use core::cmp;
use core::hash;
use core::marker::PhantomData;
use core::mem;
use core::ptr;
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Hash128 {
pub h1: u64,
pub h2: u64,
}
impl From<u128> for Hash128 {
fn from(v: u128) -> Self {
Hash128 {
h1: v as u64,
h2: (v >> 64) as u64,
}
}
}
impl Into<u128> for Hash128 {
fn into(self) -> u128 {
(self.h1 as u128) | ((self.h2 as u128) << 64)
}
}
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SipHasher13 {
hasher: Hasher<Sip13Rounds>,
}
#[derive(Debug, Clone, Copy, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SipHasher24 {
hasher: Hasher<Sip24Rounds>,
}
#[derive(Debug, Clone, Copy, Default)]
pub struct SipHasher(SipHasher24);
#[derive(Debug, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct Hasher<S: Sip> {
k0: u64,
k1: u64,
length: usize, state: State, tail: u64, ntail: usize, _marker: PhantomData<S>,
}
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct State {
v0: u64,
v2: u64,
v1: u64,
v3: u64,
}
macro_rules! compress {
($state:expr) => {{
compress!($state.v0, $state.v1, $state.v2, $state.v3)
}};
($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
$v0 = $v0.wrapping_add($v1);
$v1 = $v1.rotate_left(13);
$v1 ^= $v0;
$v0 = $v0.rotate_left(32);
$v2 = $v2.wrapping_add($v3);
$v3 = $v3.rotate_left(16);
$v3 ^= $v2;
$v0 = $v0.wrapping_add($v3);
$v3 = $v3.rotate_left(21);
$v3 ^= $v0;
$v2 = $v2.wrapping_add($v1);
$v1 = $v1.rotate_left(17);
$v1 ^= $v2;
$v2 = $v2.rotate_left(32);
}};
}
macro_rules! load_int_le {
($buf:expr, $i:expr, $int_ty:ident) => {{
debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
let mut data = 0 as $int_ty;
ptr::copy_nonoverlapping(
$buf.get_unchecked($i),
&mut data as *mut _ as *mut u8,
mem::size_of::<$int_ty>(),
);
data.to_le()
}};
}
#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
debug_assert!(len < 8);
let mut i = 0; let mut out = 0;
if i + 3 < len {
out = load_int_le!(buf, start + i, u32) as u64;
i += 4;
}
if i + 1 < len {
out |= (load_int_le!(buf, start + i, u16) as u64) << (i * 8);
i += 2
}
if i < len {
out |= (*buf.get_unchecked(start + i) as u64) << (i * 8);
i += 1;
}
debug_assert_eq!(i, len);
out
}
pub trait Hasher128 {
fn finish128(&self) -> Hash128;
}
impl SipHasher {
#[inline]
pub fn new() -> SipHasher {
SipHasher::new_with_keys(0, 0)
}
#[inline]
pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher {
SipHasher(SipHasher24::new_with_keys(key0, key1))
}
pub fn keys(&self) -> (u64, u64) {
(self.0.hasher.k0, self.0.hasher.k1)
}
}
impl Hasher128 for SipHasher {
#[inline]
fn finish128(&self) -> Hash128 {
self.0.finish128()
}
}
impl SipHasher13 {
#[inline]
pub fn new() -> SipHasher13 {
SipHasher13::new_with_keys(0, 0)
}
#[inline]
pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 {
SipHasher13 {
hasher: Hasher::new_with_keys(key0, key1),
}
}
pub fn keys(&self) -> (u64, u64) {
(self.hasher.k0, self.hasher.k1)
}
}
impl Hasher128 for SipHasher13 {
#[inline]
fn finish128(&self) -> Hash128 {
self.hasher.finish128()
}
}
impl SipHasher24 {
#[inline]
pub fn new() -> SipHasher24 {
SipHasher24::new_with_keys(0, 0)
}
#[inline]
pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher24 {
SipHasher24 {
hasher: Hasher::new_with_keys(key0, key1),
}
}
pub fn keys(&self) -> (u64, u64) {
(self.hasher.k0, self.hasher.k1)
}
}
impl Hasher128 for SipHasher24 {
#[inline]
fn finish128(&self) -> Hash128 {
self.hasher.finish128()
}
}
impl<S: Sip> Hasher<S> {
#[inline]
fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> {
let mut state = Hasher {
k0: key0,
k1: key1,
length: 0,
state: State {
v0: 0,
v1: 0xee,
v2: 0,
v3: 0,
},
tail: 0,
ntail: 0,
_marker: PhantomData,
};
state.reset();
state
}
#[inline]
fn reset(&mut self) {
self.length = 0;
self.state.v0 = self.k0 ^ 0x736f6d6570736575;
self.state.v1 = self.k1 ^ 0x646f72616e646f83;
self.state.v2 = self.k0 ^ 0x6c7967656e657261;
self.state.v3 = self.k1 ^ 0x7465646279746573;
self.ntail = 0;
}
#[inline]
fn short_write<T>(&mut self, _x: T, x: u64) {
let size = mem::size_of::<T>();
self.length += size;
debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true });
let needed = 8 - self.ntail;
self.tail |= x << (8 * self.ntail);
if size < needed {
self.ntail += size;
return;
}
self.state.v3 ^= self.tail;
S::c_rounds(&mut self.state);
self.state.v0 ^= self.tail;
self.ntail = size - needed;
self.tail = if needed < 8 { x >> (8 * needed) } else { 0 };
}
}
impl<S: Sip> Hasher<S> {
#[inline]
pub fn finish128(&self) -> Hash128 {
let mut state = self.state;
let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;
state.v3 ^= b;
S::c_rounds(&mut state);
state.v0 ^= b;
state.v2 ^= 0xee;
S::d_rounds(&mut state);
let h1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
state.v1 ^= 0xdd;
S::d_rounds(&mut state);
let h2 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
Hash128 { h1, h2 }
}
}
impl hash::Hasher for SipHasher {
#[inline]
fn write(&mut self, msg: &[u8]) {
self.0.write(msg)
}
#[inline]
fn finish(&self) -> u64 {
self.0.finish()
}
}
impl hash::Hasher for SipHasher13 {
#[inline]
fn write(&mut self, msg: &[u8]) {
self.hasher.write(msg)
}
#[inline]
fn finish(&self) -> u64 {
self.hasher.finish()
}
}
impl hash::Hasher for SipHasher24 {
#[inline]
fn write(&mut self, msg: &[u8]) {
self.hasher.write(msg)
}
#[inline]
fn finish(&self) -> u64 {
self.hasher.finish()
}
}
impl<S: Sip> hash::Hasher for Hasher<S> {
#[inline]
fn write_usize(&mut self, i: usize) {
self.short_write(i, i.to_le() as u64);
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.short_write(i, i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.short_write(i, i.to_le() as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.short_write(i, i.to_le() as u64);
}
#[inline]
fn write(&mut self, msg: &[u8]) {
let length = msg.len();
self.length += length;
let mut needed = 0;
if self.ntail != 0 {
needed = 8 - self.ntail;
self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
if length < needed {
self.ntail += length;
return;
} else {
self.state.v3 ^= self.tail;
S::c_rounds(&mut self.state);
self.state.v0 ^= self.tail;
self.ntail = 0;
}
}
let len = length - needed;
let left = len & 0x7;
let mut i = needed;
while i < len - left {
let mi = unsafe { load_int_le!(msg, i, u64) };
self.state.v3 ^= mi;
S::c_rounds(&mut self.state);
self.state.v0 ^= mi;
i += 8;
}
self.tail = unsafe { u8to64_le(msg, i, left) };
self.ntail = left;
}
#[inline]
fn finish(&self) -> u64 {
self.finish128().h2
}
}
impl<S: Sip> Clone for Hasher<S> {
#[inline]
fn clone(&self) -> Hasher<S> {
Hasher {
k0: self.k0,
k1: self.k1,
length: self.length,
state: self.state,
tail: self.tail,
ntail: self.ntail,
_marker: self._marker,
}
}
}
impl<S: Sip> Default for Hasher<S> {
#[inline]
fn default() -> Hasher<S> {
Hasher::new_with_keys(0, 0)
}
}
#[doc(hidden)]
trait Sip {
fn c_rounds(_: &mut State);
fn d_rounds(_: &mut State);
}
#[derive(Debug, Clone, Copy, Default)]
struct Sip13Rounds;
impl Sip for Sip13Rounds {
#[inline]
fn c_rounds(state: &mut State) {
compress!(state);
}
#[inline]
fn d_rounds(state: &mut State) {
compress!(state);
compress!(state);
compress!(state);
}
}
#[derive(Debug, Clone, Copy, Default)]
struct Sip24Rounds;
impl Sip for Sip24Rounds {
#[inline]
fn c_rounds(state: &mut State) {
compress!(state);
compress!(state);
}
#[inline]
fn d_rounds(state: &mut State) {
compress!(state);
compress!(state);
compress!(state);
compress!(state);
}
}
impl Hash128 {
pub fn as_bytes(&self) -> [u8; 16] {
let mut bytes = [0u8; 16];
let h1 = self.h1.to_le();
let h2 = self.h2.to_le();
unsafe {
ptr::copy_nonoverlapping(&h1 as *const _ as *const u8, bytes.get_unchecked_mut(0), 8);
ptr::copy_nonoverlapping(&h2 as *const _ as *const u8, bytes.get_unchecked_mut(8), 8);
}
bytes
}
#[inline]
pub fn as_u128(&self) -> u128 {
let h1 = self.h1.to_le();
let h2 = self.h2.to_le();
h1 as u128 | ((h2 as u128) << 64)
}
#[inline]
pub fn as_u64(&self) -> (u64, u64) {
let h1 = self.h1.to_le();
let h2 = self.h2.to_le();
(h1, h2)
}
}