sharded_slab/
lib.rs

1//! A lock-free concurrent slab.
2//!
3//! Slabs provide pre-allocated storage for many instances of a single data
4//! type. When a large number of values of a single type are required,
5//! this can be more efficient than allocating each item individually. Since the
6//! allocated items are the same size, memory fragmentation is reduced, and
7//! creating and removing new items can be very cheap.
8//!
9//! This crate implements a lock-free concurrent slab, indexed by `usize`s.
10//!
11//! ## Usage
12//!
13//! First, add this to your `Cargo.toml`:
14//!
15//! ```toml
16//! sharded-slab = "0.1.1"
17//! ```
18//!
19//! This crate provides two  types, [`Slab`] and [`Pool`], which provide
20//! slightly different APIs for using a sharded slab.
21//!
22//! [`Slab`] implements a slab for _storing_ small types, sharing them between
23//! threads, and accessing them by index. New entries are allocated by
24//! [inserting] data, moving it in by value. Similarly, entries may be
25//! deallocated by [taking] from the slab, moving the value out. This API is
26//! similar to a `Vec<Option<T>>`, but allowing lock-free concurrent insertion
27//! and removal.
28//!
29//! In contrast, the [`Pool`] type provides an [object pool] style API for
30//! _reusing storage_. Rather than constructing values and moving them into the
31//! pool, as with [`Slab`], [allocating an entry][create] from the pool takes a
32//! closure that's provided with a mutable reference to initialize the entry in
33//! place. When entries are deallocated, they are [cleared] in place. Types
34//! which own a heap allocation can be cleared by dropping any _data_ they
35//! store, but retaining any previously-allocated capacity. This means that a
36//! [`Pool`] may be used to reuse a set of existing heap allocations, reducing
37//! allocator load.
38//!
39//! [inserting]: Slab::insert
40//! [taking]: Slab::take
41//! [create]: Pool::create
42//! [cleared]: Clear
43//! [object pool]: https://en.wikipedia.org/wiki/Object_pool_pattern
44//!
45//! # Examples
46//!
47//! Inserting an item into the slab, returning an index:
48//! ```rust
49//! # use sharded_slab::Slab;
50//! let slab = Slab::new();
51//!
52//! let key = slab.insert("hello world").unwrap();
53//! assert_eq!(slab.get(key).unwrap(), "hello world");
54//! ```
55//!
56//! To share a slab across threads, it may be wrapped in an `Arc`:
57//! ```rust
58//! # use sharded_slab::Slab;
59//! use std::sync::Arc;
60//! let slab = Arc::new(Slab::new());
61//!
62//! let slab2 = slab.clone();
63//! let thread2 = std::thread::spawn(move || {
64//!     let key = slab2.insert("hello from thread two").unwrap();
65//!     assert_eq!(slab2.get(key).unwrap(), "hello from thread two");
66//!     key
67//! });
68//!
69//! let key1 = slab.insert("hello from thread one").unwrap();
70//! assert_eq!(slab.get(key1).unwrap(), "hello from thread one");
71//!
72//! // Wait for thread 2 to complete.
73//! let key2 = thread2.join().unwrap();
74//!
75//! // The item inserted by thread 2 remains in the slab.
76//! assert_eq!(slab.get(key2).unwrap(), "hello from thread two");
77//!```
78//!
79//! If items in the slab must be mutated, a `Mutex` or `RwLock` may be used for
80//! each item, providing granular locking of items rather than of the slab:
81//!
82//! ```rust
83//! # use sharded_slab::Slab;
84//! use std::sync::{Arc, Mutex};
85//! let slab = Arc::new(Slab::new());
86//!
87//! let key = slab.insert(Mutex::new(String::from("hello world"))).unwrap();
88//!
89//! let slab2 = slab.clone();
90//! let thread2 = std::thread::spawn(move || {
91//!     let hello = slab2.get(key).expect("item missing");
92//!     let mut hello = hello.lock().expect("mutex poisoned");
93//!     *hello = String::from("hello everyone!");
94//! });
95//!
96//! thread2.join().unwrap();
97//!
98//! let hello = slab.get(key).expect("item missing");
99//! let mut hello = hello.lock().expect("mutex poisoned");
100//! assert_eq!(hello.as_str(), "hello everyone!");
101//! ```
102//!
103//! # Configuration
104//!
105//! For performance reasons, several values used by the slab are calculated as
106//! constants. In order to allow users to tune the slab's parameters, we provide
107//! a [`Config`] trait which defines these parameters as associated `consts`.
108//! The `Slab` type is generic over a `C: Config` parameter.
109//!
110//! [`Config`]: trait.Config.html
111//!
112//! # Comparison with Similar Crates
113//!
114//! - [`slab`]: Carl Lerche's `slab` crate provides a slab implementation with a
115//!   similar API, implemented by storing all data in a single vector.
116//!
117//!   Unlike `sharded_slab`, inserting and removing elements from the slab
118//!   requires  mutable access. This means that if the slab is accessed
119//!   concurrently by multiple threads, it is necessary for it to be protected
120//!   by a `Mutex` or `RwLock`. Items may not be inserted or removed (or
121//!   accessed, if a `Mutex` is used) concurrently, even when they are
122//!   unrelated. In many cases, the lock can become a significant bottleneck. On
123//!   the other hand, this crate allows separate indices in the slab to be
124//!   accessed, inserted, and removed concurrently without requiring a global
125//!   lock. Therefore, when the slab is shared across multiple threads, this
126//!   crate offers significantly better performance than `slab`.
127//!
128//!   However, the lock free slab introduces some additional constant-factor
129//!   overhead. This means that in use-cases where a slab is _not_ shared by
130//!   multiple threads and locking is not required, this crate will likely offer
131//!   slightly worse performance.
132//!
133//!   In summary: `sharded-slab` offers significantly improved performance in
134//!   concurrent use-cases, while `slab` should be preferred in single-threaded
135//!   use-cases.
136//!
137//! [`slab`]: https://crates.io/crates/loom
138//!
139//! # Safety and Correctness
140//!
141//! Most implementations of lock-free data structures in Rust require some
142//! amount of unsafe code, and this crate is not an exception. In order to catch
143//! potential bugs in this unsafe code, we make use of [`loom`], a
144//! permutation-testing tool for concurrent Rust programs. All `unsafe` blocks
145//! this crate occur in accesses to `loom` `UnsafeCell`s. This means that when
146//! those accesses occur in this crate's tests, `loom` will assert that they are
147//! valid under the C11 memory model across multiple permutations of concurrent
148//! executions of those tests.
149//!
150//! In order to guard against the [ABA problem][aba], this crate makes use of
151//! _generational indices_. Each slot in the slab tracks a generation counter
152//! which is incremented every time a value is inserted into that slot, and the
153//! indices returned by [`Slab::insert`] include the generation of the slot when
154//! the value was inserted, packed into the high-order bits of the index. This
155//! ensures that if a value is inserted, removed,  and a new value is inserted
156//! into the same slot in the slab, the key returned by the first call to
157//! `insert` will not map to the new value.
158//!
159//! Since a fixed number of bits are set aside to use for storing the generation
160//! counter, the counter will wrap  around after being incremented a number of
161//! times. To avoid situations where a returned index lives long enough to see the
162//! generation counter wrap around to the same value, it is good to be fairly
163//! generous when configuring the allocation of index bits.
164//!
165//! [`loom`]: https://crates.io/crates/loom
166//! [aba]: https://en.wikipedia.org/wiki/ABA_problem
167//! [`Slab::insert`]: struct.Slab.html#method.insert
168//!
169//! # Performance
170//!
171//! These graphs were produced by [benchmarks] of the sharded slab implementation,
172//! using the [`criterion`] crate.
173//!
174//! The first shows the results of a benchmark where an increasing number of
175//! items are inserted and then removed into a slab concurrently by five
176//! threads. It compares the performance of the sharded slab implementation
177//! with a `RwLock<slab::Slab>`:
178//!
179//! <img width="1124" alt="Screen Shot 2019-10-01 at 5 09 49 PM" src="https://user-images.githubusercontent.com/2796466/66078398-cd6c9f80-e516-11e9-9923-0ed6292e8498.png">
180//!
181//! The second graph shows the results of a benchmark where an increasing
182//! number of items are inserted and then removed by a _single_ thread. It
183//! compares the performance of the sharded slab implementation with an
184//! `RwLock<slab::Slab>` and a `mut slab::Slab`.
185//!
186//! <img width="925" alt="Screen Shot 2019-10-01 at 5 13 45 PM" src="https://user-images.githubusercontent.com/2796466/66078469-f0974f00-e516-11e9-95b5-f65f0aa7e494.png">
187//!
188//! These benchmarks demonstrate that, while the sharded approach introduces
189//! a small constant-factor overhead, it offers significantly better
190//! performance across concurrent accesses.
191//!
192//! [benchmarks]: https://github.com/hawkw/sharded-slab/blob/master/benches/bench.rs
193//! [`criterion`]: https://crates.io/crates/criterion
194//!
195//! # Implementation Notes
196//!
197//! See [this page](crate::implementation) for details on this crate's design
198//! and implementation.
199//!
200#![doc(html_root_url = "https://docs.rs/sharded-slab/0.1.4")]
201#![warn(missing_debug_implementations, missing_docs)]
202#![cfg_attr(docsrs, warn(rustdoc::broken_intra_doc_links))]
203#[macro_use]
204mod macros;
205
206pub mod implementation;
207pub mod pool;
208
209pub(crate) mod cfg;
210pub(crate) mod sync;
211
212mod clear;
213mod iter;
214mod page;
215mod shard;
216mod tid;
217
218pub use cfg::{Config, DefaultConfig};
219pub use clear::Clear;
220#[doc(inline)]
221pub use pool::Pool;
222
223pub(crate) use tid::Tid;
224
225use cfg::CfgPrivate;
226use shard::Shard;
227use std::{fmt, marker::PhantomData, ptr, sync::Arc};
228
229/// A sharded slab.
230///
231/// See the [crate-level documentation](crate) for details on using this type.
232pub struct Slab<T, C: cfg::Config = DefaultConfig> {
233    shards: shard::Array<Option<T>, C>,
234    _cfg: PhantomData<C>,
235}
236
237/// A handle that allows access to an occupied entry in a [`Slab`].
238///
239/// While the guard exists, it indicates to the slab that the item the guard
240/// references is currently being accessed. If the item is removed from the slab
241/// while a guard exists, the removal will be deferred until all guards are
242/// dropped.
243pub struct Entry<'a, T, C: cfg::Config = DefaultConfig> {
244    inner: page::slot::Guard<Option<T>, C>,
245    value: ptr::NonNull<T>,
246    shard: &'a Shard<Option<T>, C>,
247    key: usize,
248}
249
250/// A handle to a vacant entry in a [`Slab`].
251///
252/// `VacantEntry` allows constructing values with the key that they will be
253/// assigned to.
254///
255/// # Examples
256///
257/// ```
258/// # use sharded_slab::Slab;
259/// let mut slab = Slab::new();
260///
261/// let hello = {
262///     let entry = slab.vacant_entry().unwrap();
263///     let key = entry.key();
264///
265///     entry.insert((key, "hello"));
266///     key
267/// };
268///
269/// assert_eq!(hello, slab.get(hello).unwrap().0);
270/// assert_eq!("hello", slab.get(hello).unwrap().1);
271/// ```
272#[derive(Debug)]
273pub struct VacantEntry<'a, T, C: cfg::Config = DefaultConfig> {
274    inner: page::slot::InitGuard<Option<T>, C>,
275    key: usize,
276    _lt: PhantomData<&'a ()>,
277}
278
279/// An owned reference to an occupied entry in a [`Slab`].
280///
281/// While the guard exists, it indicates to the slab that the item the guard
282/// references is currently being accessed. If the item is removed from the slab
283/// while the guard exists, the  removal will be deferred until all guards are
284/// dropped.
285///
286/// Unlike [`Entry`], which borrows the slab, an `OwnedEntry` clones the [`Arc`]
287/// around the slab. Therefore, it keeps the slab from being dropped until all
288/// such guards have been dropped. This means that an `OwnedEntry` may be held for
289/// an arbitrary lifetime.
290///
291/// # Examples
292///
293/// ```
294/// # use sharded_slab::Slab;
295/// use std::sync::Arc;
296///
297/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
298/// let key = slab.insert("hello world").unwrap();
299///
300/// // Look up the created key, returning an `OwnedEntry`.
301/// let value = slab.clone().get_owned(key).unwrap();
302///
303/// // Now, the original `Arc` clone of the slab may be dropped, but the
304/// // returned `OwnedEntry` can still access the value.
305/// assert_eq!(value, "hello world");
306/// ```
307///
308/// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
309/// for the `'static` lifetime:
310///
311/// ```
312/// # use sharded_slab::Slab;
313/// use sharded_slab::OwnedEntry;
314/// use std::sync::Arc;
315///
316/// pub struct MyStruct {
317///     entry: OwnedEntry<&'static str>,
318///     // ... other fields ...
319/// }
320///
321/// // Suppose this is some arbitrary function which requires a value that
322/// // lives for the 'static lifetime...
323/// fn function_requiring_static<T: 'static>(t: &T) {
324///     // ... do something extremely important and interesting ...
325/// }
326///
327/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
328/// let key = slab.insert("hello world").unwrap();
329///
330/// // Look up the created key, returning an `OwnedEntry`.
331/// let entry = slab.clone().get_owned(key).unwrap();
332/// let my_struct = MyStruct {
333///     entry,
334///     // ...
335/// };
336///
337/// // We can use `my_struct` anywhere where it is required to have the
338/// // `'static` lifetime:
339/// function_requiring_static(&my_struct);
340/// ```
341///
342/// `OwnedEntry`s may be sent between threads:
343///
344/// ```
345/// # use sharded_slab::Slab;
346/// use std::{thread, sync::Arc};
347///
348/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
349/// let key = slab.insert("hello world").unwrap();
350///
351/// // Look up the created key, returning an `OwnedEntry`.
352/// let value = slab.clone().get_owned(key).unwrap();
353///
354/// thread::spawn(move || {
355///     assert_eq!(value, "hello world");
356///     // ...
357/// }).join().unwrap();
358/// ```
359///
360/// [`get`]: Slab::get
361/// [`Arc`]: std::sync::Arc
362pub struct OwnedEntry<T, C = DefaultConfig>
363where
364    C: cfg::Config,
365{
366    inner: page::slot::Guard<Option<T>, C>,
367    value: ptr::NonNull<T>,
368    slab: Arc<Slab<T, C>>,
369    key: usize,
370}
371
372impl<T> Slab<T> {
373    /// Returns a new slab with the default configuration parameters.
374    pub fn new() -> Self {
375        Self::new_with_config()
376    }
377
378    /// Returns a new slab with the provided configuration parameters.
379    pub fn new_with_config<C: cfg::Config>() -> Slab<T, C> {
380        C::validate();
381        Slab {
382            shards: shard::Array::new(),
383            _cfg: PhantomData,
384        }
385    }
386}
387
388impl<T, C: cfg::Config> Slab<T, C> {
389    /// The number of bits in each index which are used by the slab.
390    ///
391    /// If other data is packed into the `usize` indices returned by
392    /// [`Slab::insert`], user code is free to use any bits higher than the
393    /// `USED_BITS`-th bit freely.
394    ///
395    /// This is determined by the [`Config`] type that configures the slab's
396    /// parameters. By default, all bits are used; this can be changed by
397    /// overriding the [`Config::RESERVED_BITS`][res] constant.
398    ///
399    /// [res]: crate::Config#RESERVED_BITS
400    pub const USED_BITS: usize = C::USED_BITS;
401
402    /// Inserts a value into the slab, returning the integer index at which that
403    /// value was inserted. This index can then be used to access the entry.
404    ///
405    /// If this function returns `None`, then the shard for the current thread
406    /// is full and no items can be added until some are removed, or the maximum
407    /// number of shards has been reached.
408    ///
409    /// # Examples
410    /// ```rust
411    /// # use sharded_slab::Slab;
412    /// let slab = Slab::new();
413    ///
414    /// let key = slab.insert("hello world").unwrap();
415    /// assert_eq!(slab.get(key).unwrap(), "hello world");
416    /// ```
417    pub fn insert(&self, value: T) -> Option<usize> {
418        let (tid, shard) = self.shards.current();
419        test_println!("insert {:?}", tid);
420        let mut value = Some(value);
421        shard
422            .init_with(|idx, slot| {
423                let gen = slot.insert(&mut value)?;
424                Some(gen.pack(idx))
425            })
426            .map(|idx| tid.pack(idx))
427    }
428
429    /// Return a handle to a vacant entry allowing for further manipulation.
430    ///
431    /// This function is useful when creating values that must contain their
432    /// slab index. The returned [`VacantEntry`] reserves a slot in the slab and
433    /// is able to return the index of the entry.
434    ///
435    /// # Examples
436    ///
437    /// ```
438    /// # use sharded_slab::Slab;
439    /// let mut slab = Slab::new();
440    ///
441    /// let hello = {
442    ///     let entry = slab.vacant_entry().unwrap();
443    ///     let key = entry.key();
444    ///
445    ///     entry.insert((key, "hello"));
446    ///     key
447    /// };
448    ///
449    /// assert_eq!(hello, slab.get(hello).unwrap().0);
450    /// assert_eq!("hello", slab.get(hello).unwrap().1);
451    /// ```
452    pub fn vacant_entry(&self) -> Option<VacantEntry<'_, T, C>> {
453        let (tid, shard) = self.shards.current();
454        test_println!("vacant_entry {:?}", tid);
455        shard.init_with(|idx, slot| {
456            let inner = slot.init()?;
457            let key = inner.generation().pack(tid.pack(idx));
458            Some(VacantEntry {
459                inner,
460                key,
461                _lt: PhantomData,
462            })
463        })
464    }
465
466    /// Remove the value at the given index in the slab, returning `true` if a
467    /// value was removed.
468    ///
469    /// Unlike [`take`], this method does _not_ block the current thread until
470    /// the value can be removed. Instead, if another thread is currently
471    /// accessing that value, this marks it to be removed by that thread when it
472    /// finishes accessing the value.
473    ///
474    /// # Examples
475    ///
476    /// ```rust
477    /// let slab = sharded_slab::Slab::new();
478    /// let key = slab.insert("hello world").unwrap();
479    ///
480    /// // Remove the item from the slab.
481    /// assert!(slab.remove(key));
482    ///
483    /// // Now, the slot is empty.
484    /// assert!(!slab.contains(key));
485    /// ```
486    ///
487    /// ```rust
488    /// use std::sync::Arc;
489    ///
490    /// let slab = Arc::new(sharded_slab::Slab::new());
491    /// let key = slab.insert("hello world").unwrap();
492    ///
493    /// let slab2 = slab.clone();
494    /// let thread2 = std::thread::spawn(move || {
495    ///     // Depending on when this thread begins executing, the item may
496    ///     // or may not have already been removed...
497    ///     if let Some(item) = slab2.get(key) {
498    ///         assert_eq!(item, "hello world");
499    ///     }
500    /// });
501    ///
502    /// // The item will be removed by thread2 when it finishes accessing it.
503    /// assert!(slab.remove(key));
504    ///
505    /// thread2.join().unwrap();
506    /// assert!(!slab.contains(key));
507    /// ```
508    /// [`take`]: Slab::take
509    pub fn remove(&self, idx: usize) -> bool {
510        // The `Drop` impl for `Entry` calls `remove_local` or `remove_remote` based
511        // on where the guard was dropped from. If the dropped guard was the last one, this will
512        // call `Slot::remove_value` which actually clears storage.
513        let tid = C::unpack_tid(idx);
514
515        test_println!("rm_deferred {:?}", tid);
516        let shard = self.shards.get(tid.as_usize());
517        if tid.is_current() {
518            shard.map(|shard| shard.remove_local(idx)).unwrap_or(false)
519        } else {
520            shard.map(|shard| shard.remove_remote(idx)).unwrap_or(false)
521        }
522    }
523
524    /// Removes the value associated with the given key from the slab, returning
525    /// it.
526    ///
527    /// If the slab does not contain a value for that key, `None` is returned
528    /// instead.
529    ///
530    /// If the value associated with the given key is currently being
531    /// accessed by another thread, this method will block the current thread
532    /// until the item is no longer accessed. If this is not desired, use
533    /// [`remove`] instead.
534    ///
535    /// **Note**: This method blocks the calling thread by spinning until the
536    /// currently outstanding references are released. Spinning for long periods
537    /// of time can result in high CPU time and power consumption. Therefore,
538    /// `take` should only be called when other references to the slot are
539    /// expected to be dropped soon (e.g., when all accesses are relatively
540    /// short).
541    ///
542    /// # Examples
543    ///
544    /// ```rust
545    /// let slab = sharded_slab::Slab::new();
546    /// let key = slab.insert("hello world").unwrap();
547    ///
548    /// // Remove the item from the slab, returning it.
549    /// assert_eq!(slab.take(key), Some("hello world"));
550    ///
551    /// // Now, the slot is empty.
552    /// assert!(!slab.contains(key));
553    /// ```
554    ///
555    /// ```rust
556    /// use std::sync::Arc;
557    ///
558    /// let slab = Arc::new(sharded_slab::Slab::new());
559    /// let key = slab.insert("hello world").unwrap();
560    ///
561    /// let slab2 = slab.clone();
562    /// let thread2 = std::thread::spawn(move || {
563    ///     // Depending on when this thread begins executing, the item may
564    ///     // or may not have already been removed...
565    ///     if let Some(item) = slab2.get(key) {
566    ///         assert_eq!(item, "hello world");
567    ///     }
568    /// });
569    ///
570    /// // The item will only be removed when the other thread finishes
571    /// // accessing it.
572    /// assert_eq!(slab.take(key), Some("hello world"));
573    ///
574    /// thread2.join().unwrap();
575    /// assert!(!slab.contains(key));
576    /// ```
577    /// [`remove`]: Slab::remove
578    pub fn take(&self, idx: usize) -> Option<T> {
579        let tid = C::unpack_tid(idx);
580
581        test_println!("rm {:?}", tid);
582        let shard = self.shards.get(tid.as_usize())?;
583        if tid.is_current() {
584            shard.take_local(idx)
585        } else {
586            shard.take_remote(idx)
587        }
588    }
589
590    /// Return a reference to the value associated with the given key.
591    ///
592    /// If the slab does not contain a value for the given key, or if the
593    /// maximum number of concurrent references to the slot has been reached,
594    /// `None` is returned instead.
595    ///
596    /// # Examples
597    ///
598    /// ```rust
599    /// let slab = sharded_slab::Slab::new();
600    /// let key = slab.insert("hello world").unwrap();
601    ///
602    /// assert_eq!(slab.get(key).unwrap(), "hello world");
603    /// assert!(slab.get(12345).is_none());
604    /// ```
605    pub fn get(&self, key: usize) -> Option<Entry<'_, T, C>> {
606        let tid = C::unpack_tid(key);
607
608        test_println!("get {:?}; current={:?}", tid, Tid::<C>::current());
609        let shard = self.shards.get(tid.as_usize())?;
610        shard.with_slot(key, |slot| {
611            let inner = slot.get(C::unpack_gen(key))?;
612            let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
613            Some(Entry {
614                inner,
615                value,
616                shard,
617                key,
618            })
619        })
620    }
621
622    /// Return an owned reference to the value at the given index.
623    ///
624    /// If the slab does not contain a value for the given key, `None` is
625    /// returned instead.
626    ///
627    /// Unlike [`get`], which borrows the slab, this method _clones_ the [`Arc`]
628    /// around the slab. This means that the returned [`OwnedEntry`] can be held
629    /// for an arbitrary lifetime. However,  this method requires that the slab
630    /// itself be wrapped in an `Arc`.
631    ///
632    /// # Examples
633    ///
634    /// ```
635    /// # use sharded_slab::Slab;
636    /// use std::sync::Arc;
637    ///
638    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
639    /// let key = slab.insert("hello world").unwrap();
640    ///
641    /// // Look up the created key, returning an `OwnedEntry`.
642    /// let value = slab.clone().get_owned(key).unwrap();
643    ///
644    /// // Now, the original `Arc` clone of the slab may be dropped, but the
645    /// // returned `OwnedEntry` can still access the value.
646    /// assert_eq!(value, "hello world");
647    /// ```
648    ///
649    /// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
650    /// for the `'static` lifetime:
651    ///
652    /// ```
653    /// # use sharded_slab::Slab;
654    /// use sharded_slab::OwnedEntry;
655    /// use std::sync::Arc;
656    ///
657    /// pub struct MyStruct {
658    ///     entry: OwnedEntry<&'static str>,
659    ///     // ... other fields ...
660    /// }
661    ///
662    /// // Suppose this is some arbitrary function which requires a value that
663    /// // lives for the 'static lifetime...
664    /// fn function_requiring_static<T: 'static>(t: &T) {
665    ///     // ... do something extremely important and interesting ...
666    /// }
667    ///
668    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
669    /// let key = slab.insert("hello world").unwrap();
670    ///
671    /// // Look up the created key, returning an `OwnedEntry`.
672    /// let entry = slab.clone().get_owned(key).unwrap();
673    /// let my_struct = MyStruct {
674    ///     entry,
675    ///     // ...
676    /// };
677    ///
678    /// // We can use `my_struct` anywhere where it is required to have the
679    /// // `'static` lifetime:
680    /// function_requiring_static(&my_struct);
681    /// ```
682    ///
683    /// [`OwnedEntry`]s may be sent between threads:
684    ///
685    /// ```
686    /// # use sharded_slab::Slab;
687    /// use std::{thread, sync::Arc};
688    ///
689    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
690    /// let key = slab.insert("hello world").unwrap();
691    ///
692    /// // Look up the created key, returning an `OwnedEntry`.
693    /// let value = slab.clone().get_owned(key).unwrap();
694    ///
695    /// thread::spawn(move || {
696    ///     assert_eq!(value, "hello world");
697    ///     // ...
698    /// }).join().unwrap();
699    /// ```
700    ///
701    /// [`get`]: Slab::get
702    /// [`Arc`]: std::sync::Arc
703    pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedEntry<T, C>> {
704        let tid = C::unpack_tid(key);
705
706        test_println!("get_owned {:?}; current={:?}", tid, Tid::<C>::current());
707        let shard = self.shards.get(tid.as_usize())?;
708        shard.with_slot(key, |slot| {
709            let inner = slot.get(C::unpack_gen(key))?;
710            let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
711            Some(OwnedEntry {
712                inner,
713                value,
714                slab: self.clone(),
715                key,
716            })
717        })
718    }
719
720    /// Returns `true` if the slab contains a value for the given key.
721    ///
722    /// # Examples
723    ///
724    /// ```
725    /// let slab = sharded_slab::Slab::new();
726    ///
727    /// let key = slab.insert("hello world").unwrap();
728    /// assert!(slab.contains(key));
729    ///
730    /// slab.take(key).unwrap();
731    /// assert!(!slab.contains(key));
732    /// ```
733    pub fn contains(&self, key: usize) -> bool {
734        self.get(key).is_some()
735    }
736
737    /// Returns an iterator over all the items in the slab.
738    pub fn unique_iter(&mut self) -> iter::UniqueIter<'_, T, C> {
739        let mut shards = self.shards.iter_mut();
740        let shard = shards.next().expect("must be at least 1 shard");
741        let mut pages = shard.iter();
742        let slots = pages.next().and_then(page::Shared::iter);
743        iter::UniqueIter {
744            shards,
745            slots,
746            pages,
747        }
748    }
749}
750
751impl<T> Default for Slab<T> {
752    fn default() -> Self {
753        Self::new()
754    }
755}
756
757impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Slab<T, C> {
758    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
759        f.debug_struct("Slab")
760            .field("shards", &self.shards)
761            .field("config", &C::debug())
762            .finish()
763    }
764}
765
766unsafe impl<T: Send, C: cfg::Config> Send for Slab<T, C> {}
767unsafe impl<T: Sync, C: cfg::Config> Sync for Slab<T, C> {}
768
769// === impl Entry ===
770
771impl<'a, T, C: cfg::Config> Entry<'a, T, C> {
772    /// Returns the key used to access the guard.
773    pub fn key(&self) -> usize {
774        self.key
775    }
776
777    #[inline(always)]
778    fn value(&self) -> &T {
779        unsafe {
780            // Safety: this is always going to be valid, as it's projected from
781            // the safe reference to `self.value` --- this is just to avoid
782            // having to `expect` an option in the hot path when dereferencing.
783            self.value.as_ref()
784        }
785    }
786}
787
788impl<'a, T, C: cfg::Config> std::ops::Deref for Entry<'a, T, C> {
789    type Target = T;
790
791    fn deref(&self) -> &Self::Target {
792        self.value()
793    }
794}
795
796impl<'a, T, C: cfg::Config> Drop for Entry<'a, T, C> {
797    fn drop(&mut self) {
798        let should_remove = unsafe {
799            // Safety: calling `slot::Guard::release` is unsafe, since the
800            // `Guard` value contains a pointer to the slot that may outlive the
801            // slab containing that slot. Here, the `Entry` guard owns a
802            // borrowed reference to the shard containing that slot, which
803            // ensures that the slot will not be dropped while this `Guard`
804            // exists.
805            self.inner.release()
806        };
807        if should_remove {
808            self.shard.clear_after_release(self.key)
809        }
810    }
811}
812
813impl<'a, T, C> fmt::Debug for Entry<'a, T, C>
814where
815    T: fmt::Debug,
816    C: cfg::Config,
817{
818    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
819        fmt::Debug::fmt(self.value(), f)
820    }
821}
822
823impl<'a, T, C> PartialEq<T> for Entry<'a, T, C>
824where
825    T: PartialEq<T>,
826    C: cfg::Config,
827{
828    fn eq(&self, other: &T) -> bool {
829        self.value().eq(other)
830    }
831}
832
833// === impl VacantEntry ===
834
835impl<'a, T, C: cfg::Config> VacantEntry<'a, T, C> {
836    /// Insert a value in the entry.
837    ///
838    /// To get the integer index at which this value will be inserted, use
839    /// [`key`] prior to calling `insert`.
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// # use sharded_slab::Slab;
845    /// let mut slab = Slab::new();
846    ///
847    /// let hello = {
848    ///     let entry = slab.vacant_entry().unwrap();
849    ///     let key = entry.key();
850    ///
851    ///     entry.insert((key, "hello"));
852    ///     key
853    /// };
854    ///
855    /// assert_eq!(hello, slab.get(hello).unwrap().0);
856    /// assert_eq!("hello", slab.get(hello).unwrap().1);
857    /// ```
858    ///
859    /// [`key`]: VacantEntry::key
860    pub fn insert(mut self, val: T) {
861        let value = unsafe {
862            // Safety: this `VacantEntry` only lives as long as the `Slab` it was
863            // borrowed from, so it cannot outlive the entry's slot.
864            self.inner.value_mut()
865        };
866        debug_assert!(
867            value.is_none(),
868            "tried to insert to a slot that already had a value!"
869        );
870        *value = Some(val);
871        let _released = unsafe {
872            // Safety: again, this `VacantEntry` only lives as long as the
873            // `Slab` it was borrowed from, so it cannot outlive the entry's
874            // slot.
875            self.inner.release()
876        };
877        debug_assert!(
878            !_released,
879            "removing a value before it was inserted should be a no-op"
880        )
881    }
882
883    /// Return the integer index at which this entry will be inserted.
884    ///
885    /// A value stored in this entry will be associated with this key.
886    ///
887    /// # Examples
888    ///
889    /// ```
890    /// # use sharded_slab::*;
891    /// let mut slab = Slab::new();
892    ///
893    /// let hello = {
894    ///     let entry = slab.vacant_entry().unwrap();
895    ///     let key = entry.key();
896    ///
897    ///     entry.insert((key, "hello"));
898    ///     key
899    /// };
900    ///
901    /// assert_eq!(hello, slab.get(hello).unwrap().0);
902    /// assert_eq!("hello", slab.get(hello).unwrap().1);
903    /// ```
904    pub fn key(&self) -> usize {
905        self.key
906    }
907}
908// === impl OwnedEntry ===
909
910impl<T, C> OwnedEntry<T, C>
911where
912    C: cfg::Config,
913{
914    /// Returns the key used to access this guard
915    pub fn key(&self) -> usize {
916        self.key
917    }
918
919    #[inline(always)]
920    fn value(&self) -> &T {
921        unsafe {
922            // Safety: this is always going to be valid, as it's projected from
923            // the safe reference to `self.value` --- this is just to avoid
924            // having to `expect` an option in the hot path when dereferencing.
925            self.value.as_ref()
926        }
927    }
928}
929
930impl<T, C> std::ops::Deref for OwnedEntry<T, C>
931where
932    C: cfg::Config,
933{
934    type Target = T;
935
936    fn deref(&self) -> &Self::Target {
937        self.value()
938    }
939}
940
941impl<T, C> Drop for OwnedEntry<T, C>
942where
943    C: cfg::Config,
944{
945    fn drop(&mut self) {
946        test_println!("drop OwnedEntry: try clearing data");
947        let should_clear = unsafe {
948            // Safety: calling `slot::Guard::release` is unsafe, since the
949            // `Guard` value contains a pointer to the slot that may outlive the
950            // slab containing that slot. Here, the `OwnedEntry` owns an `Arc`
951            // clone of the pool, which keeps it alive as long as the `OwnedEntry`
952            // exists.
953            self.inner.release()
954        };
955        if should_clear {
956            let shard_idx = Tid::<C>::from_packed(self.key);
957            test_println!("-> shard={:?}", shard_idx);
958            if let Some(shard) = self.slab.shards.get(shard_idx.as_usize()) {
959                shard.clear_after_release(self.key)
960            } else {
961                test_println!("-> shard={:?} does not exist! THIS IS A BUG", shard_idx);
962                debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedEntry` to a slot on a shard that never existed!");
963            }
964        }
965    }
966}
967
968impl<T, C> fmt::Debug for OwnedEntry<T, C>
969where
970    T: fmt::Debug,
971    C: cfg::Config,
972{
973    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
974        fmt::Debug::fmt(self.value(), f)
975    }
976}
977
978impl<T, C> PartialEq<T> for OwnedEntry<T, C>
979where
980    T: PartialEq<T>,
981    C: cfg::Config,
982{
983    fn eq(&self, other: &T) -> bool {
984        *self.value() == *other
985    }
986}
987
988unsafe impl<T, C> Sync for OwnedEntry<T, C>
989where
990    T: Sync,
991    C: cfg::Config,
992{
993}
994
995unsafe impl<T, C> Send for OwnedEntry<T, C>
996where
997    T: Sync,
998    C: cfg::Config,
999{
1000}
1001
1002// === pack ===
1003
1004pub(crate) trait Pack<C: cfg::Config>: Sized {
1005    // ====== provided by each implementation =================================
1006
1007    /// The number of bits occupied by this type when packed into a usize.
1008    ///
1009    /// This must be provided to determine the number of bits into which to pack
1010    /// the type.
1011    const LEN: usize;
1012    /// The type packed on the less significant side of this type.
1013    ///
1014    /// If this type is packed into the least significant bit of a usize, this
1015    /// should be `()`, which occupies no bytes.
1016    ///
1017    /// This is used to calculate the shift amount for packing this value.
1018    type Prev: Pack<C>;
1019
1020    // ====== calculated automatically ========================================
1021
1022    /// A number consisting of `Self::LEN` 1 bits, starting at the least
1023    /// significant bit.
1024    ///
1025    /// This is the higest value this type can represent. This number is shifted
1026    /// left by `Self::SHIFT` bits to calculate this type's `MASK`.
1027    ///
1028    /// This is computed automatically based on `Self::LEN`.
1029    const BITS: usize = {
1030        let shift = 1 << (Self::LEN - 1);
1031        shift | (shift - 1)
1032    };
1033    /// The number of bits to shift a number to pack it into a usize with other
1034    /// values.
1035    ///
1036    /// This is caculated automatically based on the `LEN` and `SHIFT` constants
1037    /// of the previous value.
1038    const SHIFT: usize = Self::Prev::SHIFT + Self::Prev::LEN;
1039
1040    /// The mask to extract only this type from a packed `usize`.
1041    ///
1042    /// This is calculated by shifting `Self::BITS` left by `Self::SHIFT`.
1043    const MASK: usize = Self::BITS << Self::SHIFT;
1044
1045    fn as_usize(&self) -> usize;
1046    fn from_usize(val: usize) -> Self;
1047
1048    #[inline(always)]
1049    fn pack(&self, to: usize) -> usize {
1050        let value = self.as_usize();
1051        debug_assert!(value <= Self::BITS);
1052
1053        (to & !Self::MASK) | (value << Self::SHIFT)
1054    }
1055
1056    #[inline(always)]
1057    fn from_packed(from: usize) -> Self {
1058        let value = (from & Self::MASK) >> Self::SHIFT;
1059        debug_assert!(value <= Self::BITS);
1060        Self::from_usize(value)
1061    }
1062}
1063
1064impl<C: cfg::Config> Pack<C> for () {
1065    const BITS: usize = 0;
1066    const LEN: usize = 0;
1067    const SHIFT: usize = 0;
1068    const MASK: usize = 0;
1069
1070    type Prev = ();
1071
1072    fn as_usize(&self) -> usize {
1073        unreachable!()
1074    }
1075    fn from_usize(_val: usize) -> Self {
1076        unreachable!()
1077    }
1078
1079    fn pack(&self, _to: usize) -> usize {
1080        unreachable!()
1081    }
1082
1083    fn from_packed(_from: usize) -> Self {
1084        unreachable!()
1085    }
1086}
1087
1088#[cfg(test)]
1089pub(crate) use self::tests::util as test_util;
1090
1091#[cfg(test)]
1092mod tests;