1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
use std::collections::{BTreeMap, BTreeSet};
use std::fmt::Display;

use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::{Datum, Row};
use proptest::prelude::*;
use serde::{Deserialize, Serialize};

use crate::linear::proto_map_filter_project::ProtoPredicate;
use crate::visit::Visit;
use crate::{MirRelationExpr, MirScalarExpr};

include!(concat!(env!("OUT_DIR"), "/mz_expr.linear.rs"));

/// A compound operator that can be applied row-by-row.
///
/// This operator integrates the map, filter, and project operators.
/// It applies a sequences of map expressions, which are allowed to
/// refer to previous expressions, interleaved with predicates which
/// must be satisfied for an output to be produced. If all predicates
/// evaluate to `Datum::True` the data at the identified columns are
/// collected and produced as output in a packed `Row`.
///
/// This operator is a "builder" and its contents may contain expressions
/// that are not yet executable. For example, it may contain temporal
/// expressions in `self.expressions`, even though this is not something
/// we can directly evaluate. The plan creation methods will defensively
/// ensure that the right thing happens.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize, Hash, Ord, PartialOrd)]
pub struct MapFilterProject {
    /// A sequence of expressions that should be appended to the row.
    ///
    /// Many of these expressions may not be produced in the output,
    /// and may only be present as common subexpressions.
    pub expressions: Vec<MirScalarExpr>,
    /// Expressions that must evaluate to `Datum::True` for the output
    /// row to be produced.
    ///
    /// Each entry is prepended with a column identifier indicating
    /// the column *before* which the predicate should first be applied.
    /// Most commonly this would be one plus the largest column identifier
    /// in the predicate's support, but it could be larger to implement
    /// guarded evaluation of predicates.
    ///
    /// This list should be sorted by the first field.
    pub predicates: Vec<(usize, MirScalarExpr)>,
    /// A sequence of column identifiers whose data form the output row.
    pub projection: Vec<usize>,
    /// The expected number of input columns.
    ///
    /// This is needed to ensure correct identification of newly formed
    /// columns in the output.
    pub input_arity: usize,
}

/// Use a custom [`Arbitrary`] implementation to cap the number of internal
/// [`MirScalarExpr`] referenced by the generated [`MapFilterProject`]  instances.
impl Arbitrary for MapFilterProject {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
        (
            prop::collection::vec(any::<MirScalarExpr>(), 0..10),
            prop::collection::vec((any::<usize>(), any::<MirScalarExpr>()), 0..10),
            prop::collection::vec(any::<usize>(), 0..10),
            usize::arbitrary(),
        )
            .prop_map(
                |(expressions, predicates, projection, input_arity)| MapFilterProject {
                    expressions,
                    predicates,
                    projection,
                    input_arity,
                },
            )
            .boxed()
    }
}

impl RustType<ProtoMapFilterProject> for MapFilterProject {
    fn into_proto(&self) -> ProtoMapFilterProject {
        ProtoMapFilterProject {
            expressions: self.expressions.into_proto(),
            predicates: self.predicates.into_proto(),
            projection: self.projection.into_proto(),
            input_arity: self.input_arity.into_proto(),
        }
    }

    fn from_proto(proto: ProtoMapFilterProject) -> Result<Self, TryFromProtoError> {
        Ok(MapFilterProject {
            expressions: proto.expressions.into_rust()?,
            predicates: proto.predicates.into_rust()?,
            projection: proto.projection.into_rust()?,
            input_arity: proto.input_arity.into_rust()?,
        })
    }
}

impl RustType<ProtoPredicate> for (usize, MirScalarExpr) {
    fn into_proto(&self) -> ProtoPredicate {
        ProtoPredicate {
            column_to_apply: self.0.into_proto(),
            predicate: Some(self.1.into_proto()),
        }
    }

    fn from_proto(proto: ProtoPredicate) -> Result<Self, TryFromProtoError> {
        Ok((
            proto.column_to_apply.into_rust()?,
            proto
                .predicate
                .into_rust_if_some("ProtoPredicate::predicate")?,
        ))
    }
}

impl Display for MapFilterProject {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(f, "MapFilterProject(")?;
        writeln!(f, "  expressions:")?;
        self.expressions
            .iter()
            .enumerate()
            .try_for_each(|(i, e)| writeln!(f, "    #{} <- {},", i + self.input_arity, e))?;
        writeln!(f, "  predicates:")?;
        self.predicates
            .iter()
            .try_for_each(|(before, p)| writeln!(f, "    <before: {}> {},", before, p))?;
        writeln!(f, "  projection: {:?}", self.projection)?;
        writeln!(f, "  input_arity: {}", self.input_arity)?;
        writeln!(f, ")")
    }
}

impl MapFilterProject {
    /// Create a no-op operator for an input of a supplied arity.
    pub fn new(input_arity: usize) -> Self {
        Self {
            expressions: Vec::new(),
            predicates: Vec::new(),
            projection: (0..input_arity).collect(),
            input_arity,
        }
    }

    /// Given two mfps, return an mfp that applies one
    /// followed by the other.
    /// Note that the arguments are in the opposite order
    /// from how function composition is usually written in mathematics.
    pub fn compose(before: Self, after: Self) -> Self {
        let (m, f, p) = after.into_map_filter_project();
        before.map(m).filter(f).project(p)
    }

    /// True if the operator describes the identity transformation.
    pub fn is_identity(&self) -> bool {
        self.expressions.is_empty()
            && self.predicates.is_empty()
            && self.projection.len() == self.input_arity
            && self.projection.iter().enumerate().all(|(i, p)| i == *p)
    }

    /// Retain only the indicated columns in the presented order.
    pub fn project<I>(mut self, columns: I) -> Self
    where
        I: IntoIterator<Item = usize> + std::fmt::Debug,
    {
        self.projection = columns.into_iter().map(|c| self.projection[c]).collect();
        self
    }

    /// Retain only rows satisfying these predicates.
    ///
    /// This method introduces predicates as eagerly as they can be evaluated,
    /// which may not be desired for predicates that may cause exceptions.
    /// If fine manipulation is required, the predicates can be added manually.
    pub fn filter<I>(mut self, predicates: I) -> Self
    where
        I: IntoIterator<Item = MirScalarExpr>,
    {
        for mut predicate in predicates {
            // Correct column references.
            predicate.permute(&self.projection[..]);

            // Validate column references.
            assert!(predicate
                .support()
                .into_iter()
                .all(|c| c < self.input_arity + self.expressions.len()));

            // Insert predicate as eagerly as it can be evaluated:
            // just after the largest column in its support is formed.
            let max_support = predicate
                .support()
                .into_iter()
                .max()
                .map(|c| c + 1)
                .unwrap_or(0);
            self.predicates.push((max_support, predicate))
        }
        // Stable sort predicates by position at which they take effect.
        // We put literal errors at the end as a stop-gap to avoid erroring
        // before we are able to evaluate any predicates that might prevent it.
        self.predicates
            .sort_by_key(|(position, predicate)| (predicate.is_literal_err(), *position));
        self
    }

    /// Append the result of evaluating expressions to each row.
    pub fn map<I>(mut self, expressions: I) -> Self
    where
        I: IntoIterator<Item = MirScalarExpr>,
    {
        for mut expression in expressions {
            // Correct column references.
            expression.permute(&self.projection[..]);

            // Validate column references.
            assert!(expression
                .support()
                .into_iter()
                .all(|c| c < self.input_arity + self.expressions.len()));

            // Introduce expression and produce as output.
            self.expressions.push(expression);
            self.projection
                .push(self.input_arity + self.expressions.len() - 1);
        }

        self
    }

    /// Like [`MapFilterProject::as_map_filter_project`], but consumes `self` rather than cloning.
    pub fn into_map_filter_project(self) -> (Vec<MirScalarExpr>, Vec<MirScalarExpr>, Vec<usize>) {
        let predicates = self
            .predicates
            .into_iter()
            .map(|(_pos, predicate)| predicate)
            .collect();
        (self.expressions, predicates, self.projection)
    }

    /// As the arguments to `Map`, `Filter`, and `Project` operators.
    ///
    /// In principle, this operator can be implemented as a sequence of
    /// more elemental operators, likely less efficiently.
    pub fn as_map_filter_project(&self) -> (Vec<MirScalarExpr>, Vec<MirScalarExpr>, Vec<usize>) {
        self.clone().into_map_filter_project()
    }

    /// Determines if a scalar expression must be equal to a literal datum.
    pub fn literal_constraint(&self, expr: &MirScalarExpr) -> Option<Datum> {
        for (_pos, predicate) in self.predicates.iter() {
            if let MirScalarExpr::CallBinary {
                func: crate::BinaryFunc::Eq,
                expr1,
                expr2,
            } = predicate
            {
                if let Some(Ok(datum1)) = expr1.as_literal() {
                    if &**expr2 == expr {
                        return Some(datum1);
                    }
                }
                if let Some(Ok(datum2)) = expr2.as_literal() {
                    if &**expr1 == expr {
                        return Some(datum2);
                    }
                }
            }
        }
        None
    }

    /// Determines if a sequence of scalar expressions must be equal to a literal row.
    ///
    /// This method returns `None` on an empty `exprs`, which might be surprising, but
    /// seems to line up with its callers' expectations of that being a non-constraint.
    /// The caller knows if `exprs` is empty, and can modify their behavior appropriately.
    /// if they would rather have a literal empty row.
    pub fn literal_constraints(&self, exprs: &[MirScalarExpr]) -> Option<Row> {
        if exprs.is_empty() {
            return None;
        }
        let mut row = Row::default();
        let mut packer = row.packer();
        for expr in exprs {
            if let Some(literal) = self.literal_constraint(expr) {
                packer.push(literal);
            } else {
                return None;
            }
        }
        Some(row)
    }

    /// Extracts any MapFilterProject at the root of the expression.
    ///
    /// The expression will be modified to extract any maps, filters, and
    /// projections, which will be returned as `Self`. If there are no maps,
    /// filters, or projections the method will return an identity operator.
    ///
    /// The extracted expressions may contain temporal predicates, and one
    /// should be careful to apply them blindly.
    pub fn extract_from_expression(expr: &MirRelationExpr) -> (Self, &MirRelationExpr) {
        // TODO: This could become iterative rather than recursive if
        // we were able to fuse MFP operators from below, rather than
        // from above.
        match expr {
            MirRelationExpr::Map { input, scalars } => {
                let (mfp, expr) = Self::extract_from_expression(input);
                (mfp.map(scalars.iter().cloned()), expr)
            }
            MirRelationExpr::Filter { input, predicates } => {
                let (mfp, expr) = Self::extract_from_expression(input);
                (mfp.filter(predicates.iter().cloned()), expr)
            }
            MirRelationExpr::Project { input, outputs } => {
                let (mfp, expr) = Self::extract_from_expression(input);
                (mfp.project(outputs.iter().cloned()), expr)
            }
            x => (Self::new(x.arity()), x),
        }
    }

    /// Extracts an error-free MapFilterProject at the root of the expression.
    ///
    /// The expression will be modified to extract maps, filters, and projects
    /// from the root of the expression, which will be returned as `Self`. The
    /// extraction will halt if a Map or Filter containing a literal error is
    /// reached. Otherwise, the method will return an identity operator.
    ///
    /// This method is meant to be used during optimization, where it is
    /// necessary to avoid moving around maps and filters with errors.
    pub fn extract_non_errors_from_expr(expr: &MirRelationExpr) -> (Self, &MirRelationExpr) {
        match expr {
            MirRelationExpr::Map { input, scalars }
                if scalars.iter().all(|s| !s.is_literal_err()) =>
            {
                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
                (mfp.map(scalars.iter().cloned()), expr)
            }
            MirRelationExpr::Filter { input, predicates }
                if predicates.iter().all(|p| !p.is_literal_err()) =>
            {
                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
                (mfp.filter(predicates.iter().cloned()), expr)
            }
            MirRelationExpr::Project { input, outputs } => {
                let (mfp, expr) = Self::extract_non_errors_from_expr(input);
                (mfp.project(outputs.iter().cloned()), expr)
            }
            x => (Self::new(x.arity()), x),
        }
    }

    /// Extracts an error-free MapFilterProject at the root of the expression.
    ///
    /// Differs from [MapFilterProject::extract_non_errors_from_expr] by taking and returning a
    /// mutable reference.
    pub fn extract_non_errors_from_expr_ref_mut(
        expr: &mut MirRelationExpr,
    ) -> (Self, &mut MirRelationExpr) {
        // This is essentially the same code as `extract_non_errors_from_expr`, except the seemingly
        // superfluous outer if, which works around a borrow-checker issue:
        // https://github.com/rust-lang/rust/issues/54663
        if matches!(expr, MirRelationExpr::Map { input: _, scalars } if scalars.iter().all(|s| !s.is_literal_err()))
            || matches!(expr, MirRelationExpr::Filter { input: _, predicates } if predicates.iter().all(|p| !p.is_literal_err()))
            || matches!(expr, MirRelationExpr::Project { .. })
        {
            match expr {
                MirRelationExpr::Map { input, scalars }
                    if scalars.iter().all(|s| !s.is_literal_err()) =>
                {
                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
                    (mfp.map(scalars.iter().cloned()), expr)
                }
                MirRelationExpr::Filter { input, predicates }
                    if predicates.iter().all(|p| !p.is_literal_err()) =>
                {
                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
                    (mfp.filter(predicates.iter().cloned()), expr)
                }
                MirRelationExpr::Project { input, outputs } => {
                    let (mfp, expr) = Self::extract_non_errors_from_expr_ref_mut(input);
                    (mfp.project(outputs.iter().cloned()), expr)
                }
                _ => unreachable!(),
            }
        } else {
            (Self::new(expr.arity()), expr)
        }
    }

    /// Removes an error-free MapFilterProject from the root of the expression.
    ///
    /// The expression will be modified to extract maps, filters, and projects
    /// from the root of the expression, which will be returned as `Self`. The
    /// extraction will halt if a Map or Filter containing a literal error is
    /// reached. Otherwise, the method will return an
    /// identity operator, and the expression will remain unchanged.
    ///
    /// This method is meant to be used during optimization, where it is
    /// necessary to avoid moving around maps and filters with errors.
    pub fn extract_non_errors_from_expr_mut(expr: &mut MirRelationExpr) -> Self {
        match expr {
            MirRelationExpr::Map { input, scalars }
                if scalars.iter().all(|s| !s.is_literal_err()) =>
            {
                let mfp =
                    Self::extract_non_errors_from_expr_mut(input).map(scalars.iter().cloned());
                *expr = input.take_dangerous();
                mfp
            }
            MirRelationExpr::Filter { input, predicates }
                if predicates.iter().all(|p| !p.is_literal_err()) =>
            {
                let mfp = Self::extract_non_errors_from_expr_mut(input)
                    .filter(predicates.iter().cloned());
                *expr = input.take_dangerous();
                mfp
            }
            MirRelationExpr::Project { input, outputs } => {
                let mfp =
                    Self::extract_non_errors_from_expr_mut(input).project(outputs.iter().cloned());
                *expr = input.take_dangerous();
                mfp
            }
            x => Self::new(x.arity()),
        }
    }

    /// Extracts temporal predicates into their own `Self`.
    ///
    /// Expressions that are used by the temporal predicates are exposed by `self.projection`,
    /// though there could be justification for extracting them as well if they are otherwise
    /// unused.
    ///
    /// This separation is valuable when the execution cannot be fused into one operator.
    pub fn extract_temporal(&mut self) -> Self {
        // Optimize the expression, as it is only post-optimization that we can be certain
        // that temporal expressions are restricted to filters. We could relax this in the
        // future to be only `inline_expressions` and `remove_undemanded`, but optimization
        // seems to be the best fit at the moment.
        self.optimize();

        // Assert that we no longer have temporal expressions to evaluate. This should only
        // occur if the optimization above results with temporal expressions yielded in the
        // output, which is out of spec for how the type is meant to be used.
        assert!(!self.expressions.iter().any(|e| e.contains_temporal()));

        // Extract temporal predicates from `self.predicates`.
        let mut temporal_predicates = Vec::new();
        self.predicates.retain(|(_position, predicate)| {
            if predicate.contains_temporal() {
                temporal_predicates.push(predicate.clone());
                false
            } else {
                true
            }
        });

        // Determine extended input columns used by temporal filters.
        let mut support = BTreeSet::new();
        for predicate in temporal_predicates.iter() {
            support.extend(predicate.support());
        }

        // Discover the locations of these columns after `self.projection`.
        let old_projection_len = self.projection.len();
        let mut new_location = BTreeMap::new();
        for original in support.iter() {
            if let Some(position) = self.projection.iter().position(|x| x == original) {
                new_location.insert(*original, position);
            } else {
                new_location.insert(*original, self.projection.len());
                self.projection.push(*original);
            }
        }
        // Permute references in extracted predicates to their new locations.
        for predicate in temporal_predicates.iter_mut() {
            predicate.permute_map(&new_location);
        }

        // Form a new `Self` containing the temporal predicates to return.
        Self::new(self.projection.len())
            .filter(temporal_predicates)
            .project(0..old_projection_len)
    }

    /// Extracts common expressions from multiple `Self` into a result `Self`.
    ///
    /// The argument `mfps` are mutated so that each are functionaly equivalent to their
    /// corresponding input, when composed atop the resulting `Self`.
    pub fn extract_common(mfps: &mut [&mut Self]) -> Self {
        match mfps.len() {
            0 => {
                panic!("Cannot call method on empty arguments");
            }
            1 => {
                let output_arity = mfps[0].projection.len();
                std::mem::replace(mfps[0], MapFilterProject::new(output_arity))
            }
            _ => {
                // Prepare a return `Self`.
                let input_arity = mfps[0].input_arity;
                let mut result_mfp = MapFilterProject::new(input_arity);

                // Naive strategy:
                // First, look for identical predicates and extract them.
                // Then, look for unused columns and project them away.

                // First, look for identical predicates and extract them.
                // The trouble here is CSE, as predicates may not "look"
                // identical despite being identical.
                // unimplemented!()

                // Then, look for unused columns and project them away.
                let mut common_demand = BTreeSet::new();
                for mfp in mfps.iter() {
                    common_demand.extend(mfp.demand());
                }
                // columns in `common_demand` must be retained, but others
                // may be discarded.
                let common_demand = (0..input_arity)
                    .filter(|x| common_demand.contains(x))
                    .collect::<Vec<_>>();
                let remap = common_demand
                    .iter()
                    .cloned()
                    .enumerate()
                    .map(|(new, old)| (old, new))
                    .collect::<BTreeMap<_, _>>();
                for mfp in mfps.iter_mut() {
                    mfp.permute_fn(|c| remap[&c], common_demand.len());
                }
                result_mfp = result_mfp.project(common_demand);

                // Return the resulting MFP.
                result_mfp
            }
        }
    }

    /// Returns `self`, and leaves behind an identity operator that acts on its output.
    pub fn take(&mut self) -> Self {
        let mut identity = Self::new(self.projection.len());
        std::mem::swap(self, &mut identity);
        identity
    }

    /// Convert the `MapFilterProject` into a staged evaluation plan.
    ///
    /// The main behavior is extract temporal predicates, which cannot be evaluated
    /// using the standard machinery.
    pub fn into_plan(self) -> Result<plan::MfpPlan, String> {
        plan::MfpPlan::create_from(self)
    }
}

impl MapFilterProject {
    /// Partitions `self` into two instances, one of which can be eagerly applied.
    ///
    /// The `available` argument indicates which input columns are available (keys)
    /// and in which positions (values). This information may allow some maps and
    /// filters to execute. The `input_arity` argument reports the total number of
    /// input columns (which may include some not present in `available`)
    ///
    /// This method partitions `self` in two parts, `(before, after)`, where `before`
    /// can be applied on columns present as keys in `available`, and `after` must
    /// await the introduction of the other input columns.
    ///
    /// The `before` instance will *append* any columns that can be determined from
    /// `available` but will project away any of these columns that are not needed by
    /// `after`. Importantly, this means that `before` will leave intact *all* input
    /// columns including those not referenced in `available`.
    ///
    /// The `after` instance will presume all input columns are available, followed
    /// by the appended columns of the `before` instance. It may be that some input
    /// columns can be projected away in `before` if `after` does not need them, but
    /// we leave that as something the caller can apply if needed (it is otherwise
    /// complicated to negotiate which input columns `before` should retain).
    ///
    /// To correctly reconstruct `self` from `before` and `after`, one must introduce
    /// additional input columns, permute all input columns to their locations as
    /// expected by `self`, follow this by new columns appended by `before`, and
    /// remove all other columns that may be present.
    ///
    /// # Example
    ///
    /// ```rust
    /// use mz_expr::{BinaryFunc, MapFilterProject, MirScalarExpr};
    ///
    /// // imagine an action on columns (a, b, c, d).
    /// let original = MapFilterProject::new(4).map(vec![
    ///    MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::AddInt64),
    ///    MirScalarExpr::column(2).call_binary(MirScalarExpr::column(4), BinaryFunc::AddInt64),
    ///    MirScalarExpr::column(3).call_binary(MirScalarExpr::column(5), BinaryFunc::AddInt64),
    /// ]).project(vec![6]);
    ///
    /// // Imagine we start with columns (b, x, a, y, c).
    /// //
    /// // The `partition` method requires a map from *expected* input columns to *actual*
    /// // input columns. In the example above, the columns a, b, and c exist, and are at
    /// // locations 2, 0, and 4 respectively. We must construct a map to this effect.
    /// let mut available_columns = std::collections::BTreeMap::new();
    /// available_columns.insert(0, 2);
    /// available_columns.insert(1, 0);
    /// available_columns.insert(2, 4);
    /// // Partition `original` using the available columns and current input arity.
    /// // This informs `partition` which columns are available, where they can be found,
    /// // and how many columns are not relevant but should be preserved.
    /// let (before, after) = original.partition(available_columns, 5);
    ///
    /// // `before` sees all five input columns, and should append `a + b + c`.
    /// assert_eq!(before, MapFilterProject::new(5).map(vec![
    ///    MirScalarExpr::column(2).call_binary(MirScalarExpr::column(0), BinaryFunc::AddInt64),
    ///    MirScalarExpr::column(4).call_binary(MirScalarExpr::column(5), BinaryFunc::AddInt64),
    /// ]).project(vec![0, 1, 2, 3, 4, 6]));
    ///
    /// // `after` expects to see `(a, b, c, d, a + b + c)`.
    /// assert_eq!(after, MapFilterProject::new(5).map(vec![
    ///    MirScalarExpr::column(3).call_binary(MirScalarExpr::column(4), BinaryFunc::AddInt64)
    /// ]).project(vec![5]));
    ///
    /// // To reconstruct `self`, we must introduce the columns that are not present,
    /// // and present them in the order intended by `self`. In this example, we must
    /// // introduce column d and permute the columns so that they begin (a, b, c, d).
    /// // The columns x and y must be projected away, and any columns introduced by
    /// // `begin` must be retained in their current order.
    ///
    /// // The `after` instance expects to be provided with all inputs, but it
    /// // may not need all inputs. The `demand()` and `permute()` methods can
    /// // optimize the representation.
    /// ```
    pub fn partition(self, available: BTreeMap<usize, usize>, input_arity: usize) -> (Self, Self) {
        // Map expressions, filter predicates, and projections for `before` and `after`.
        let mut before_expr = Vec::new();
        let mut before_pred = Vec::new();
        let mut before_proj = Vec::new();
        let mut after_expr = Vec::new();
        let mut after_pred = Vec::new();
        let mut after_proj = Vec::new();

        // Track which output columns must be preserved in the output of `before`.
        let mut demanded = BTreeSet::new();
        demanded.extend(0..self.input_arity);
        demanded.extend(self.projection.iter());

        // Determine which map expressions can be computed from the available subset.
        // Some expressions may depend on other expressions, but by evaluating them
        // in forward order we should accurately determine the available expressions.
        let mut available_expr = vec![false; self.input_arity];
        // Initialize available columns from `available`, which is then not used again.
        for index in available.keys() {
            available_expr[*index] = true;
        }
        for expr in self.expressions.into_iter() {
            // We treat an expression as available if its supporting columns are available,
            // and if it is not a literal (we want to avoid pushing down literals). This
            // choice is ad-hoc, but the intent is that we partition the operators so
            // that we can reduce the row representation size and total computation.
            // Pushing down literals harms the former and does nothing for the latter.
            // In the future, we'll want to have a harder think about this trade-off, as
            // we are certainly making sub-optimal decisions by pushing down all available
            // work.
            // TODO(mcsherry): establish better principles about what work to push down.
            let is_available =
                expr.support().into_iter().all(|i| available_expr[i]) && !expr.is_literal();
            if is_available {
                before_expr.push(expr);
            } else {
                demanded.extend(expr.support());
                after_expr.push(expr);
            }
            available_expr.push(is_available);
        }

        // Determine which predicates can be computed from the available subset.
        for (_when, pred) in self.predicates.into_iter() {
            let is_available = pred.support().into_iter().all(|i| available_expr[i]);
            if is_available {
                before_pred.push(pred);
            } else {
                demanded.extend(pred.support());
                after_pred.push(pred);
            }
        }

        // Map from prior output location to location in un-projected `before`.
        // This map is used to correct references in `before` but it should be
        // adjusted to reflect `before`s projection prior to use in `after`.
        let mut before_map = available;
        // Input columns include any additional undescribed columns that may
        // not be captured by the `available` argument, so we must independently
        // track the current number of columns (vs relying on `before_map.len()`).
        let mut input_columns = input_arity;
        for index in self.input_arity..available_expr.len() {
            if available_expr[index] {
                before_map.insert(index, input_columns);
                input_columns += 1;
            }
        }

        // Permute the column references in `before` expressions and predicates.
        for expr in before_expr.iter_mut() {
            expr.permute_map(&before_map);
        }
        for pred in before_pred.iter_mut() {
            pred.permute_map(&before_map);
        }

        // Demand information determines `before`s output projection.
        // Specifically, we produce all input columns in the output, as well as
        // any columns that are available and demanded.
        before_proj.extend(0..input_arity);
        for index in self.input_arity..available_expr.len() {
            // If an intermediate result is both available and demanded,
            // we should produce it as output.
            if available_expr[index] && demanded.contains(&index) {
                // Use the new location of `index`.
                before_proj.push(before_map[&index]);
            }
        }

        // Map from prior output locations to location in post-`before` columns.
        // This map is used to correct references in `after`.
        // The presumption is that `after` will be presented with all input columns,
        // followed by the output columns introduced by `before` in order.
        let mut after_map = BTreeMap::new();
        for index in 0..self.input_arity {
            after_map.insert(index, index);
        }
        for index in self.input_arity..available_expr.len() {
            // If an intermediate result is both available and demanded,
            // it was produced as output.
            if available_expr[index] && demanded.contains(&index) {
                // We expect to find the output as far after `self.input_arity` as
                // it was produced after `input_arity` in the output of `before`.
                let location = self.input_arity
                    + (before_proj
                        .iter()
                        .position(|x| x == &before_map[&index])
                        .unwrap()
                        - input_arity);
                after_map.insert(index, location);
            }
        }
        // We must now re-map the remaining non-demanded expressions, which are
        // contiguous rather than potentially interspersed.
        for index in self.input_arity..available_expr.len() {
            if !available_expr[index] {
                after_map.insert(index, after_map.len());
            }
        }

        // Permute the column references in `after` expressions and predicates.
        for expr in after_expr.iter_mut() {
            expr.permute_map(&after_map);
        }
        for pred in after_pred.iter_mut() {
            pred.permute_map(&after_map);
        }
        // Populate `after` projection with the new locations of `self.projection`.
        for index in self.projection {
            after_proj.push(after_map[&index]);
        }

        // Form and return the before and after MapFilterProject instances.
        let before = Self::new(input_arity)
            .map(before_expr)
            .filter(before_pred)
            .project(before_proj.clone());
        let after = Self::new(self.input_arity + (before_proj.len() - input_arity))
            .map(after_expr)
            .filter(after_pred)
            .project(after_proj);
        (before, after)
    }

    /// Lists input columns whose values are used in outputs.
    ///
    /// It is entirely appropriate to determine the demand of an instance
    /// and then both apply a projection to the subject of the instance and
    /// `self.permute` this instance.
    pub fn demand(&self) -> BTreeSet<usize> {
        let mut demanded = BTreeSet::new();
        for (_index, pred) in self.predicates.iter() {
            demanded.extend(pred.support());
        }
        demanded.extend(self.projection.iter().cloned());
        for index in (0..self.expressions.len()).rev() {
            if demanded.contains(&(self.input_arity + index)) {
                demanded.extend(self.expressions[index].support());
            }
        }
        demanded.retain(|col| col < &self.input_arity);
        demanded
    }

    /// Update input column references, due to an input projection or permutation.
    ///
    /// The `shuffle` argument remaps expected column identifiers to new locations,
    /// with the expectation that `shuffle` describes all input columns, and so the
    /// intermediate results will be able to start at position `shuffle.len()`.
    ///
    /// The supplied `shuffle` might not list columns that are not "demanded" by the
    /// instance, and so we should ensure that `self` is optimized to not reference
    /// columns that are not demanded.
    pub fn permute_fn<F>(&mut self, remap: F, new_input_arity: usize)
    where
        F: Fn(usize) -> usize,
    {
        let (mut map, mut filter, mut project) = self.as_map_filter_project();
        let map_len = map.len();
        let action = |col: &mut usize| {
            if self.input_arity <= *col && *col < self.input_arity + map_len {
                *col = new_input_arity + (*col - self.input_arity);
            } else {
                *col = remap(*col);
            }
        };
        for expr in map.iter_mut() {
            expr.visit_columns(action);
        }
        for pred in filter.iter_mut() {
            pred.visit_columns(action);
        }
        for proj in project.iter_mut() {
            action(proj);
            assert!(*proj < new_input_arity + map.len());
        }
        *self = Self::new(new_input_arity)
            .map(map)
            .filter(filter)
            .project(project)
    }
}

// Optimization routines.
impl MapFilterProject {
    /// Optimize the internal expression evaluation order.
    ///
    /// This method performs several optimizations that are meant to streamline
    /// the execution of the `MapFilterProject` instance, but not to alter its
    /// semantics. This includes extracting expressions that are used multiple
    /// times, inlining those that are not, and removing expressions that are
    /// unreferenced.
    ///
    /// This method will inline all temporal expressions, and remove any columns
    /// that are not demanded by the output, which should transform any temporal
    /// filters to a state where the temporal expressions exist only in the list
    /// of predicates.
    ///
    /// # Example
    ///
    /// This example demonstrates how the re-use of one expression, converting
    /// column 1 from a string to an integer, can be extracted and the results
    /// shared among the two uses. This example is used for each of the steps
    /// along the optimization path.
    ///
    /// ```rust
    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
    /// // Demonstrate extraction of common expressions (here: parsing strings).
    /// let mut map_filter_project = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,5,6]);
    ///
    /// let mut expected_optimized = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(5), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,6,7]);
    ///
    /// // Optimize the expression.
    /// map_filter_project.optimize();
    ///
    /// assert_eq!(
    ///     map_filter_project,
    ///     expected_optimized,
    /// );
    /// ```
    pub fn optimize(&mut self) {
        // Track sizes and iterate as long as they decrease.
        let mut prev_size = None;
        let mut self_size = usize::max_value();
        // Continue as long as strict improvements occur.
        while prev_size.map(|p| self_size < p).unwrap_or(true) {
            // Lock in current size.
            prev_size = Some(self_size);

            // We have an annoying pattern of mapping literals that already exist as columns (by filters).
            // Try to identify this pattern, of a map that introduces an expression equated to a prior column,
            // and then replace the mapped expression by a column reference.
            //
            // We think this is due to `LiteralLifting`, and we might investigate removing the introduciton in
            // the first place. The tell-tale that we see when we fix is a diff that look likes
            //
            // - Project (#0, #2)
            // -   Filter (#1 = 1)
            // -     Map (1)
            // -       Get l0
            // + Filter (#1 = 1)
            // +   Get l0
            //
            for (index, expr) in self.expressions.iter_mut().enumerate() {
                // If `expr` matches a filter equating it to a column < index + input_arity, rewrite it
                for (_, predicate) in self.predicates.iter() {
                    if let MirScalarExpr::CallBinary {
                        func: crate::BinaryFunc::Eq,
                        expr1,
                        expr2,
                    } = predicate
                    {
                        if let MirScalarExpr::Column(c) = &**expr1 {
                            if *c < index + self.input_arity && &**expr2 == expr {
                                *expr = MirScalarExpr::Column(*c);
                            }
                        }
                        if let MirScalarExpr::Column(c) = &**expr2 {
                            if *c < index + self.input_arity && &**expr1 == expr {
                                *expr = MirScalarExpr::Column(*c);
                            }
                        }
                    }
                }
            }

            // Optimization memoizes individual `ScalarExpr` expressions that
            // are sure to be evaluated, canonicalizes references to the first
            // occurrence of each, inlines expressions that have a reference
            // count of one, and then removes any expressions that are not
            // referenced.
            self.memoize_expressions();
            self.predicates.sort();
            self.predicates.dedup();
            self.inline_expressions();
            self.remove_undemanded();

            // Re-build `self` from parts to restore evaluation order invariants.
            let (map, filter, project) = self.as_map_filter_project();
            *self = Self::new(self.input_arity)
                .map(map)
                .filter(filter)
                .project(project);

            self_size = self.size();
        }
    }

    /// Total expression sizes across all expressions.
    pub fn size(&self) -> usize {
        self.expressions.iter().map(|e| e.size()).sum::<usize>()
            + self.predicates.iter().map(|(_, e)| e.size()).sum::<usize>()
    }

    /// Place each certainly evaluated expression in its own column.
    ///
    /// This method places each non-trivial, certainly evaluated expression
    /// in its own column, and deduplicates them so that all references to
    /// the same expression reference the same column.
    ///
    /// This transformation is restricted to expressions we are certain will
    /// be evaluated, which does not include expressions in `if` statements.
    ///
    /// # Example
    ///
    /// This example demonstrates how memoization notices `MirScalarExpr`s
    /// that are used multiple times, and ensures that each are extracted
    /// into columns and then referenced by column. This pass does not try
    /// to minimize the occurrences of column references, which will happen
    /// in inlining.
    ///
    /// ```rust
    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
    /// // Demonstrate extraction of common expressions (here: parsing strings).
    /// let mut map_filter_project = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,5,6]);
    ///
    /// let mut expected_optimized = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(7),
    ///         MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(9), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(10),
    ///     ])
    ///     .project(vec![3,4,8,11]);
    ///
    /// // Memoize expressions, ensuring uniqueness of each `MirScalarExpr`.
    /// map_filter_project.memoize_expressions();
    ///
    /// assert_eq!(
    ///     map_filter_project,
    ///     expected_optimized,
    /// );
    /// ```
    ///
    /// Expressions may not be memoized if they are not certain to be evaluated,
    /// for example if they occur in conditional branches of a `MirScalarExpr::If`.
    ///
    /// ```rust
    /// use mz_expr::{MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
    /// // Demonstrate extraction of unconditionally evaluated expressions, as well as
    /// // the non-extraction of common expressions guarded by conditions.
    /// let mut map_filter_project = MapFilterProject::new(2)
    ///     .map(vec![
    ///         MirScalarExpr::If {
    ///             cond: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::Lt)),
    ///             then: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::DivInt64)),
    ///             els:  Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), BinaryFunc::DivInt64)),
    ///         },
    ///         MirScalarExpr::If {
    ///             cond: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::Lt)),
    ///             then: Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), BinaryFunc::DivInt64)),
    ///             els:  Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::DivInt64)),
    ///         },
    ///     ]);
    ///
    /// let mut expected_optimized = MapFilterProject::new(2)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::Lt),
    ///         MirScalarExpr::If {
    ///             cond: Box::new(MirScalarExpr::column(2)),
    ///             then: Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::DivInt64)),
    ///             els:  Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), BinaryFunc::DivInt64)),
    ///         },
    ///         MirScalarExpr::column(3),
    ///         MirScalarExpr::If {
    ///             cond: Box::new(MirScalarExpr::column(2)),
    ///             then: Box::new(MirScalarExpr::column(1).call_binary(MirScalarExpr::column(0), BinaryFunc::DivInt64)),
    ///             els:  Box::new(MirScalarExpr::column(0).call_binary(MirScalarExpr::column(1), BinaryFunc::DivInt64)),
    ///         },
    ///         MirScalarExpr::column(5),
    ///     ])
    ///     .project(vec![0,1,4,6]);
    ///
    /// // Memoize expressions, ensuring uniqueness of each `MirScalarExpr`.
    /// map_filter_project.memoize_expressions();
    ///
    /// assert_eq!(
    ///     map_filter_project,
    ///     expected_optimized,
    /// );
    /// ```
    pub fn memoize_expressions(&mut self) {
        // Record the mapping from starting column references to new column
        // references.
        let mut remaps = BTreeMap::new();
        for index in 0..self.input_arity {
            remaps.insert(index, index);
        }
        let mut new_expressions = Vec::new();

        // We follow the same order as for evaluation, to ensure that all
        // column references exist in time for their evaluation. We could
        // prioritize predicates, but we would need to be careful to chase
        // down column references to expressions and memoize those as well.
        let mut expression = 0;
        for (support, predicate) in self.predicates.iter_mut() {
            while self.input_arity + expression < *support {
                self.expressions[expression].permute_map(&remaps);
                memoize_expr(
                    &mut self.expressions[expression],
                    &mut new_expressions,
                    self.input_arity,
                );
                remaps.insert(
                    self.input_arity + expression,
                    self.input_arity + new_expressions.len(),
                );
                new_expressions.push(self.expressions[expression].clone());
                expression += 1;
            }
            predicate.permute_map(&remaps);
            memoize_expr(predicate, &mut new_expressions, self.input_arity);
        }
        while expression < self.expressions.len() {
            self.expressions[expression].permute_map(&remaps);
            memoize_expr(
                &mut self.expressions[expression],
                &mut new_expressions,
                self.input_arity,
            );
            remaps.insert(
                self.input_arity + expression,
                self.input_arity + new_expressions.len(),
            );
            new_expressions.push(self.expressions[expression].clone());
            expression += 1;
        }

        self.expressions = new_expressions;
        for proj in self.projection.iter_mut() {
            *proj = remaps[proj];
        }

        // Restore predicate order invariants.
        for (pos, pred) in self.predicates.iter_mut() {
            *pos = pred.support().into_iter().max().map(|x| x + 1).unwrap_or(0);
        }
    }

    /// This method inlines expressions with a single use.
    ///
    /// This method only inlines expressions; it does not delete expressions
    /// that are no longer referenced. The `remove_undemanded()` method does
    /// that, and should likely be used after this method.
    ///
    /// Inlining replaces column references when the referred-to item is either
    /// another column reference, or the only referrer of its referent. This
    /// is most common after memoization has atomized all expressions to seek
    /// out re-use: inlining re-assembles expressions that were not helpfully
    /// shared with other expressions.
    ///
    /// # Example
    ///
    /// In this example, we see that with only a single reference to columns
    /// 0 and 2, their parsing can each be inlined. Similarly, column references
    /// can be cleaned up among expressions, and in the final projection.
    ///
    /// Also notice the remaining expressions, which can be cleaned up in a later
    /// pass (the `remove_undemanded` method).
    ///
    /// ```rust
    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
    /// // Use the output from first `memoize_expression` example.
    /// let mut map_filter_project = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(7),
    ///         MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(9), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(10),
    ///     ])
    ///     .project(vec![3,4,8,11]);
    ///
    /// let mut expected_optimized = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,8,11]);
    ///
    /// // Inline expressions that are referenced only once.
    /// map_filter_project.inline_expressions();
    ///
    /// assert_eq!(
    ///     map_filter_project,
    ///     expected_optimized,
    /// );
    /// ```
    pub fn inline_expressions(&mut self) {
        // Local copy of input_arity to avoid borrowing `self` in closures.
        let input_arity = self.input_arity;
        // Reference counts track the number of places that a reference occurs.
        let mut reference_count = vec![0; input_arity + self.expressions.len()];
        // Increment reference counts for each use
        for expr in self.expressions.iter() {
            expr.visit_pre(|e| {
                if let MirScalarExpr::Column(i) = e {
                    reference_count[*i] += 1;
                }
            });
        }
        for (_, pred) in self.predicates.iter() {
            pred.visit_pre(|e| {
                if let MirScalarExpr::Column(i) = e {
                    reference_count[*i] += 1;
                }
            });
        }
        for proj in self.projection.iter() {
            reference_count[*proj] += 1;
        }

        // Determine which expressions should be inlined because they reference temporal expressions.
        let mut is_temporal = vec![false; input_arity];
        for expr in self.expressions.iter() {
            // An express may contain a temporal expression, or reference a column containing such.
            is_temporal.push(
                expr.contains_temporal() || expr.support().into_iter().any(|col| is_temporal[col]),
            );
        }

        // Inline only those columns that 1. are expressions not inputs, and
        // 2a. are column references or literals or 2b. have a refcount of 1,
        // or 2c. reference temporal expressions (which cannot be evaluated).
        let mut should_inline = vec![false; reference_count.len()];
        for i in (input_arity..reference_count.len()).rev() {
            if let MirScalarExpr::Column(c) = self.expressions[i - input_arity] {
                should_inline[i] = true;
                // The reference count of the referenced column should be
                // incremented with the number of references
                // `self.expressions[i - input_arity]` has.
                // Subtract 1 because `self.expressions[i - input_arity]` is
                // itself a reference.
                reference_count[c] += reference_count[i] - 1;
            } else {
                should_inline[i] = reference_count[i] == 1 || is_temporal[i];
            }
        }
        // Inline expressions per `should_inline`.
        self.perform_inlining(should_inline);
        // We can only inline column references in `self.projection`, but we should.
        for proj in self.projection.iter_mut() {
            if *proj >= self.input_arity {
                if let MirScalarExpr::Column(i) = self.expressions[*proj - self.input_arity] {
                    *proj = i;
                }
            }
        }
    }

    /// Inlines those expressions that are indicated by should_inline.
    /// See `inline_expressions` for usage.
    pub fn perform_inlining(&mut self, should_inline: Vec<bool>) {
        for index in 0..self.expressions.len() {
            let (prior, expr) = self.expressions.split_at_mut(index);
            #[allow(deprecated)]
            expr[0].visit_mut_post_nolimit(&mut |e| {
                if let MirScalarExpr::Column(i) = e {
                    if should_inline[*i] {
                        *e = prior[*i - self.input_arity].clone();
                    }
                }
            });
        }
        for (_index, pred) in self.predicates.iter_mut() {
            let expressions = &self.expressions;
            #[allow(deprecated)]
            pred.visit_mut_post_nolimit(&mut |e| {
                if let MirScalarExpr::Column(i) = e {
                    if should_inline[*i] {
                        *e = expressions[*i - self.input_arity].clone();
                    }
                }
            });
        }
    }

    /// Removes unused expressions from `self.expressions`.
    ///
    /// Expressions are "used" if they are relied upon by any output columns
    /// or any predicates, even transitively. Any expressions that are not
    /// relied upon in this way can be discarded.
    ///
    /// # Example
    ///
    /// ```rust
    /// use mz_expr::{func, MapFilterProject, MirScalarExpr, UnaryFunc, BinaryFunc};
    /// // Use the output from `inline_expression` example.
    /// let mut map_filter_project = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(6), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(6).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,8,11]);
    ///
    /// let mut expected_optimized = MapFilterProject::new(5)
    ///     .map(vec![
    ///         MirScalarExpr::column(1).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)),
    ///         MirScalarExpr::column(0).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)).call_binary(MirScalarExpr::column(5), BinaryFunc::AddInt64),
    ///         MirScalarExpr::column(5).call_binary(MirScalarExpr::column(2).call_unary(UnaryFunc::CastStringToInt64(func::CastStringToInt64)), BinaryFunc::AddInt64),
    ///     ])
    ///     .project(vec![3,4,6,7]);
    ///
    /// // Remove undemanded expressions, streamlining the work done..
    /// map_filter_project.remove_undemanded();
    ///
    /// assert_eq!(
    ///     map_filter_project,
    ///     expected_optimized,
    /// );
    /// ```
    pub fn remove_undemanded(&mut self) {
        // Determine the demanded expressions to remove irrelevant ones.
        let mut demand = BTreeSet::new();
        for (_index, pred) in self.predicates.iter() {
            demand.extend(pred.support());
        }
        // Start from the output columns as presumed demanded.
        // If this is not the case, the caller should project some away.
        demand.extend(self.projection.iter().cloned());
        // Proceed in *reverse* order, as expressions may depend on other
        // expressions that precede them.
        for index in (0..self.expressions.len()).rev() {
            if demand.contains(&(self.input_arity + index)) {
                demand.extend(self.expressions[index].support());
            }
        }

        // Maintain a map from initial column identifiers to locations
        // once we have removed undemanded expressions.
        let mut remap = BTreeMap::new();
        // This map only needs to map elements of `demand` to a new location,
        // but the logic is easier if we include all input columns (as the
        // new position is then determined by the size of the map).
        for index in 0..self.input_arity {
            remap.insert(index, index);
        }
        // Retain demanded expressions, and record their new locations.
        let mut new_expressions = Vec::new();
        for (index, expr) in self.expressions.drain(..).enumerate() {
            if demand.contains(&(index + self.input_arity)) {
                remap.insert(index + self.input_arity, remap.len());
                new_expressions.push(expr);
            }
        }
        self.expressions = new_expressions;

        // Update column identifiers; rebuild `Self` to re-establish any invariants.
        // We mirror `self.permute(&remap)` but we specifically want to remap columns
        // that are produced by `self.expressions` after the input columns.
        let (expressions, predicates, projection) = self.as_map_filter_project();
        *self = Self::new(self.input_arity)
            .map(expressions.into_iter().map(|mut e| {
                e.permute_map(&remap);
                e
            }))
            .filter(predicates.into_iter().map(|mut p| {
                p.permute_map(&remap);
                p
            }))
            .project(projection.into_iter().map(|c| remap[&c]));
    }
}

// TODO: move this elsewhere?
/// Recursively memoize parts of `expr`, storing those parts in `memoized_parts`.
///
/// A part of `expr` that is memoized is replaced by a reference to column
/// `(input_arity + pos)`, where `pos` is the position of the memoized part in
/// `memoized_parts`, and `input_arity` is the arity of the input that `expr`
/// refers to.
pub fn memoize_expr(
    expr: &mut MirScalarExpr,
    memoized_parts: &mut Vec<MirScalarExpr>,
    input_arity: usize,
) {
    #[allow(deprecated)]
    expr.visit_mut_pre_post_nolimit(
        &mut |e| {
            // We should not eagerly memoize `if` branches that might not be taken.
            // TODO: Memoize expressions in the intersection of `then` and `els`.
            if let MirScalarExpr::If { cond, .. } = e {
                return Some(vec![cond]);
            }
            None
        },
        &mut |e| {
            match e {
                MirScalarExpr::Literal(_, _) => {
                    // Literals do not need to be memoized.
                }
                MirScalarExpr::Column(col) => {
                    // Column references do not need to be memoized, but may need to be
                    // updated if they reference a column reference themselves.
                    if *col > input_arity {
                        if let MirScalarExpr::Column(col2) = memoized_parts[*col - input_arity] {
                            *col = col2;
                        }
                    }
                }
                _ => {
                    if let Some(position) = memoized_parts.iter().position(|e2| e2 == e) {
                        // Any complex expression that already exists as a prior column can
                        // be replaced by a reference to that column.
                        *e = MirScalarExpr::Column(input_arity + position);
                    } else {
                        // A complex expression that does not exist should be memoized, and
                        // replaced by a reference to the column.
                        memoized_parts.push(std::mem::replace(
                            e,
                            MirScalarExpr::Column(input_arity + memoized_parts.len()),
                        ));
                    }
                }
            }
        },
    )
}

pub mod util {
    use std::collections::BTreeMap;

    use crate::MirScalarExpr;

    #[allow(dead_code)]
    /// A triple of actions that map from rows to (key, val) pairs and back again.
    struct KeyValRowMapping {
        /// Expressions to apply to a row to produce key datums.
        to_key: Vec<MirScalarExpr>,
        /// Columns to project from a row to produce residual value datums.
        to_val: Vec<usize>,
        /// Columns to project from the concatenation of key and value to reconstruct the row.
        to_row: Vec<usize>,
    }

    /// Derive supporting logic to support transforming rows to (key, val) pairs,
    /// and back again.
    ///
    /// We are given as input a list of key expressions and an input arity, and the
    /// requirement the produced key should be the application of the key expressions.
    /// To produce the `val` output, we will identify those input columns not found in
    /// the key expressions, and name all other columns.
    /// To reconstitute the original row, we identify the sequence of columns from the
    /// concatenation of key and val which would reconstruct the original row.
    ///
    /// The output is a pair of column sequences, the first used to reconstruct a row
    /// from the concatenation of key and value, and the second to identify the columns
    /// of a row that should become the value associated with its key.
    ///
    /// The permutations and thinning expressions generated here will be tracked in
    /// `dataflow::plan::AvailableCollections`; see the
    /// documentation there for more details.
    pub fn permutation_for_arrangement(
        key: &[MirScalarExpr],
        unthinned_arity: usize,
    ) -> (Vec<usize>, Vec<usize>) {
        let columns_in_key: BTreeMap<_, _> = key
            .iter()
            .enumerate()
            .filter_map(|(i, key_col)| key_col.as_column().map(|c| (c, i)))
            .collect();
        let mut input_cursor = key.len();
        let permutation = (0..unthinned_arity)
            .map(|c| {
                if let Some(c) = columns_in_key.get(&c) {
                    // Column is in key (and thus gone from the value
                    // of the thinned representation)
                    *c
                } else {
                    // Column remains in value of the thinned representation
                    input_cursor += 1;
                    input_cursor - 1
                }
            })
            .collect();
        let thinning = (0..unthinned_arity)
            .filter(|c| !columns_in_key.contains_key(c))
            .collect();
        (permutation, thinning)
    }

    /// Given the permutations (see [`permutation_for_arrangement`] and
    /// (`dataflow::plan::AvailableCollections`) corresponding to two
    /// collections with the same key arity,
    /// computes the permutation for the result of joining them.
    pub fn join_permutations(
        key_arity: usize,
        stream_permutation: Vec<usize>,
        thinned_stream_arity: usize,
        lookup_permutation: Vec<usize>,
    ) -> BTreeMap<usize, usize> {
        let stream_arity = stream_permutation.len();
        let lookup_arity = lookup_permutation.len();

        (0..stream_arity + lookup_arity)
            .map(|i| {
                let location = if i < stream_arity {
                    stream_permutation[i]
                } else {
                    let location_in_lookup = lookup_permutation[i - stream_arity];
                    if location_in_lookup < key_arity {
                        location_in_lookup
                    } else {
                        location_in_lookup + thinned_stream_arity
                    }
                };
                (i, location)
            })
            .collect()
    }
}

pub mod plan {
    use std::iter;

    use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
    use mz_repr::{Datum, Diff, Row, RowArena};
    use proptest::prelude::*;
    use proptest_derive::Arbitrary;
    use serde::{Deserialize, Serialize};

    use crate::{
        func, BinaryFunc, EvalError, MapFilterProject, MirScalarExpr, ProtoMfpPlan,
        ProtoSafeMfpPlan, UnaryFunc, UnmaterializableFunc,
    };

    /// A wrapper type which indicates it is safe to simply evaluate all expressions.
    #[derive(Arbitrary, Clone, Debug, Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
    pub struct SafeMfpPlan {
        pub(crate) mfp: MapFilterProject,
    }

    impl RustType<ProtoSafeMfpPlan> for SafeMfpPlan {
        fn into_proto(&self) -> ProtoSafeMfpPlan {
            ProtoSafeMfpPlan {
                mfp: Some(self.mfp.into_proto()),
            }
        }

        fn from_proto(proto: ProtoSafeMfpPlan) -> Result<Self, TryFromProtoError> {
            Ok(SafeMfpPlan {
                mfp: proto.mfp.into_rust_if_some("ProtoSafeMfpPlan::mfp")?,
            })
        }
    }

    impl SafeMfpPlan {
        /// Remaps references to input columns according to `remap`.
        ///
        /// Leaves other column references, e.g. to newly mapped columns, unchanged.
        pub fn permute_fn<F>(&mut self, remap: F, new_arity: usize)
        where
            F: Fn(usize) -> usize,
        {
            self.mfp.permute_fn(remap, new_arity);
        }
        /// Evaluates the linear operator on a supplied list of datums.
        ///
        /// The arguments are the initial datums associated with the row,
        /// and an appropriately lifetimed arena for temporary allocations
        /// needed by scalar evaluation.
        ///
        /// An `Ok` result will either be `None` if any predicate did not
        /// evaluate to `Datum::True`, or the values of the columns listed
        /// by `self.projection` if all predicates passed. If an error
        /// occurs in the evaluation it is returned as an `Err` variant.
        /// As the evaluation exits early with failed predicates, it may
        /// miss some errors that would occur later in evaluation.
        ///
        /// The `row` is not cleared first, but emptied if the function
        /// returns `Ok(Some(row)).
        #[inline(always)]
        pub fn evaluate_into<'a, 'row>(
            &'a self,
            datums: &mut Vec<Datum<'a>>,
            arena: &'a RowArena,
            row_buf: &'row mut Row,
        ) -> Result<Option<Row>, EvalError> {
            let passed_predicates = self.evaluate_inner(datums, arena)?;
            if !passed_predicates {
                Ok(None)
            } else {
                row_buf
                    .packer()
                    .extend(self.mfp.projection.iter().map(|c| datums[*c]));
                Ok(Some(row_buf.clone()))
            }
        }

        /// A version of `evaluate` which produces an iterator over `Datum`
        /// as output.
        ///
        /// This version can be useful when one wants to capture the resulting
        /// datums without packing and then unpacking a row.
        #[inline(always)]
        pub fn evaluate_iter<'b, 'a: 'b>(
            &'a self,
            datums: &'b mut Vec<Datum<'a>>,
            arena: &'a RowArena,
        ) -> Result<Option<impl Iterator<Item = Datum<'a>> + 'b>, EvalError> {
            let passed_predicates = self.evaluate_inner(datums, arena)?;
            if !passed_predicates {
                Ok(None)
            } else {
                Ok(Some(self.mfp.projection.iter().map(move |i| datums[*i])))
            }
        }

        /// Populates `datums` with `self.expressions` and tests `self.predicates`.
        ///
        /// This does not apply `self.projection`, which is up to the calling method.
        pub fn evaluate_inner<'b, 'a: 'b>(
            &'a self,
            datums: &'b mut Vec<Datum<'a>>,
            arena: &'a RowArena,
        ) -> Result<bool, EvalError> {
            let mut expression = 0;
            for (support, predicate) in self.mfp.predicates.iter() {
                while self.mfp.input_arity + expression < *support {
                    datums.push(self.mfp.expressions[expression].eval(&datums[..], arena)?);
                    expression += 1;
                }
                if predicate.eval(&datums[..], arena)? != Datum::True {
                    return Ok(false);
                }
            }
            while expression < self.mfp.expressions.len() {
                datums.push(self.mfp.expressions[expression].eval(&datums[..], arena)?);
                expression += 1;
            }
            Ok(true)
        }

        /// Returns true if evaluation could introduce an error on non-error inputs.
        pub fn could_error(&self) -> bool {
            self.mfp.predicates.iter().any(|(_pos, e)| e.could_error())
                || self.mfp.expressions.iter().any(|e| e.could_error())
        }

        /// Returns true when `Self` is the identity.
        pub fn is_identity(&self) -> bool {
            self.mfp.is_identity()
        }
    }

    impl std::ops::Deref for SafeMfpPlan {
        type Target = MapFilterProject;
        fn deref(&self) -> &Self::Target {
            &self.mfp
        }
    }

    /// Predicates partitioned into temporal and non-temporal.
    ///
    /// Temporal predicates require some recognition to determine their
    /// structure, and it is best to do that once and re-use the results.
    ///
    /// There are restrictions on the temporal predicates we currently support.
    /// They must directly constrain `MzNow` from below or above,
    /// by expressions that do not themselves contain `MzNow`.
    /// Conjunctions of such constraints are also ok.
    #[derive(Arbitrary, Clone, Debug, PartialEq)]
    pub struct MfpPlan {
        /// Normal predicates to evaluate on `&[Datum]` and expect `Ok(Datum::True)`.
        pub(crate) mfp: SafeMfpPlan,
        /// Expressions that when evaluated lower-bound `MzNow`.
        #[proptest(strategy = "prop::collection::vec(any::<MirScalarExpr>(), 0..2)")]
        pub(crate) lower_bounds: Vec<MirScalarExpr>,
        /// Expressions that when evaluated upper-bound `MzNow`.
        #[proptest(strategy = "prop::collection::vec(any::<MirScalarExpr>(), 0..2)")]
        pub(crate) upper_bounds: Vec<MirScalarExpr>,
    }

    impl RustType<ProtoMfpPlan> for MfpPlan {
        fn into_proto(&self) -> ProtoMfpPlan {
            ProtoMfpPlan {
                mfp: Some(self.mfp.into_proto()),
                lower_bounds: self.lower_bounds.into_proto(),
                upper_bounds: self.upper_bounds.into_proto(),
            }
        }

        fn from_proto(proto: ProtoMfpPlan) -> Result<Self, TryFromProtoError> {
            Ok(MfpPlan {
                mfp: proto.mfp.into_rust_if_some("ProtoMfpPlan::mfp")?,
                lower_bounds: proto.lower_bounds.into_rust()?,
                upper_bounds: proto.upper_bounds.into_rust()?,
            })
        }
    }

    impl MfpPlan {
        /// Partitions `predicates` into non-temporal, and lower and upper temporal bounds.
        ///
        /// The first returned list is of predicates that do not contain `mz_now`.
        /// The second and third returned lists contain expressions that, once evaluated, lower
        /// and upper bound the validity interval of a record, respectively. These second two
        /// lists are populated only by binary expressions of the form
        /// ```ignore
        /// mz_now cmp_op expr
        /// ```
        /// where `cmp_op` is a comparison operator and `expr` does not contain `mz_now`.
        ///
        /// If any unsupported expression is found, for example one that uses `mz_now`
        /// in an unsupported position, an error is returned.
        pub fn create_from(mut mfp: MapFilterProject) -> Result<Self, String> {
            let mut lower_bounds = Vec::new();
            let mut upper_bounds = Vec::new();

            let mut temporal = Vec::new();

            // Optimize, to ensure that temporal predicates are move in to `mfp.predicates`.
            mfp.optimize();

            mfp.predicates.retain(|(_position, predicate)| {
                if predicate.contains_temporal() {
                    temporal.push(predicate.clone());
                    false
                } else {
                    true
                }
            });

            for predicate in temporal.into_iter() {
                // Supported temporal predicates are exclusively binary operators.
                if let MirScalarExpr::CallBinary {
                    mut func,
                    mut expr1,
                    mut expr2,
                } = predicate
                {
                    // Attempt to put `LogicalTimestamp` in the first argument position.
                    if !expr1.contains_temporal()
                        && *expr2
                            == MirScalarExpr::CallUnmaterializable(UnmaterializableFunc::MzNow)
                    {
                        std::mem::swap(&mut expr1, &mut expr2);
                        func = match func {
                            BinaryFunc::Eq => BinaryFunc::Eq,
                            BinaryFunc::Lt => BinaryFunc::Gt,
                            BinaryFunc::Lte => BinaryFunc::Gte,
                            BinaryFunc::Gt => BinaryFunc::Lt,
                            BinaryFunc::Gte => BinaryFunc::Lte,
                            x => {
                                return Err(format!(
                                    "Unsupported binary temporal operation: {:?}",
                                    x
                                ));
                            }
                        };
                    }

                    // Error if MLT is referenced in an unsupported position.
                    if expr2.contains_temporal()
                        || *expr1
                            != MirScalarExpr::CallUnmaterializable(UnmaterializableFunc::MzNow)
                    {
                        return Err(format!(
                            "Unsupported temporal predicate. Note: `mz_now()` must be directly compared to a mz_timestamp-castable expression. Expression found: {}",
                            MirScalarExpr::CallBinary { func, expr1, expr2 },
                            ));
                    }

                    // LogicalTimestamp <OP> <EXPR2> for several supported operators.
                    match func {
                        BinaryFunc::Eq => {
                            lower_bounds.push(*expr2.clone());
                            upper_bounds.push(
                                expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
                            );
                        }
                        BinaryFunc::Lt => {
                            upper_bounds.push(*expr2.clone());
                        }
                        BinaryFunc::Lte => {
                            upper_bounds.push(
                                expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
                            );
                        }
                        BinaryFunc::Gt => {
                            lower_bounds.push(
                                expr2.call_unary(UnaryFunc::StepMzTimestamp(func::StepMzTimestamp)),
                            );
                        }
                        BinaryFunc::Gte => {
                            lower_bounds.push(*expr2.clone());
                        }
                        _ => {
                            return Err(format!(
                                "Unsupported binary temporal operation: {:?}",
                                func
                            ));
                        }
                    }
                } else {
                    return Err(format!(
                        "Unsupported temporal predicate. Note: `mz_now()` must be directly compared to a non-temporal expression of mz_timestamp-castable type. Expression found: {}",
                        predicate,
                        ));
                }
            }

            Ok(Self {
                mfp: SafeMfpPlan { mfp },
                lower_bounds,
                upper_bounds,
            })
        }

        /// Indicates if the planned `MapFilterProject` emits exactly its inputs as outputs.
        pub fn is_identity(&self) -> bool {
            self.mfp.mfp.is_identity()
                && self.lower_bounds.is_empty()
                && self.upper_bounds.is_empty()
        }

        /// Returns `self`, and leaves behind an identity operator that acts on its output.
        pub fn take(&mut self) -> Self {
            let mut identity = Self {
                mfp: SafeMfpPlan {
                    mfp: MapFilterProject::new(self.mfp.projection.len()),
                },
                lower_bounds: Default::default(),
                upper_bounds: Default::default(),
            };
            std::mem::swap(self, &mut identity);
            identity
        }

        /// Attempt to convert self into a non-temporal MapFilterProject plan.
        ///
        /// If that is not possible, the original instance is returned as an error.
        #[allow(clippy::result_large_err)]
        pub fn into_nontemporal(self) -> Result<SafeMfpPlan, Self> {
            if self.lower_bounds.is_empty() && self.upper_bounds.is_empty() {
                Ok(self.mfp)
            } else {
                Err(self)
            }
        }

        /// Returns an iterator over mutable references to all non-temporal
        /// scalar expressions in the plan.
        ///
        /// The order of iteration is unspecified.
        pub fn iter_nontemporal_exprs(&mut self) -> impl Iterator<Item = &mut MirScalarExpr> {
            iter::empty()
                .chain(self.mfp.mfp.predicates.iter_mut().map(|(_, expr)| expr))
                .chain(&mut self.mfp.mfp.expressions)
                .chain(&mut self.lower_bounds)
                .chain(&mut self.upper_bounds)
        }

        /// Evaluate the predicates, temporal and non-, and return times and differences for `data`.
        ///
        /// If `self` contains only non-temporal predicates, the result will either be `(time, diff)`,
        /// or an evaluation error. If `self contains temporal predicates, the results can be times
        /// that are greater than the input `time`, and may contain negated `diff` values.
        ///
        /// The `row_builder` is not cleared first, but emptied if the function
        /// returns an iterator with any `Ok(_)` element.
        pub fn evaluate<'b, 'a: 'b, E: From<EvalError>, V: Fn(&mz_repr::Timestamp) -> bool>(
            &'a self,
            datums: &'b mut Vec<Datum<'a>>,
            arena: &'a RowArena,
            time: mz_repr::Timestamp,
            diff: Diff,
            valid_time: V,
            row_builder: &mut Row,
        ) -> impl Iterator<Item = Result<(Row, mz_repr::Timestamp, Diff), (E, mz_repr::Timestamp, Diff)>>
        {
            match self.mfp.evaluate_inner(datums, arena) {
                Err(e) => {
                    return Some(Err((e.into(), time, diff))).into_iter().chain(None);
                }
                Ok(true) => {}
                Ok(false) => {
                    return None.into_iter().chain(None);
                }
            }

            // Lower and upper bounds.
            let mut lower_bound = time;
            let mut upper_bound = None;

            // Track whether we have seen a null in either bound, as this should
            // prevent the record from being produced at any time.
            let mut null_eval = false;

            // Advance our lower bound to be at least the result of any lower bound
            // expressions.
            for l in self.lower_bounds.iter() {
                match l.eval(datums, arena) {
                    Err(e) => {
                        return Some(Err((e.into(), time, diff)))
                            .into_iter()
                            .chain(None.into_iter());
                    }
                    Ok(Datum::MzTimestamp(d)) => {
                        lower_bound = lower_bound.max(d);
                    }
                    Ok(Datum::Null) => {
                        null_eval = true;
                    }
                    x => {
                        panic!("Non-mz_timestamp value in temporal predicate: {:?}", x);
                    }
                }
            }

            // If the lower bound exceeds our `until` frontier, it should not appear in the output.
            if !valid_time(&lower_bound) {
                return None.into_iter().chain(None);
            }

            // If there are any upper bounds, determine the minimum upper bound.
            for u in self.upper_bounds.iter() {
                // We can cease as soon as the lower and upper bounds match,
                // as the update will certainly not be produced in that case.
                if upper_bound != Some(lower_bound) {
                    match u.eval(datums, arena) {
                        Err(e) => {
                            return Some(Err((e.into(), time, diff)))
                                .into_iter()
                                .chain(None.into_iter());
                        }
                        Ok(Datum::MzTimestamp(d)) => {
                            if let Some(upper) = upper_bound {
                                upper_bound = Some(upper.min(d));
                            } else {
                                upper_bound = Some(d);
                            };
                            // Force the upper bound to be at least the lower
                            // bound. The `is_some()` test should always be true
                            // due to the above block, but maintain it here in
                            // case that changes. It's hopefully optimized away.
                            if upper_bound.is_some() && upper_bound < Some(lower_bound) {
                                upper_bound = Some(lower_bound);
                            }
                        }
                        Ok(Datum::Null) => {
                            null_eval = true;
                        }
                        x => {
                            panic!("Non-mz_timestamp value in temporal predicate: {:?}", x);
                        }
                    }
                }
            }

            // If the upper bound exceeds our `until` frontier, it should not appear in the output.
            if let Some(upper) = &mut upper_bound {
                if !valid_time(upper) {
                    upper_bound = None;
                }
            }

            // Produce an output only if the upper bound exceeds the lower bound,
            // and if we did not encounter a `null` in our evaluation.
            if Some(lower_bound) != upper_bound && !null_eval {
                row_builder
                    .packer()
                    .extend(self.mfp.mfp.projection.iter().map(|c| datums[*c]));
                let upper_opt =
                    upper_bound.map(|upper_bound| Ok((row_builder.clone(), upper_bound, -diff)));
                let lower = Some(Ok((row_builder.clone(), lower_bound, diff)));
                lower.into_iter().chain(upper_opt)
            } else {
                None.into_iter().chain(None)
            }
        }

        /// Returns true if evaluation could introduce an error on non-error inputs.
        pub fn could_error(&self) -> bool {
            self.mfp.could_error()
                || self.lower_bounds.iter().any(|e| e.could_error())
                || self.upper_bounds.iter().any(|e| e.could_error())
        }

        /// Indicates that `Self` ignores its input to the extent that it can be evaluated on `&[]`.
        ///
        /// At the moment, this is only true if it projects away all columns and applies no filters,
        /// but it could be extended to plans that produce literals independent of the input.
        pub fn ignores_input(&self) -> bool {
            self.lower_bounds.is_empty()
                && self.upper_bounds.is_empty()
                && self.mfp.mfp.projection.is_empty()
                && self.mfp.mfp.predicates.is_empty()
        }
    }
}

#[cfg(test)]
mod tests {
    use mz_ore::assert_ok;
    use mz_proto::protobuf_roundtrip;

    use crate::linear::plan::*;

    use super::*;

    proptest! {
        #![proptest_config(ProptestConfig::with_cases(32))]

        #[mz_ore::test]
        #[cfg_attr(miri, ignore)] // too slow
        fn mfp_plan_protobuf_roundtrip(expect in any::<MfpPlan>()) {
            let actual = protobuf_roundtrip::<_, ProtoMfpPlan>(&expect);
            assert_ok!(actual);
            assert_eq!(actual.unwrap(), expect);
        }
    }
}