1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Read capabilities and handles
use async_stream::stream;
use std::backtrace::Backtrace;
use std::collections::BTreeMap;
use std::fmt::Debug;
use std::future::Future;
use std::sync::Arc;
use std::time::Duration;
use differential_dataflow::consolidation::consolidate_updates;
use differential_dataflow::difference::Semigroup;
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::Description;
use futures::Stream;
use futures_util::{stream, StreamExt};
use itertools::Either;
use mz_dyncfg::Config;
use mz_ore::instrument;
use mz_ore::now::EpochMillis;
use mz_ore::task::{AbortOnDropHandle, JoinHandle, RuntimeExt};
use mz_persist::location::{Blob, SeqNo};
use mz_persist_types::columnar::{ColumnDecoder, Schema2};
use mz_persist_types::{Codec, Codec64};
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use timely::progress::{Antichain, Timestamp};
use timely::PartialOrder;
use tokio::runtime::Handle;
use tracing::{debug_span, warn, Instrument};
use uuid::Uuid;
use crate::batch::{BLOB_TARGET_SIZE, STRUCTURED_ORDER, STRUCTURED_ORDER_UNTIL_SHARD};
use crate::cfg::{RetryParameters, COMPACTION_MEMORY_BOUND_BYTES};
use crate::fetch::{fetch_leased_part, FetchBatchFilter, FetchedPart, Lease, LeasedBatchPart};
use crate::internal::encoding::Schemas;
use crate::internal::machine::{ExpireFn, Machine};
use crate::internal::metrics::Metrics;
use crate::internal::state::{BatchPart, HollowBatch};
use crate::internal::watch::StateWatch;
use crate::iter::{CodecSort, Consolidator, StructuredSort};
use crate::schema::SchemaCache;
use crate::stats::{SnapshotPartStats, SnapshotPartsStats, SnapshotStats};
use crate::{parse_id, GarbageCollector, PersistConfig, ShardId};
pub use crate::internal::encoding::LazyPartStats;
pub use crate::internal::state::Since;
/// An opaque identifier for a reader of a persist durable TVC (aka shard).
#[derive(Arbitrary, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[serde(try_from = "String", into = "String")]
pub struct LeasedReaderId(pub(crate) [u8; 16]);
impl std::fmt::Display for LeasedReaderId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "r{}", Uuid::from_bytes(self.0))
}
}
impl std::fmt::Debug for LeasedReaderId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "LeasedReaderId({})", Uuid::from_bytes(self.0))
}
}
impl std::str::FromStr for LeasedReaderId {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
parse_id('r', "LeasedReaderId", s).map(LeasedReaderId)
}
}
impl From<LeasedReaderId> for String {
fn from(reader_id: LeasedReaderId) -> Self {
reader_id.to_string()
}
}
impl TryFrom<String> for LeasedReaderId {
type Error = String;
fn try_from(s: String) -> Result<Self, Self::Error> {
s.parse()
}
}
impl LeasedReaderId {
pub(crate) fn new() -> Self {
LeasedReaderId(*Uuid::new_v4().as_bytes())
}
}
/// Capable of generating a snapshot of all data at `as_of`, followed by a
/// listen of all updates.
///
/// For more details, see [`ReadHandle::snapshot`] and [`Listen`].
#[derive(Debug)]
pub struct Subscribe<K: Codec, V: Codec, T, D> {
snapshot: Option<Vec<LeasedBatchPart<T>>>,
listen: Listen<K, V, T, D>,
}
impl<K, V, T, D> Subscribe<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
fn new(snapshot_parts: Vec<LeasedBatchPart<T>>, listen: Listen<K, V, T, D>) -> Self {
Subscribe {
snapshot: Some(snapshot_parts),
listen,
}
}
/// Returns a `LeasedBatchPart` enriched with the proper metadata.
///
/// First returns snapshot parts, until they're exhausted, at which point
/// begins returning listen parts.
///
/// The returned `Antichain` represents the subscription progress as it will
/// be _after_ the returned parts are fetched.
#[instrument(level = "debug", fields(shard = %self.listen.handle.machine.shard_id()))]
pub async fn next(
&mut self,
// If Some, an override for the default listen sleep retry parameters.
listen_retry: Option<RetryParameters>,
) -> Vec<ListenEvent<T, LeasedBatchPart<T>>> {
match self.snapshot.take() {
Some(parts) => vec![ListenEvent::Updates(parts)],
None => {
let (parts, upper) = self.listen.next(listen_retry).await;
vec![ListenEvent::Updates(parts), ListenEvent::Progress(upper)]
}
}
}
}
impl<K, V, T, D> Subscribe<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
/// Equivalent to `next`, but rather than returning a [`LeasedBatchPart`],
/// fetches and returns the data from within it.
#[instrument(level = "debug", fields(shard = %self.listen.handle.machine.shard_id()))]
pub async fn fetch_next(
&mut self,
) -> Vec<ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
let events = self.next(None).await;
let new_len = events
.iter()
.map(|event| match event {
ListenEvent::Updates(parts) => parts.len(),
ListenEvent::Progress(_) => 1,
})
.sum();
let mut ret = Vec::with_capacity(new_len);
for event in events {
match event {
ListenEvent::Updates(parts) => {
for part in parts {
let fetched_part = self.listen.fetch_batch_part(part).await;
let updates = fetched_part.collect::<Vec<_>>();
if !updates.is_empty() {
ret.push(ListenEvent::Updates(updates));
}
}
}
ListenEvent::Progress(progress) => ret.push(ListenEvent::Progress(progress)),
}
}
ret
}
/// Fetches the contents of `part` and returns its lease.
pub async fn fetch_batch_part(&mut self, part: LeasedBatchPart<T>) -> FetchedPart<K, V, T, D> {
self.listen.fetch_batch_part(part).await
}
}
impl<K, V, T, D> Subscribe<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
/// Politely expires this subscribe, releasing its lease.
///
/// There is a best-effort impl in Drop for [`ReadHandle`] to expire the
/// [`ReadHandle`] held by the subscribe that wasn't explicitly expired
/// with this method. When possible, explicit expiry is still preferred
/// because the Drop one is best effort and is dependant on a tokio
/// [Handle] being available in the TLC at the time of drop (which is a bit
/// subtle). Also, explicit expiry allows for control over when it happens.
pub async fn expire(mut self) {
let _ = self.snapshot.take(); // Drop all leased parts.
self.listen.expire().await;
}
}
/// Data and progress events of a shard subscription.
///
/// TODO: Unify this with [timely::dataflow::operators::capture::event::Event].
#[derive(Debug, PartialEq)]
pub enum ListenEvent<T, D> {
/// Progress of the shard.
Progress(Antichain<T>),
/// Data of the shard.
Updates(Vec<D>),
}
/// An ongoing subscription of updates to a shard.
#[derive(Debug)]
pub struct Listen<K: Codec, V: Codec, T, D> {
handle: ReadHandle<K, V, T, D>,
watch: StateWatch<K, V, T, D>,
as_of: Antichain<T>,
since: Antichain<T>,
frontier: Antichain<T>,
}
impl<K, V, T, D> Listen<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
async fn new(mut handle: ReadHandle<K, V, T, D>, as_of: Antichain<T>) -> Self {
let since = as_of.clone();
// This listen only needs to distinguish things after its frontier
// (initially as_of although the frontier is inclusive and the as_of
// isn't). Be a good citizen and downgrade early.
handle.downgrade_since(&since).await;
let watch = handle.machine.applier.watch();
Listen {
handle,
watch,
since,
frontier: as_of.clone(),
as_of,
}
}
/// An exclusive upper bound on the progress of this Listen.
pub fn frontier(&self) -> &Antichain<T> {
&self.frontier
}
/// Attempt to pull out the next values of this subscription.
///
/// The returned [`LeasedBatchPart`] is appropriate to use with
/// `crate::fetch::fetch_leased_part`.
///
/// The returned `Antichain` represents the subscription progress as it will
/// be _after_ the returned parts are fetched.
pub async fn next(
&mut self,
// If Some, an override for the default listen sleep retry parameters.
retry: Option<RetryParameters>,
) -> (Vec<LeasedBatchPart<T>>, Antichain<T>) {
let batch = self
.handle
.machine
.next_listen_batch(
&self.frontier,
&mut self.watch,
Some(&self.handle.reader_id),
retry,
)
.await;
// A lot of things across mz have to line up to hold the following
// invariant and violations only show up as subtle correctness errors,
// so explictly validate it here. Better to panic and roll back a
// release than be incorrect (also potentially corrupting a sink).
//
// Note that the since check is intentionally less_than, not less_equal.
// If a batch's since is X, that means we can no longer distinguish X
// (beyond self.frontier) from X-1 (not beyond self.frontier) to keep
// former and filter out the latter.
assert!(
PartialOrder::less_than(batch.desc.since(), &self.frontier)
// Special case when the frontier == the as_of (i.e. the first
// time this is called on a new Listen). Because as_of is
// _exclusive_, we don't need to be able to distinguish X from
// X-1.
|| (self.frontier == self.as_of
&& PartialOrder::less_equal(batch.desc.since(), &self.frontier)),
"Listen on {} received a batch {:?} advanced past the listen frontier {:?}",
self.handle.machine.shard_id(),
batch.desc,
self.frontier
);
let new_frontier = batch.desc.upper().clone();
// We will have a new frontier, so this is an opportunity to downgrade our
// since capability. Go through `maybe_heartbeat` so we can rate limit
// this along with our heartbeats.
//
// HACK! Everything would be simpler if we could downgrade since to the
// new frontier, but we can't. The next call needs to be able to
// distinguish between the times T at the frontier (to emit updates with
// these times) and T-1 (to filter them). Advancing the since to
// frontier would erase the ability to distinguish between them. Ideally
// we'd use what is conceptually "batch.upper - 1" (the greatest
// elements that are still strictly less than batch.upper, which will be
// the new value of self.frontier after this call returns), but the
// trait bounds on T don't give us a way to compute that directly.
// Instead, we sniff out any elements in self.frontier (the upper of the
// batch the last time we called this) that are strictly less_than the
// batch upper to compute a new since. For totally ordered times
// (currently always the case in mz) self.frontier will always have a
// single element and it will be less_than upper, but the following
// logic is (hopefully) correct for partially order times as well. We
// could also abuse the fact that every time we actually emit is
// guaranteed by definition to be less_than upper to be a bit more
// prompt, but this would involve a lot more temporary antichains and
// it's unclear if that's worth it.
for x in self.frontier.elements().iter() {
let less_than_upper = batch.desc.upper().elements().iter().any(|u| x.less_than(u));
if less_than_upper {
self.since.join_assign(&Antichain::from_elem(x.clone()));
}
}
// IMPORTANT! Make sure this `lease_batch_parts` stays before the
// `maybe_downgrade_since` call. Otherwise, we might give up our
// capability on the batch's SeqNo before we lease it, which could lead
// to blobs that it references being GC'd.
let filter = FetchBatchFilter::Listen {
as_of: self.as_of.clone(),
lower: self.frontier.clone(),
};
let parts = self.handle.lease_batch_parts(batch, filter).collect().await;
self.handle.maybe_downgrade_since(&self.since).await;
// NB: Keep this after we use self.frontier to join_assign self.since
// and also after we construct metadata.
self.frontier = new_frontier;
(parts, self.frontier.clone())
}
}
impl<K, V, T, D> Listen<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
/// Attempt to pull out the next values of this subscription.
///
/// The updates received in [ListenEvent::Updates] should be assumed to be in arbitrary order
/// and not necessarily consolidated. However, the timestamp of each individual update will be
/// greater than or equal to the last received [ListenEvent::Progress] frontier (or this
/// [Listen]'s initial `as_of` frontier if no progress event has been emitted yet) and less
/// than the next [ListenEvent::Progress] frontier.
///
/// If you have a use for consolidated listen output, given that snapshots can't be
/// consolidated, come talk to us!
#[instrument(level = "debug", name = "listen::next", fields(shard = %self.handle.machine.shard_id()))]
pub async fn fetch_next(
&mut self,
) -> Vec<ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
let (parts, progress) = self.next(None).await;
let mut ret = Vec::with_capacity(parts.len() + 1);
for part in parts {
let fetched_part = self.fetch_batch_part(part).await;
let updates = fetched_part.collect::<Vec<_>>();
if !updates.is_empty() {
ret.push(ListenEvent::Updates(updates));
}
}
ret.push(ListenEvent::Progress(progress));
ret
}
/// Convert listener into futures::Stream
pub fn into_stream(
mut self,
) -> impl Stream<Item = ListenEvent<T, ((Result<K, String>, Result<V, String>), T, D)>> {
async_stream::stream!({
loop {
for msg in self.fetch_next().await {
yield msg;
}
}
})
}
/// Test helper to read from the listener until the given frontier is
/// reached. Because compaction can arbitrarily combine batches, we only
/// return the final progress info.
#[cfg(test)]
#[track_caller]
pub async fn read_until(
&mut self,
ts: &T,
) -> (
Vec<((Result<K, String>, Result<V, String>), T, D)>,
Antichain<T>,
) {
let mut updates = Vec::new();
let mut frontier = Antichain::from_elem(T::minimum());
while self.frontier.less_than(ts) {
for event in self.fetch_next().await {
match event {
ListenEvent::Updates(mut x) => updates.append(&mut x),
ListenEvent::Progress(x) => frontier = x,
}
}
}
// Unlike most tests, intentionally don't consolidate updates here
// because Listen replays them at the original fidelity.
(updates, frontier)
}
}
impl<K, V, T, D> Listen<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
/// Fetches the contents of `part` and returns its lease.
///
/// This is broken out into its own function to provide a trivial means for
/// [`Subscribe`], which contains a [`Listen`], to fetch batches.
async fn fetch_batch_part(&mut self, part: LeasedBatchPart<T>) -> FetchedPart<K, V, T, D> {
let fetched_part = fetch_leased_part(
&self.handle.cfg,
&part,
self.handle.blob.as_ref(),
Arc::clone(&self.handle.metrics),
&self.handle.metrics.read.listen,
&self.handle.machine.applier.shard_metrics,
&self.handle.reader_id,
self.handle.read_schemas.clone(),
&mut self.handle.schema_cache,
)
.await;
fetched_part
}
/// Politely expires this listen, releasing its lease.
///
/// There is a best-effort impl in Drop for [`ReadHandle`] to expire the
/// [`ReadHandle`] held by the listen that wasn't explicitly expired with
/// this method. When possible, explicit expiry is still preferred because
/// the Drop one is best effort and is dependant on a tokio [Handle] being
/// available in the TLC at the time of drop (which is a bit subtle). Also,
/// explicit expiry allows for control over when it happens.
pub async fn expire(self) {
self.handle.expire().await
}
}
/// A "capability" granting the ability to read the state of some shard at times
/// greater or equal to `self.since()`.
///
/// Production users should call [Self::expire] before dropping a ReadHandle so
/// that it can expire its leases. If/when rust gets AsyncDrop, this will be
/// done automatically.
///
/// All async methods on ReadHandle retry for as long as they are able, but the
/// returned [std::future::Future]s implement "cancel on drop" semantics. This
/// means that callers can add a timeout using [tokio::time::timeout] or
/// [tokio::time::timeout_at].
///
/// ```rust,no_run
/// # let mut read: mz_persist_client::read::ReadHandle<String, String, u64, i64> = unimplemented!();
/// # let timeout: std::time::Duration = unimplemented!();
/// # let new_since: timely::progress::Antichain<u64> = unimplemented!();
/// # async {
/// tokio::time::timeout(timeout, read.downgrade_since(&new_since)).await
/// # };
/// ```
#[derive(Debug)]
pub struct ReadHandle<K: Codec, V: Codec, T, D> {
pub(crate) cfg: PersistConfig,
pub(crate) metrics: Arc<Metrics>,
pub(crate) machine: Machine<K, V, T, D>,
pub(crate) gc: GarbageCollector<K, V, T, D>,
pub(crate) blob: Arc<dyn Blob>,
pub(crate) reader_id: LeasedReaderId,
pub(crate) read_schemas: Schemas<K, V>,
pub(crate) schema_cache: SchemaCache<K, V, T, D>,
since: Antichain<T>,
pub(crate) last_heartbeat: EpochMillis,
pub(crate) leased_seqnos: BTreeMap<SeqNo, Lease>,
pub(crate) unexpired_state: Option<UnexpiredReadHandleState>,
}
/// Length of time after a reader's last operation after which the reader may be
/// expired.
pub(crate) const READER_LEASE_DURATION: Config<Duration> = Config::new(
"persist_reader_lease_duration",
Duration::from_secs(60 * 15),
"The time after which we'll clean up stale read leases",
);
impl<K, V, T, D> ReadHandle<K, V, T, D>
where
K: Debug + Codec,
V: Debug + Codec,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
pub(crate) async fn new(
cfg: PersistConfig,
metrics: Arc<Metrics>,
machine: Machine<K, V, T, D>,
gc: GarbageCollector<K, V, T, D>,
blob: Arc<dyn Blob>,
reader_id: LeasedReaderId,
read_schemas: Schemas<K, V>,
since: Antichain<T>,
last_heartbeat: EpochMillis,
) -> Self {
let schema_cache = machine.applier.schema_cache();
let expire_fn = Self::expire_fn(machine.clone(), gc.clone(), reader_id.clone());
ReadHandle {
cfg,
metrics: Arc::clone(&metrics),
machine: machine.clone(),
gc: gc.clone(),
blob,
reader_id: reader_id.clone(),
read_schemas,
schema_cache,
since,
last_heartbeat,
leased_seqnos: BTreeMap::new(),
unexpired_state: Some(UnexpiredReadHandleState {
expire_fn,
_heartbeat_tasks: machine
.start_reader_heartbeat_tasks(reader_id, gc)
.await
.into_iter()
.map(JoinHandle::abort_on_drop)
.collect(),
}),
}
}
/// This handle's shard id.
pub fn shard_id(&self) -> ShardId {
self.machine.shard_id()
}
/// This handle's `since` frontier.
///
/// This will always be greater or equal to the shard-global `since`.
pub fn since(&self) -> &Antichain<T> {
&self.since
}
fn outstanding_seqno(&mut self) -> Option<SeqNo> {
while let Some(first) = self.leased_seqnos.first_entry() {
if first.get().count() <= 1 {
first.remove();
} else {
return Some(*first.key());
}
}
None
}
/// Forwards the since frontier of this handle, giving up the ability to
/// read at times not greater or equal to `new_since`.
///
/// This may trigger (asynchronous) compaction and consolidation in the
/// system. A `new_since` of the empty antichain "finishes" this shard,
/// promising that no more data will ever be read by this handle.
///
/// This also acts as a heartbeat for the reader lease (including if called
/// with `new_since` equal to something like `self.since()` or the minimum
/// timestamp, making the call a no-op).
#[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
pub async fn downgrade_since(&mut self, new_since: &Antichain<T>) {
// Guaranteed to be the smallest/oldest outstanding lease on a `SeqNo`.
let outstanding_seqno = self.outstanding_seqno();
let heartbeat_ts = (self.cfg.now)();
let (_seqno, current_reader_since, maintenance) = self
.machine
.downgrade_since(&self.reader_id, outstanding_seqno, new_since, heartbeat_ts)
.await;
// Debugging for database-issues#4590.
if let Some(outstanding_seqno) = outstanding_seqno {
let seqnos_held = _seqno.0.saturating_sub(outstanding_seqno.0);
// We get just over 1 seqno-per-second on average for a shard in
// prod, so this is about an hour.
const SEQNOS_HELD_THRESHOLD: u64 = 60 * 60;
if seqnos_held >= SEQNOS_HELD_THRESHOLD {
tracing::info!(
"{} reader {} holding an unexpected number of seqnos {} vs {}: {:?}. bt: {:?}",
self.machine.shard_id(),
self.reader_id,
outstanding_seqno,
_seqno,
self.leased_seqnos.keys().take(10).collect::<Vec<_>>(),
// The Debug impl of backtrace is less aesthetic, but will put the trace
// on a single line and play more nicely with our Honeycomb quota
Backtrace::capture(),
);
}
}
self.since = current_reader_since.0;
// A heartbeat is just any downgrade_since traffic, so update the
// internal rate limiter here to play nicely with `maybe_heartbeat`.
self.last_heartbeat = heartbeat_ts;
maintenance.start_performing(&self.machine, &self.gc);
}
/// Returns an ongoing subscription of updates to a shard.
///
/// The stream includes all data at times greater than `as_of`. Combined
/// with [Self::snapshot] it will produce exactly correct results: the
/// snapshot is the TVCs contents at `as_of` and all subsequent updates
/// occur at exactly their indicated time. The recipient should only
/// downgrade their read capability when they are certain they have all data
/// through the frontier they would downgrade to.
///
/// This takes ownership of the ReadHandle so the Listen can use it to
/// [Self::downgrade_since] as it progresses. If you need to keep this
/// handle, then [Self::clone] it before calling listen.
///
/// The `Since` error indicates that the requested `as_of` cannot be served
/// (the caller has out of date information) and includes the smallest
/// `as_of` that would have been accepted.
#[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
pub async fn listen(self, as_of: Antichain<T>) -> Result<Listen<K, V, T, D>, Since<T>> {
let () = self.machine.verify_listen(&as_of)?;
Ok(Listen::new(self, as_of).await)
}
/// Returns all of the contents of the shard TVC at `as_of` broken up into
/// [`LeasedBatchPart`]es. These parts can be "turned in" via
/// `crate::fetch::fetch_batch_part` to receive the data they contain.
///
/// This command returns the contents of this shard as of `as_of` once they
/// are known. This may "block" (in an async-friendly way) if `as_of` is
/// greater or equal to the current `upper` of the shard. The recipient
/// should only downgrade their read capability when they are certain they
/// have all data through the frontier they would downgrade to.
///
/// The `Since` error indicates that the requested `as_of` cannot be served
/// (the caller has out of date information) and includes the smallest
/// `as_of` that would have been accepted.
#[instrument(level = "trace", fields(shard = %self.machine.shard_id()))]
pub async fn snapshot(
&mut self,
as_of: Antichain<T>,
) -> Result<Vec<LeasedBatchPart<T>>, Since<T>> {
let batches = self.machine.snapshot(&as_of).await?;
if !PartialOrder::less_equal(self.since(), &as_of) {
return Err(Since(self.since().clone()));
}
let filter = FetchBatchFilter::Snapshot { as_of };
let mut leased_parts = Vec::new();
for batch in batches {
// Flatten the HollowBatch into one LeasedBatchPart per key. Each key
// corresponds to a "part" or s3 object. This allows persist_source
// to distribute work by parts (smallish, more even size) instead of
// batches (arbitrarily large).
leased_parts.extend(
self.lease_batch_parts(batch, filter.clone())
.collect::<Vec<_>>()
.await,
);
}
Ok(leased_parts)
}
/// Returns a snapshot of all of a shard's data using `as_of`, followed by
/// listening to any future updates.
///
/// For more details on this operation's semantics, see [Self::snapshot] and
/// [Self::listen].
#[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
pub async fn subscribe(
mut self,
as_of: Antichain<T>,
) -> Result<Subscribe<K, V, T, D>, Since<T>> {
let snapshot_parts = self.snapshot(as_of.clone()).await?;
let listen = self.listen(as_of.clone()).await?;
Ok(Subscribe::new(snapshot_parts, listen))
}
fn lease_batch_part(
&mut self,
desc: Description<T>,
part: BatchPart<T>,
filter: FetchBatchFilter<T>,
) -> LeasedBatchPart<T> {
LeasedBatchPart {
metrics: Arc::clone(&self.metrics),
shard_id: self.machine.shard_id(),
reader_id: self.reader_id.clone(),
filter,
desc,
part,
leased_seqno: self.machine.seqno(),
lease: Some(self.lease_seqno()),
filter_pushdown_audit: false,
}
}
fn lease_batch_parts(
&mut self,
batch: HollowBatch<T>,
filter: FetchBatchFilter<T>,
) -> impl Stream<Item = LeasedBatchPart<T>> + '_ {
stream! {
let blob = Arc::clone(&self.blob);
let metrics = Arc::clone(&self.metrics);
let desc = batch.desc.clone();
for await part in batch.part_stream(self.shard_id(), &*blob, &*metrics) {
yield self.lease_batch_part(desc.clone(), part.expect("leased part").into_owned(), filter.clone())
}
}
}
/// Tracks that the `ReadHandle`'s machine's current `SeqNo` is being
/// "leased out" to a `LeasedBatchPart`, and cannot be garbage
/// collected until its lease has been returned.
fn lease_seqno(&mut self) -> Lease {
let seqno = self.machine.seqno();
let lease = self.leased_seqnos.entry(seqno).or_default();
lease.clone()
}
/// Returns an independent [ReadHandle] with a new [LeasedReaderId] but the
/// same `since`.
#[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
pub async fn clone(&self, purpose: &str) -> Self {
let new_reader_id = LeasedReaderId::new();
let machine = self.machine.clone();
let gc = self.gc.clone();
let heartbeat_ts = (self.cfg.now)();
let (reader_state, maintenance) = machine
.register_leased_reader(
&new_reader_id,
purpose,
READER_LEASE_DURATION.get(&self.cfg),
heartbeat_ts,
false,
)
.await;
maintenance.start_performing(&machine, &gc);
// The point of clone is that you're guaranteed to have the same (or
// greater) since capability, verify that.
// TODO: better if it's the same since capability exactly.
assert!(PartialOrder::less_equal(&reader_state.since, &self.since));
let new_reader = ReadHandle::new(
self.cfg.clone(),
Arc::clone(&self.metrics),
machine,
gc,
Arc::clone(&self.blob),
new_reader_id,
self.read_schemas.clone(),
reader_state.since,
heartbeat_ts,
)
.await;
new_reader
}
/// A rate-limited version of [Self::downgrade_since].
///
/// This is an internally rate limited helper, designed to allow users to
/// call it as frequently as they like. Call this [Self::downgrade_since],
/// or Self::maybe_heartbeat_reader on some interval that is "frequent"
/// compared to PersistConfig::FAKE_READ_LEASE_DURATION.
///
/// This is communicating actual progress information, so is given
/// preferential treatment compared to Self::maybe_heartbeat_reader.
pub async fn maybe_downgrade_since(&mut self, new_since: &Antichain<T>) {
// NB: min_elapsed is intentionally smaller than the one in
// maybe_heartbeat_reader (this is the preferential treatment mentioned
// above).
let min_elapsed = READER_LEASE_DURATION.get(&self.cfg) / 4;
let elapsed_since_last_heartbeat =
Duration::from_millis((self.cfg.now)().saturating_sub(self.last_heartbeat));
if elapsed_since_last_heartbeat >= min_elapsed {
self.downgrade_since(new_since).await;
}
}
/// Heartbeats the read lease if necessary.
///
/// This is an internally rate limited helper, designed to allow users to
/// call it as frequently as they like. Call this [Self::downgrade_since],
/// or [Self::maybe_downgrade_since] on some interval that is "frequent"
/// compared to PersistConfig::FAKE_READ_LEASE_DURATION.
#[allow(dead_code)]
pub(crate) async fn maybe_heartbeat_reader(&mut self) {
let min_elapsed = READER_LEASE_DURATION.get(&self.cfg) / 2;
let heartbeat_ts = (self.cfg.now)();
let elapsed_since_last_heartbeat =
Duration::from_millis(heartbeat_ts.saturating_sub(self.last_heartbeat));
if elapsed_since_last_heartbeat >= min_elapsed {
if elapsed_since_last_heartbeat > READER_LEASE_DURATION.get(&self.machine.applier.cfg) {
warn!(
"reader ({}) of shard ({}) went {}s between heartbeats",
self.reader_id,
self.machine.shard_id(),
elapsed_since_last_heartbeat.as_secs_f64()
);
}
let (_, existed, maintenance) = self
.machine
.heartbeat_leased_reader(&self.reader_id, heartbeat_ts)
.await;
if !existed && !self.machine.applier.is_finalized() {
// It's probably surprising to the caller that the shard
// becoming a tombstone expired this reader. Possibly the right
// thing to do here is pass up a bool to the caller indicating
// whether the LeasedReaderId it's trying to heartbeat has been
// expired, but that happening on a tombstone vs not is very
// different. As a medium-term compromise, pretend we did the
// heartbeat here.
panic!(
"LeasedReaderId({}) was expired due to inactivity. Did the machine go to sleep?",
self.reader_id
)
}
self.last_heartbeat = heartbeat_ts;
maintenance.start_performing(&self.machine, &self.gc);
}
}
/// Politely expires this reader, releasing its lease.
///
/// There is a best-effort impl in Drop to expire a reader that wasn't
/// explictly expired with this method. When possible, explicit expiry is
/// still preferred because the Drop one is best effort and is dependant on
/// a tokio [Handle] being available in the TLC at the time of drop (which
/// is a bit subtle). Also, explicit expiry allows for control over when it
/// happens.
#[instrument(level = "debug", fields(shard = %self.machine.shard_id()))]
pub async fn expire(mut self) {
// We drop the unexpired state before expiring the reader to ensure the
// heartbeat tasks can never observe the expired state. This doesn't
// matter for correctness, but avoids confusing log output if the
// heartbeat task were to discover that its lease has been expired.
let Some(unexpired_state) = self.unexpired_state.take() else {
return;
};
unexpired_state.expire_fn.0().await;
}
fn expire_fn(
machine: Machine<K, V, T, D>,
gc: GarbageCollector<K, V, T, D>,
reader_id: LeasedReaderId,
) -> ExpireFn {
ExpireFn(Box::new(move || {
Box::pin(async move {
let (_, maintenance) = machine.expire_leased_reader(&reader_id).await;
maintenance.start_performing(&machine, &gc);
})
}))
}
/// Test helper for a [Self::listen] call that is expected to succeed.
#[cfg(test)]
#[track_caller]
pub async fn expect_listen(self, as_of: T) -> Listen<K, V, T, D> {
self.listen(Antichain::from_elem(as_of))
.await
.expect("cannot serve requested as_of")
}
}
/// State for a read handle that has not been explicitly expired.
#[derive(Debug)]
pub(crate) struct UnexpiredReadHandleState {
expire_fn: ExpireFn,
pub(crate) _heartbeat_tasks: Vec<AbortOnDropHandle<()>>,
}
/// An incremental cursor through a particular shard, returned from [ReadHandle::snapshot_cursor].
///
/// To read an entire dataset, the
/// client should call `next` until it returns `None`, which signals all data has been returned...
/// but it's also free to abandon the instance at any time if it eg. only needs a few entries.
#[derive(Debug)]
pub struct Cursor<K: Codec, V: Codec, T: Timestamp + Codec64, D: Codec64> {
consolidator: CursorConsolidator<K, V, T, D>,
_lease: Lease,
read_schemas: Schemas<K, V>,
}
#[derive(Debug)]
enum CursorConsolidator<K: Codec, V: Codec, T: Timestamp + Codec64, D: Codec64> {
Codec {
consolidator: Consolidator<T, D, CodecSort<T, D>>,
},
Structured {
consolidator: Consolidator<T, D, StructuredSort<K, V, T, D>>,
max_len: usize,
max_bytes: usize,
},
}
impl<K, V, T, D> Cursor<K, V, T, D>
where
K: Debug + Codec + Ord,
V: Debug + Codec + Ord,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
/// Grab the next batch of consolidated data.
pub async fn next(
&mut self,
) -> Option<impl Iterator<Item = ((Result<K, String>, Result<V, String>), T, D)> + '_> {
match &mut self.consolidator {
CursorConsolidator::Structured {
consolidator,
max_len,
max_bytes,
} => {
let mut iter = consolidator
.next_chunk(*max_len, *max_bytes)
.await
.expect("fetching a leased part")?;
let structured = iter.get_or_make_structured::<K, V>(
self.read_schemas.key.as_ref(),
self.read_schemas.val.as_ref(),
);
let key_decoder = self
.read_schemas
.key
.decoder_any(structured.key.as_ref())
.expect("ok");
let val_decoder = self
.read_schemas
.val
.decoder_any(structured.val.as_ref())
.expect("ok");
let iter = (0..iter.len()).map(move |i| {
let mut k = K::default();
let mut v = V::default();
key_decoder.decode(i, &mut k);
val_decoder.decode(i, &mut v);
let t = T::decode(iter.records().timestamps().value(i).to_le_bytes());
let d = D::decode(iter.records().diffs().value(i).to_le_bytes());
((Ok(k), Ok(v)), t, d)
});
Some(Either::Left(iter))
}
CursorConsolidator::Codec { consolidator } => {
let iter = consolidator
.next()
.await
.expect("fetching a leased part")?
.map(|((k, v), t, d)| {
let key = K::decode(k, &self.read_schemas.key);
let val = V::decode(v, &self.read_schemas.val);
((key, val), t, d)
});
Some(Either::Right(iter))
}
}
}
}
impl<K, V, T, D> ReadHandle<K, V, T, D>
where
K: Debug + Codec + Ord,
V: Debug + Codec + Ord,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
/// Generates a [Self::snapshot], and fetches all of the batches it
/// contains.
///
/// The output is consolidated. Furthermore, to keep memory usage down when
/// reading a snapshot that consolidates well, this consolidates as it goes.
///
/// Potential future improvements (if necessary):
/// - Accept something like a `F: Fn(K,V) -> (K,V)` argument, which looks
/// like an MFP you might be pushing down. Reason being that if you are
/// projecting or transforming in a way that allows further consolidation,
/// amazing.
/// - Reuse any code we write to streaming-merge consolidate in
/// persist_source here.
pub async fn snapshot_and_fetch(
&mut self,
as_of: Antichain<T>,
) -> Result<Vec<((Result<K, String>, Result<V, String>), T, D)>, Since<T>> {
let mut cursor = self.snapshot_cursor(as_of, |_| true).await?;
let mut contents = Vec::new();
while let Some(iter) = cursor.next().await {
contents.extend(iter);
}
// We don't currently guarantee that encoding is one-to-one, so we still need to
// consolidate the decoded outputs. However, let's report if this isn't a noop.
let old_len = contents.len();
consolidate_updates(&mut contents);
if old_len != contents.len() {
// TODO(bkirwi): do we need more / finer-grained metrics for this?
self.machine
.applier
.shard_metrics
.unconsolidated_snapshot
.inc();
}
Ok(contents)
}
/// Generates a [Self::snapshot], and fetches all of the batches it
/// contains.
///
/// To keep memory usage down when reading a snapshot that consolidates well, this consolidates
/// as it goes. However, note that only the serialized data is consolidated: the deserialized
/// data will only be consolidated if your K/V codecs are one-to-one.
pub async fn snapshot_cursor(
&mut self,
as_of: Antichain<T>,
should_fetch_part: impl for<'a> Fn(Option<&'a LazyPartStats>) -> bool,
) -> Result<Cursor<K, V, T, D>, Since<T>> {
let batches = self.machine.snapshot(&as_of).await?;
let context = format!("{}[as_of={:?}]", self.shard_id(), as_of.elements());
let filter = FetchBatchFilter::Snapshot {
as_of: as_of.clone(),
};
let lease = self.lease_seqno();
let structured_order = STRUCTURED_ORDER.get(&self.cfg) && {
self.shard_id().to_string() < STRUCTURED_ORDER_UNTIL_SHARD.get(&self.cfg)
};
let consolidator = if structured_order {
let mut consolidator = Consolidator::new(
context,
self.shard_id(),
StructuredSort::new(self.read_schemas.clone()),
Arc::clone(&self.blob),
Arc::clone(&self.metrics),
Arc::clone(&self.machine.applier.shard_metrics),
self.metrics.read.snapshot.clone(),
filter,
COMPACTION_MEMORY_BOUND_BYTES.get(&self.cfg),
);
for batch in batches {
for (meta, run) in batch.runs() {
consolidator.enqueue_run(
&batch.desc,
meta,
run.into_iter()
.filter(|p| should_fetch_part(p.stats()))
.cloned(),
);
}
}
CursorConsolidator::Structured {
consolidator,
// This default may end up consolidating more records than previously
// for cases like fast-path peeks, where only the first few entries are used.
// If this is a noticeable performance impact, thread the max-len in from the caller.
max_len: self.cfg.compaction_yield_after_n_updates,
max_bytes: BLOB_TARGET_SIZE.get(&self.cfg).max(1),
}
} else {
let mut consolidator = Consolidator::new(
context,
self.shard_id(),
CodecSort::default(),
Arc::clone(&self.blob),
Arc::clone(&self.metrics),
Arc::clone(&self.machine.applier.shard_metrics),
self.metrics.read.snapshot.clone(),
filter,
COMPACTION_MEMORY_BOUND_BYTES.get(&self.cfg),
);
for batch in batches {
for (meta, run) in batch.runs() {
consolidator.enqueue_run(
&batch.desc,
meta,
run.into_iter()
.filter(|p| should_fetch_part(p.stats()))
.cloned(),
);
}
}
CursorConsolidator::Codec { consolidator }
};
Ok(Cursor {
consolidator,
_lease: lease,
read_schemas: self.read_schemas.clone(),
})
}
/// Returns aggregate statistics about the contents of the shard TVC at the
/// given frontier.
///
/// This command returns the contents of this shard as of `as_of` once they
/// are known. This may "block" (in an async-friendly way) if `as_of` is
/// greater or equal to the current `upper` of the shard. If `None` is given
/// for `as_of`, then the latest stats known by this process are used.
///
/// The `Since` error indicates that the requested `as_of` cannot be served
/// (the caller has out of date information) and includes the smallest
/// `as_of` that would have been accepted.
pub fn snapshot_stats(
&self,
as_of: Option<Antichain<T>>,
) -> impl Future<Output = Result<SnapshotStats, Since<T>>> + Send + 'static {
let machine = self.machine.clone();
async move {
let batches = match as_of {
Some(as_of) => machine.snapshot(&as_of).await?,
None => machine.applier.all_batches(),
};
let num_updates = batches.iter().map(|b| b.len).sum();
Ok(SnapshotStats {
shard_id: machine.shard_id(),
num_updates,
})
}
}
/// Returns aggregate statistics about the contents of the shard TVC at the
/// given frontier.
///
/// This command returns the contents of this shard as of `as_of` once they
/// are known. This may "block" (in an async-friendly way) if `as_of` is
/// greater or equal to the current `upper` of the shard.
///
/// The `Since` error indicates that the requested `as_of` cannot be served
/// (the caller has out of date information) and includes the smallest
/// `as_of` that would have been accepted.
pub async fn snapshot_parts_stats(
&self,
as_of: Antichain<T>,
) -> Result<SnapshotPartsStats, Since<T>> {
let batches = self.machine.snapshot(&as_of).await?;
let parts = stream::iter(&batches)
.flat_map(|b| b.part_stream(self.shard_id(), &*self.blob, &*self.metrics))
.map(|p| {
let p = p.expect("live batch");
SnapshotPartStats {
encoded_size_bytes: p.encoded_size_bytes(),
stats: p.stats().cloned(),
}
})
.collect()
.await;
Ok(SnapshotPartsStats {
metrics: Arc::clone(&self.machine.applier.metrics),
shard_id: self.machine.shard_id(),
parts,
})
}
}
impl<K, V, T, D> ReadHandle<K, V, T, D>
where
K: Debug + Codec + Ord,
V: Debug + Codec + Ord,
T: Timestamp + Lattice + Codec64 + Sync,
D: Semigroup + Codec64 + Send + Sync,
{
/// Generates a [Self::snapshot], and streams out all of the updates
/// it contains in bounded memory.
///
/// The output is not consolidated.
pub async fn snapshot_and_stream(
&mut self,
as_of: Antichain<T>,
) -> Result<impl Stream<Item = ((Result<K, String>, Result<V, String>), T, D)>, Since<T>> {
let snap = self.snapshot(as_of).await?;
let blob = Arc::clone(&self.blob);
let metrics = Arc::clone(&self.metrics);
let snapshot_metrics = self.metrics.read.snapshot.clone();
let shard_metrics = Arc::clone(&self.machine.applier.shard_metrics);
let reader_id = self.reader_id.clone();
let schemas = self.read_schemas.clone();
let mut schema_cache = self.schema_cache.clone();
let persist_cfg = self.cfg.clone();
let stream = async_stream::stream! {
for part in snap {
let mut fetched_part = fetch_leased_part(
&persist_cfg,
&part,
blob.as_ref(),
Arc::clone(&metrics),
&snapshot_metrics,
&shard_metrics,
&reader_id,
schemas.clone(),
&mut schema_cache,
)
.await;
while let Some(next) = fetched_part.next() {
yield next;
}
}
};
Ok(stream)
}
}
impl<K, V, T, D> ReadHandle<K, V, T, D>
where
K: Debug + Codec + Ord,
V: Debug + Codec + Ord,
T: Timestamp + Lattice + Codec64 + Ord + Sync,
D: Semigroup + Ord + Codec64 + Send + Sync,
{
/// Test helper to generate a [Self::snapshot] call that is expected to
/// succeed, process its batches, and then return its data sorted.
#[cfg(test)]
#[track_caller]
pub async fn expect_snapshot_and_fetch(
&mut self,
as_of: T,
) -> Vec<((Result<K, String>, Result<V, String>), T, D)> {
let mut ret = self
.snapshot_and_fetch(Antichain::from_elem(as_of))
.await
.expect("cannot serve requested as_of");
ret.sort();
ret
}
}
impl<K: Codec, V: Codec, T, D> Drop for ReadHandle<K, V, T, D> {
fn drop(&mut self) {
// We drop the unexpired state before expiring the reader to ensure the
// heartbeat tasks can never observe the expired state. This doesn't
// matter for correctness, but avoids confusing log output if the
// heartbeat task were to discover that its lease has been expired.
let Some(unexpired_state) = self.unexpired_state.take() else {
return;
};
let handle = match Handle::try_current() {
Ok(x) => x,
Err(_) => {
warn!("ReadHandle {} dropped without being explicitly expired, falling back to lease timeout", self.reader_id);
return;
}
};
// Spawn a best-effort task to expire this read handle. It's fine if
// this doesn't run to completion, we'd just have to wait out the lease
// before the shard-global since is unblocked.
//
// Intentionally create the span outside the task to set the parent.
let expire_span = debug_span!("drop::expire");
handle.spawn_named(
|| format!("ReadHandle::expire ({})", self.reader_id),
unexpired_state.expire_fn.0().instrument(expire_span),
);
}
}
#[cfg(test)]
mod tests {
use std::pin;
use std::str::FromStr;
use mz_dyncfg::ConfigUpdates;
use mz_ore::cast::CastFrom;
use mz_ore::metrics::MetricsRegistry;
use mz_persist::mem::{MemBlob, MemBlobConfig, MemConsensus};
use mz_persist::unreliable::{UnreliableConsensus, UnreliableHandle};
use serde::{Deserialize, Serialize};
use serde_json::json;
use tokio_stream::StreamExt;
use crate::async_runtime::IsolatedRuntime;
use crate::batch::BLOB_TARGET_SIZE;
use crate::cache::StateCache;
use crate::internal::metrics::Metrics;
use crate::rpc::NoopPubSubSender;
use crate::tests::{all_ok, new_test_client};
use crate::{Diagnostics, PersistClient, PersistConfig, ShardId};
use super::*;
// Verifies `Subscribe` can be dropped while holding snapshot batches.
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn drop_unused_subscribe(dyncfgs: ConfigUpdates) {
let data = [
(("0".to_owned(), "zero".to_owned()), 0, 1),
(("1".to_owned(), "one".to_owned()), 1, 1),
(("2".to_owned(), "two".to_owned()), 2, 1),
];
let (mut write, read) = new_test_client(&dyncfgs)
.await
.expect_open::<String, String, u64, i64>(crate::ShardId::new())
.await;
write.expect_compare_and_append(&data[0..1], 0, 1).await;
write.expect_compare_and_append(&data[1..2], 1, 2).await;
write.expect_compare_and_append(&data[2..3], 2, 3).await;
let subscribe = read
.subscribe(timely::progress::Antichain::from_elem(2))
.await
.unwrap();
assert!(
!subscribe.snapshot.as_ref().unwrap().is_empty(),
"snapshot must have batches for test to be meaningful"
);
drop(subscribe);
}
// Verifies that we streaming-consolidate away identical key-values in the same batch.
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn streaming_consolidate(dyncfgs: ConfigUpdates) {
let data = &[
// Identical records should sum together...
(("k".to_owned(), "v".to_owned()), 0, 1),
(("k".to_owned(), "v".to_owned()), 1, 1),
(("k".to_owned(), "v".to_owned()), 2, 1),
// ...and when they cancel out entirely they should be omitted.
(("k2".to_owned(), "v".to_owned()), 0, 1),
(("k2".to_owned(), "v".to_owned()), 1, -1),
];
let (mut write, read) = {
let client = new_test_client(&dyncfgs).await;
client.cfg.set_config(&BLOB_TARGET_SIZE, 1000); // So our batch stays together!
client
.expect_open::<String, String, u64, i64>(crate::ShardId::new())
.await
};
write.expect_compare_and_append(data, 0, 5).await;
let mut snapshot = read
.subscribe(timely::progress::Antichain::from_elem(4))
.await
.unwrap();
let mut updates = vec![];
'outer: loop {
for event in snapshot.fetch_next().await {
match event {
ListenEvent::Progress(t) => {
if !t.less_than(&4) {
break 'outer;
}
}
ListenEvent::Updates(data) => {
updates.extend(data);
}
}
}
}
assert_eq!(
updates,
&[((Ok("k".to_owned()), Ok("v".to_owned())), 4u64, 3i64)],
)
}
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn snapshot_and_stream(dyncfgs: ConfigUpdates) {
let data = &mut [
(("k1".to_owned(), "v1".to_owned()), 0, 1),
(("k2".to_owned(), "v2".to_owned()), 1, 1),
(("k3".to_owned(), "v3".to_owned()), 2, 1),
(("k4".to_owned(), "v4".to_owned()), 2, 1),
(("k5".to_owned(), "v5".to_owned()), 3, 1),
];
let (mut write, mut read) = {
let client = new_test_client(&dyncfgs).await;
client.cfg.set_config(&BLOB_TARGET_SIZE, 0); // split batches across multiple parts
client
.expect_open::<String, String, u64, i64>(crate::ShardId::new())
.await
};
write.expect_compare_and_append(&data[0..2], 0, 2).await;
write.expect_compare_and_append(&data[2..4], 2, 3).await;
write.expect_compare_and_append(&data[4..], 3, 4).await;
let as_of = Antichain::from_elem(3);
let mut snapshot = pin::pin!(read.snapshot_and_stream(as_of.clone()).await.unwrap());
let mut snapshot_rows = vec![];
while let Some(((k, v), t, d)) = snapshot.next().await {
snapshot_rows.push(((k.expect("valid key"), v.expect("valid key")), t, d));
}
for ((_k, _v), t, _d) in data.as_mut_slice() {
t.advance_by(as_of.borrow());
}
assert_eq!(data.as_slice(), snapshot_rows.as_slice());
}
// Verifies the semantics of `SeqNo` leases + checks dropping `LeasedBatchPart` semantics.
#[mz_persist_proc::test(tokio::test)]
#[cfg_attr(miri, ignore)] // https://github.com/MaterializeInc/database-issues/issues/5964
async fn seqno_leases(dyncfgs: ConfigUpdates) {
let mut data = vec![];
for i in 0..20 {
data.push(((i.to_string(), i.to_string()), i, 1))
}
let shard_id = ShardId::new();
let client = new_test_client(&dyncfgs).await;
let (mut write, read) = client
.expect_open::<String, String, u64, i64>(shard_id)
.await;
// Seed with some values
let mut offset = 0;
let mut width = 2;
for i in offset..offset + width {
write
.expect_compare_and_append(
&data[i..i + 1],
u64::cast_from(i),
u64::cast_from(i) + 1,
)
.await;
}
offset += width;
// Create machinery for subscribe + fetch
let mut fetcher = client
.create_batch_fetcher::<String, String, u64, i64>(
shard_id,
Default::default(),
Default::default(),
false,
Diagnostics::for_tests(),
)
.await
.unwrap();
let mut subscribe = read
.subscribe(timely::progress::Antichain::from_elem(1))
.await
.expect("cannot serve requested as_of");
// Determine sequence number at outset.
let original_seqno_since = subscribe.listen.handle.machine.applier.seqno_since();
let mut parts = vec![];
width = 4;
// Collect parts while continuing to write values
for i in offset..offset + width {
for event in subscribe.next(None).await {
if let ListenEvent::Updates(mut new_parts) = event {
parts.append(&mut new_parts);
// Here and elsewhere we "cheat" and immediately downgrade the since
// to demonstrate the effects of SeqNo leases immediately.
subscribe
.listen
.handle
.downgrade_since(&subscribe.listen.since)
.await;
}
}
write
.expect_compare_and_append(
&data[i..i + 1],
u64::cast_from(i),
u64::cast_from(i) + 1,
)
.await;
// SeqNo is not downgraded
assert_eq!(
subscribe.listen.handle.machine.applier.seqno_since(),
original_seqno_since
);
}
offset += width;
let mut seqno_since = subscribe.listen.handle.machine.applier.seqno_since();
// We're starting out with the original, non-downgraded SeqNo
assert_eq!(seqno_since, original_seqno_since);
// We have to handle the parts we generate during the next loop to
// ensure they don't panic.
let mut subsequent_parts = vec![];
// Ensure monotonicity of seqnos we're processing, otherwise the
// invariant we're testing (returning the last part of a seqno will
// downgrade its since) will not hold.
let mut this_seqno = SeqNo::minimum();
// Repeat the same process as above, more or less, while fetching + returning parts
for (mut i, part) in parts.into_iter().enumerate() {
let part_seqno = part.leased_seqno;
let last_seqno = this_seqno;
this_seqno = part_seqno;
assert!(this_seqno >= last_seqno);
let _ = fetcher.fetch_leased_part(&part).await;
drop(part);
// Simulates an exchange
for event in subscribe.next(None).await {
if let ListenEvent::Updates(parts) = event {
for part in parts {
if let (_, Some(lease)) = part.into_exchangeable_part() {
subsequent_parts.push(lease);
}
}
}
}
subscribe
.listen
.handle
.downgrade_since(&subscribe.listen.since)
.await;
// Write more new values
i += offset;
write
.expect_compare_and_append(
&data[i..i + 1],
u64::cast_from(i),
u64::cast_from(i) + 1,
)
.await;
// We should expect the SeqNo to be downgraded if this part's SeqNo
// is no longer leased to any other parts, either.
let expect_downgrade = subscribe.listen.handle.outstanding_seqno() > Some(part_seqno);
let new_seqno_since = subscribe.listen.handle.machine.applier.seqno_since();
if expect_downgrade {
assert!(new_seqno_since > seqno_since);
} else {
assert_eq!(new_seqno_since, seqno_since);
}
seqno_since = new_seqno_since;
}
// SeqNo since was downgraded
assert!(seqno_since > original_seqno_since);
// Return any outstanding parts, to prevent a panic!
drop(subsequent_parts);
drop(subscribe);
}
#[mz_ore::test]
fn reader_id_human_readable_serde() {
#[derive(Debug, Serialize, Deserialize)]
struct Container {
reader_id: LeasedReaderId,
}
// roundtrip through json
let id =
LeasedReaderId::from_str("r00000000-1234-5678-0000-000000000000").expect("valid id");
assert_eq!(
id,
serde_json::from_value(serde_json::to_value(id.clone()).expect("serializable"))
.expect("deserializable")
);
// deserialize a serialized string directly
assert_eq!(
id,
serde_json::from_str("\"r00000000-1234-5678-0000-000000000000\"")
.expect("deserializable")
);
// roundtrip id through a container type
let json = json!({ "reader_id": id });
assert_eq!(
"{\"reader_id\":\"r00000000-1234-5678-0000-000000000000\"}",
&json.to_string()
);
let container: Container = serde_json::from_value(json).expect("deserializable");
assert_eq!(container.reader_id, id);
}
// Verifies performance optimizations where a Listener doesn't fetch the
// latest Consensus state if the one it currently has can serve the next
// request.
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn skip_consensus_fetch_optimization() {
let data = vec![
(("0".to_owned(), "zero".to_owned()), 0, 1),
(("1".to_owned(), "one".to_owned()), 1, 1),
(("2".to_owned(), "two".to_owned()), 2, 1),
];
let cfg = PersistConfig::new_for_tests();
let blob = Arc::new(MemBlob::open(MemBlobConfig::default()));
let consensus = Arc::new(MemConsensus::default());
let unreliable = UnreliableHandle::default();
unreliable.totally_available();
let consensus = Arc::new(UnreliableConsensus::new(consensus, unreliable.clone()));
let metrics = Arc::new(Metrics::new(&cfg, &MetricsRegistry::new()));
let pubsub_sender = Arc::new(NoopPubSubSender);
let (mut write, mut read) = PersistClient::new(
cfg,
blob,
consensus,
metrics,
Arc::new(IsolatedRuntime::default()),
Arc::new(StateCache::new_no_metrics()),
pubsub_sender,
)
.expect("client construction failed")
.expect_open::<String, String, u64, i64>(ShardId::new())
.await;
write.expect_compare_and_append(&data[0..1], 0, 1).await;
write.expect_compare_and_append(&data[1..2], 1, 2).await;
write.expect_compare_and_append(&data[2..3], 2, 3).await;
let snapshot = read.expect_snapshot_and_fetch(2).await;
let mut listen = read.expect_listen(0).await;
// Manually advance the listener's machine so that it has the latest
// state by fetching the first events from next. This is awkward but
// only necessary because we're about to do some weird things with
// unreliable.
let listen_actual = listen.fetch_next().await;
let expected_events = vec![ListenEvent::Progress(Antichain::from_elem(1))];
assert_eq!(listen_actual, expected_events);
// At this point, the snapshot and listen's state should have all the
// writes. Test this by making consensus completely unavailable.
unreliable.totally_unavailable();
assert_eq!(snapshot, all_ok(&data, 2));
assert_eq!(
listen.read_until(&3).await,
(all_ok(&data[1..], 1), Antichain::from_elem(3))
);
}
}