidInput,
"buffer exceeds size of a C int",
)
})?;
unsafe { self.as_mut().as_ffi_mut().ReadRaw(data, size) };
let end = self.current_position();
Ok(end - start)
}
}
/// Type which encodes and writes binary data which is composed of varint-
/// encoded integers and fixed-width pieces.
///
/// Wraps a [`ZeroCopyOutputStream`]. Most users will not need to deal with
/// `CodedOutputStream`.
///
/// Most methods of `CodedOutputStream` which return a `bool` return false if an
/// underlying I/O error occurs. Once such a failure occurs, the
/// CodedOutputStream is broken and is no longer useful. The `write_*` methods
/// do not return the stream status, but will invalidate the stream if an error
/// occurs. The client can probe `had_error` to determine the status.
pub struct CodedOutputStream<'a> {
_opaque: PhantomPinned,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> CodedOutputStream<'a> {
unsafe_ffi_conversions!(ffi::CodedOutputStream);
}
impl<'a> Drop for CodedOutputStream<'a> {
fn drop(&mut self) {
unsafe { ffi::DeleteCodedOutputStream(self.as_ffi_mut_ptr_unpinned()) }
}
}