1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
// Clippy's cognitive complexity is easy to reach.
//#![allow(clippy::cognitive_complexity)]
//! Determines the join implementation for join operators.
//!
//! This includes determining the type of join (e.g. differential linear, or delta queries),
//! determining the orders of collections, lifting predicates if useful arrangements exist,
//! and identifying opportunities to use indexes to replace filters.
use std::collections::BTreeMap;
use mz_expr::visit::{Visit, VisitChildren};
use mz_expr::JoinImplementation::{Differential, IndexedFilter, Unimplemented};
use mz_expr::{
FilterCharacteristics, Id, JoinInputCharacteristics, JoinInputMapper, MapFilterProject,
MirRelationExpr, MirScalarExpr, RECURSION_LIMIT,
};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_ore::{soft_assert_or_log, soft_panic_or_log};
use mz_repr::optimize::OptimizerFeatures;
use crate::analysis::{Cardinality, DerivedBuilder};
use crate::join_implementation::index_map::IndexMap;
use crate::predicate_pushdown::PredicatePushdown;
use crate::{StatisticsOracle, TransformCtx, TransformError};
/// Determines the join implementation for join operators.
#[derive(Debug)]
pub struct JoinImplementation {
recursion_guard: RecursionGuard,
}
impl Default for JoinImplementation {
/// Construct a new [`JoinImplementation`] where `recursion_guard`
/// is initialized with [`RECURSION_LIMIT`] as limit.
fn default() -> JoinImplementation {
JoinImplementation {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for JoinImplementation {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for JoinImplementation {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "join_implementation")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), TransformError> {
let result = self.action_recursive(
relation,
&mut IndexMap::new(ctx.indexes),
ctx.stats,
ctx.features,
);
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl JoinImplementation {
/// Pre-order visitor for each `MirRelationExpr` to find join operators.
///
/// This method accumulates state about let-bound arrangements, so that
/// join operators can more accurately assess their available arrangements.
pub fn action_recursive(
&self,
relation: &mut MirRelationExpr,
indexes: &mut IndexMap,
stats: &dyn StatisticsOracle,
features: &OptimizerFeatures,
) -> Result<(), TransformError> {
self.checked_recur(|_| {
if let MirRelationExpr::Let { id, value, body } = relation {
self.action_recursive(value, indexes, stats, features)?;
match &**value {
MirRelationExpr::ArrangeBy { keys, .. } => {
for key in keys {
indexes.add_local(*id, key.clone());
}
}
MirRelationExpr::Reduce { group_key, .. } => {
indexes.add_local(
*id,
(0..group_key.len()).map(MirScalarExpr::Column).collect(),
);
}
_ => {}
}
self.action_recursive(body, indexes, stats, features)?;
indexes.remove_local(*id);
Ok(())
} else {
let (mfp, mfp_input) =
MapFilterProject::extract_non_errors_from_expr_ref_mut(relation);
mfp_input.try_visit_mut_children(|e| {
self.action_recursive(e, indexes, stats, features)
})?;
self.action(mfp_input, mfp, indexes, stats, features)?;
Ok(())
}
})
}
/// Determines the join implementation for join operators.
pub fn action(
&self,
relation: &mut MirRelationExpr,
mfp_above: MapFilterProject,
indexes: &IndexMap,
stats: &dyn StatisticsOracle,
features: &OptimizerFeatures,
) -> Result<(), TransformError> {
if let MirRelationExpr::Join {
inputs,
equivalences,
// (Note that `JoinImplementation` runs in a fixpoint loop.)
// If the current implementation is
// - Unimplemented, then we need to come up with an implementation.
// - Differential, then we consider switching to a Delta join, because we might have
// inserted some ArrangeBys that create new arrangements when we came up with the
// Differential plan, in which case a Delta join might have become viable.
// - Delta, then we are good already.
// - IndexedFilter, then we just leave that alone, because those are out of scope
// for JoinImplementation (they are created by `LiteralConstraints`).
// We don't want to change from a Differential plan to an other Differential plan, or
// from a Delta plan to an other Delta plan, because the second run cannot distinguish
// between an ArrangeBy that marks an already existing arrangement and an ArrangeBy
// that was inserted by a previous run of JoinImplementation. (We should eventually
// refactor this to make ArrangeBy unambiguous somehow. Maybe move JoinImplementation
// to the lowering.)
implementation: implementation @ (Unimplemented | Differential(..)),
} = relation
{
// If we eagerly plan delta joins, we don't need the second run to "pick up" delta joins
// that could be planned with the arrangements from a differential. If such a delta
// join were viable, we'd have already planned it the first time.
if features.enable_eager_delta_joins && !matches!(implementation, Unimplemented) {
return Ok(());
}
let input_types = inputs.iter().map(|i| i.typ()).collect::<Vec<_>>();
// Canonicalize the equivalence classes
if matches!(implementation, Unimplemented) {
// Let's do this only if it's the first run of JoinImplementation, in which case we
// are guaranteed to produce a new plan, which will be compatible with the modified
// equivalences from the below call. Otherwise, if we already have a Differential or
// a Delta join, then we might discard the new plan and go with the old plan, which
// was created previously for the old equivalences, and might be invalid for the
// modified equivalences from the below call. Note that this issue can arise only if
// `canonicalize_equivalences` is not idempotent, which unfortunately seems to be
// the case.
mz_expr::canonicalize::canonicalize_equivalences(
equivalences,
input_types.iter().map(|t| &t.column_types),
);
}
// Common information of broad utility.
let input_mapper = JoinInputMapper::new_from_input_types(&input_types);
// The first fundamental question is whether we should employ a delta query or not.
//
// Here we conservatively use the rule that if sufficient arrangements exist we will
// use a delta query (except for 2-input joins). (With eager delta joins, we will
// settle for fewer arrangements in the delta join than in the differential join.)
//
// An arrangement is considered available for an input
// - if it is a `Get` with columns present in `indexes`,
// - or the same wrapped by an IndexedFilter,
// - if it is an `ArrangeBy` with the columns present (note that the ArrangeBy might
// have been inserted by a previous run of JoinImplementation),
// - if it is a `Reduce` whose output is arranged the right way,
// - if it is a filter wrapped around either of these (see the mfp extraction).
//
// The `IndexedFilter` case above is to avoid losing some Delta joins
// due to `IndexedFilter` on a join input. This means that in the absolute worst
// case (when the `IndexedFilter` doesn't filter out anything), we will fully
// re-create some arrangements that we already have for that input. This worst case
// is still better than what can happen if we lose a Delta join: Differential joins
// will create several new arrangements that doesn't even have a size bound, i.e.,
// they might be larger than any user-created index.
let unique_keys = input_types
.into_iter()
.map(|typ| typ.keys)
.collect::<Vec<_>>();
let mut available_arrangements = vec![Vec::new(); inputs.len()];
let mut filters = Vec::with_capacity(inputs.len());
let mut cardinalities = Vec::with_capacity(inputs.len());
// We figure out what predicates from mfp_above could be pushed to which input.
// We won't actually push these down now; this just informs FilterCharacteristics.
let (map, mut filter, _) = mfp_above.as_map_filter_project();
let all_errors = filter.iter().all(|p| p.is_literal_err());
let (_, pushed_through_map) = PredicatePushdown::push_filters_through_map(
&map,
&mut filter,
mfp_above.input_arity,
all_errors,
)?;
let (_, push_downs) = PredicatePushdown::push_filters_through_join(
&input_mapper,
equivalences,
pushed_through_map,
);
for index in 0..inputs.len() {
// We can work around mfps, as we can lift the mfps into the join execution.
let (mfp, input) = MapFilterProject::extract_non_errors_from_expr(&inputs[index]);
let (_, filter, project) = mfp.as_map_filter_project();
// We gather filter characteristics:
// - From the filter that is directly at the top mfp of the input.
// - IndexedFilter joins are constructed from literal equality filters.
// - If the input is an ArrangeBy, then we gather filter characteristics from
// the mfp below the ArrangeBy. (JoinImplementation often inserts ArrangeBys.)
// - From filters that could be pushed down from above the join to this input.
// (In LIR, these will be executed right after the join path executes the join
// for this input.)
// - (No need to look behind Gets, see the inline_mfp argument of RelationCSE.)
let mut characteristics = FilterCharacteristics::filter_characteristics(&filter)?;
if matches!(
input,
MirRelationExpr::Join {
implementation: IndexedFilter(..),
..
}
) {
characteristics.add_literal_equality();
}
if let MirRelationExpr::ArrangeBy {
input: arrange_by_input,
..
} = input
{
let (mfp, input) =
MapFilterProject::extract_non_errors_from_expr(arrange_by_input);
let (_, filter, _) = mfp.as_map_filter_project();
characteristics |= FilterCharacteristics::filter_characteristics(&filter)?;
if matches!(
input,
MirRelationExpr::Join {
implementation: IndexedFilter(..),
..
}
) {
characteristics.add_literal_equality();
}
}
let push_down_characteristics =
FilterCharacteristics::filter_characteristics(&push_downs[index])?;
let push_down_factor = push_down_characteristics.worst_case_scaling_factor();
characteristics |= push_down_characteristics;
// Estimate cardinality
if features.enable_cardinality_estimates {
let mut builder = DerivedBuilder::new(features);
// TODO(mgree): it would be good to not have to copy the statistics here
builder.require(Cardinality::with_stats(stats.as_map()));
let derived = builder.visit(input);
let estimate = *derived.as_view().value::<Cardinality>().unwrap();
// we've already accounted for the filters _in_ the term; these capture the ones above
let scaled = estimate * push_down_factor;
cardinalities.push(scaled.rounded());
} else {
cardinalities.push(None);
}
filters.push(characteristics);
// Collect available arrangements on this input.
match input {
MirRelationExpr::Get { id, typ: _, .. } => {
available_arrangements[index]
.extend(indexes.get(*id).map(|key| key.to_vec()));
}
MirRelationExpr::ArrangeBy { input, keys } => {
// We may use any presented arrangement keys.
available_arrangements[index].extend(keys.clone());
if let MirRelationExpr::Get { id, typ: _, .. } = &**input {
available_arrangements[index]
.extend(indexes.get(*id).map(|key| key.to_vec()));
}
}
MirRelationExpr::Reduce { group_key, .. } => {
// The first `group_key.len()` columns form an arrangement key.
available_arrangements[index]
.push((0..group_key.len()).map(MirScalarExpr::Column).collect());
}
MirRelationExpr::Join {
implementation: IndexedFilter(id, ..),
..
} => {
available_arrangements[index]
.extend(indexes.get(Id::Global(id.clone())).map(|key| key.to_vec()));
}
_ => {}
}
available_arrangements[index].sort();
available_arrangements[index].dedup();
let reverse_project = project
.into_iter()
.enumerate()
.map(|(i, c)| (c, i))
.collect::<BTreeMap<_, _>>();
// Eliminate arrangements referring to columns that have been
// projected away by surrounding MFPs.
available_arrangements[index].retain(|key| {
key.iter()
.all(|k| k.support().iter().all(|c| reverse_project.contains_key(c)))
});
// Permute arrangements so columns reference what is after the MFP.
for key in available_arrangements[index].iter_mut() {
for k in key.iter_mut() {
k.permute_map(&reverse_project);
}
}
// Currently we only support using arrangements all of whose
// key components can be found in some equivalence.
// Note: because `order_input` currently only finds arrangements
// with exact key matches, the code below can be removed with no
// change in behavior, but this is being kept for a future
// TODO: expand `order_input`
available_arrangements[index].retain(|key| {
key.iter().all(|k| {
let k = input_mapper.map_expr_to_global(k.clone(), index);
equivalences
.iter()
.any(|equivalence| equivalence.contains(&k))
})
});
}
let old_implementation = implementation.clone();
let num_inputs = inputs.len();
// We've already planned a differential join... should we replace it with a delta join?
//
// This code path is only active when `eager_delta_joins` is false.
if matches!(old_implementation, Differential(..)) {
soft_assert_or_log!(
!features.enable_eager_delta_joins,
"eager delta joins run join implementation just once"
);
// Binary joins can't be delta joins---give up.
if inputs.len() <= 2 {
return Ok(());
}
// Only plan a delta join if it's no new arrangements (beyond what differential planned).
if let Ok((delta_query_plan, 0)) = delta_queries::plan(
relation,
&input_mapper,
&available_arrangements,
&unique_keys,
&cardinalities,
&filters,
) {
tracing::debug!(plan = ?delta_query_plan, "replacing differential join with delta join");
*relation = delta_query_plan;
}
return Ok(());
}
// To have reached here, we must be in our first run of join planning.
//
// We plan a differential join first.
let (differential_query_plan, differential_new_arrangements) = differential::plan(
relation,
&input_mapper,
&available_arrangements,
&unique_keys,
&cardinalities,
&filters,
)
.expect("Failed to produce a differential join plan");
// Binary joins _must_ be differential. We won't plan a delta join.
if num_inputs <= 2 {
// if inputs.len() == 0 then something is very wrong.
soft_assert_or_log!(num_inputs != 0, "join with no inputs");
// if inputs.len() == 1:
// Single input joins are filters and should be planned as
// differential plans instead of delta queries. Because a
// a filter gets converted into a single input join only when
// there are existing arrangements, without this early return,
// filters will always be planned as delta queries.
// Note: This can actually occur, see github-24511.slt.
//
// if inputs.len() == 2:
// We decided to always plan this as a differential join for now, because the usual
// advantage of a Delta join avoiding intermediate arrangements doesn't apply.
// See more details here:
// https://github.com/MaterializeInc/materialize/pull/16099#issuecomment-1316857374
// https://github.com/MaterializeInc/materialize/pull/17708#discussion_r1112848747
*relation = differential_query_plan;
return Ok(());
}
// We are planning a multiway join for the first time.
//
// We compare the delta and differential join plans.
//
// A delta query requires that, for every path, there is an arrangement for every
// input except for the starting one. Such queries are viable when:
//
// (a) all the arrangements already exist, or
// (b) both:
// (i) we wouldn't create more arrangements than a differential join would
// (ii) `enable_eager_delta_joins` is on
//
// A differential join of k relations requires k-2 arrangements of intermediate
// results (plus k arrangements of the inputs).
//
// Consider A ⨝ B ⨝ C ⨝ D. If planned as a differential join, we might have:
// A » B » C » D
// This corresponds to the tree:
//
// A B
// \ /
// ⨝ C
// \ /
// ⨝ D
// \ /
// ⨝
//
// At the two internal joins, the differential join will need two new arrangements.
//
// TODO(mgree): with this refactoring, we should compute `orders` once---both joins
// call `optimize_orders` and we can save some work.
match delta_queries::plan(
relation,
&input_mapper,
&available_arrangements,
&unique_keys,
&cardinalities,
&filters,
) {
// If delta plan's inputs need no new arrangements, pick the delta plan.
Ok((delta_query_plan, 0)) => {
soft_assert_or_log!(
matches!(old_implementation, Unimplemented | Differential(..)),
"delta query plans should not be planned twice"
);
tracing::debug!(
plan = ?delta_query_plan,
differential_new_arrangements = differential_new_arrangements,
"picking delta query plan (no new arrangements)");
*relation = delta_query_plan;
}
// If the delta plan needs new arrangements, compare with the differential plan.
Ok((delta_query_plan, delta_new_arrangements)) => {
tracing::debug!(
delta_new_arrangements = delta_new_arrangements,
differential_new_arrangements = differential_new_arrangements,
"comparing delta and differential joins",
);
if features.enable_eager_delta_joins
&& delta_new_arrangements <= differential_new_arrangements
{
// If we're eagerly planning delta joins, pick the delta plan if it's more economical.
tracing::debug!(
plan = ?delta_query_plan,
"picking delta query plan");
*relation = delta_query_plan;
} else if let Unimplemented = old_implementation {
// If we haven't planned the join yet, use the differential plan.
tracing::debug!(
plan = ?differential_query_plan,
"picking differential query plan");
*relation = differential_query_plan;
} else {
// But don't replace an existing differential plan.
tracing::debug!(plan = ?old_implementation, "keeping old plan");
soft_assert_or_log!(
matches!(old_implementation, Differential(..)),
"implemented plan in second run of join implementation should be differential \
if the delta plan is not viable")
}
}
// If we can't plan a delta join, plan a differential join.
Err(err) => {
soft_panic_or_log!("delta planning failed: {err}");
tracing::debug!(
plan = ?differential_query_plan,
"picking differential query plan (delta planning failed)");
*relation = differential_query_plan;
}
}
}
Ok(())
}
}
mod index_map {
use std::collections::BTreeMap;
use mz_expr::{Id, LocalId, MirScalarExpr};
use crate::IndexOracle;
/// Keeps track of local and global indexes available while descending
/// a `MirRelationExpr`.
#[derive(Debug)]
pub struct IndexMap<'a> {
local: BTreeMap<LocalId, Vec<Vec<MirScalarExpr>>>,
global: &'a dyn IndexOracle,
}
impl IndexMap<'_> {
/// Creates a new index map with knowledge of the provided global indexes.
pub fn new(global: &dyn IndexOracle) -> IndexMap {
IndexMap {
local: BTreeMap::new(),
global,
}
}
/// Adds a local index on the specified collection with the specified key.
pub fn add_local(&mut self, id: LocalId, key: Vec<MirScalarExpr>) {
self.local.entry(id).or_default().push(key)
}
/// Removes all local indexes on the specified collection.
pub fn remove_local(&mut self, id: LocalId) {
self.local.remove(&id);
}
pub fn get(&self, id: Id) -> Box<dyn Iterator<Item = &[MirScalarExpr]> + '_> {
match id {
Id::Global(id) => Box::new(self.global.indexes_on(id).map(|(_idx_id, key)| key)),
Id::Local(id) => Box::new(
self.local
.get(&id)
.into_iter()
.flatten()
.map(|x| x.as_slice()),
),
}
}
}
}
mod delta_queries {
use std::collections::BTreeSet;
use mz_expr::{
FilterCharacteristics, JoinImplementation, JoinInputMapper, MirRelationExpr, MirScalarExpr,
};
use crate::TransformError;
/// Creates a delta query plan, and any predicates that need to be lifted.
/// It also returns the number of new arrangements necessary for this plan.
///
/// The method returns `Err` if any errors occur during planning.
pub fn plan(
join: &MirRelationExpr,
input_mapper: &JoinInputMapper,
available: &[Vec<Vec<MirScalarExpr>>],
unique_keys: &[Vec<Vec<usize>>],
cardinalities: &[Option<usize>],
filters: &[FilterCharacteristics],
) -> Result<(MirRelationExpr, usize), TransformError> {
let mut new_join = join.clone();
if let MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} = &mut new_join
{
// Determine a viable order for each relation, or return `Err` if none found.
let orders = super::optimize_orders(
equivalences,
available,
unique_keys,
cardinalities,
filters,
input_mapper,
)?;
// Count new arrangements.
let new_arrangements: usize =
orders
.iter()
.flat_map(|o| {
o.iter().skip(1).filter_map(|(c, key, input)| {
if c.arranged {
None
} else {
Some((input, key))
}
})
})
.collect::<BTreeSet<_>>()
.len();
// Convert the order information into specific (input, key, characteristics) information.
let mut orders = orders
.into_iter()
.map(|o| {
o.into_iter()
.skip(1)
.map(|(c, key, r)| (r, key, Some(c)))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// Implement arrangements in each of the inputs.
let (lifted_mfp, lifted_projections) =
super::implement_arrangements(inputs, available, orders.iter().flatten());
// Permute `order` to compensate for projections being lifted as part of
// the mfp lifting in `implement_arrangements`.
orders
.iter_mut()
.for_each(|order| super::permute_order(order, &lifted_projections));
*implementation = JoinImplementation::DeltaQuery(orders);
super::install_lifted_mfp(&mut new_join, lifted_mfp)?;
// Hooray done!
Ok((new_join, new_arrangements))
} else {
Err(TransformError::Internal(String::from(
"delta_queries::plan call on non-join expression",
)))
}
}
}
mod differential {
use std::collections::BTreeSet;
use mz_expr::{JoinImplementation, JoinInputMapper, MirRelationExpr, MirScalarExpr};
use mz_ore::soft_assert_eq_or_log;
use crate::join_implementation::{FilterCharacteristics, JoinInputCharacteristics};
use crate::TransformError;
/// Creates a linear differential plan, and any predicates that need to be lifted.
/// It also returns the number of new arrangements necessary for this plan.
pub fn plan(
join: &MirRelationExpr,
input_mapper: &JoinInputMapper,
available: &[Vec<Vec<MirScalarExpr>>],
unique_keys: &[Vec<Vec<usize>>],
cardinalities: &[Option<usize>],
filters: &[FilterCharacteristics],
) -> Result<(MirRelationExpr, usize), TransformError> {
let mut new_join = join.clone();
if let MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} = &mut new_join
{
// We compute one order for each possible starting point, and we will choose one from
// these.
//
// It is an invariant that the orders are in input order: the ith order begins with the ith input.
//
// We could change this preference at any point, but the list of orders should still inform.
// Important, we should choose something stable under re-ordering, to converge under fixed
// point iteration; we choose to start with the first input optimizing our criteria, which
// should remain stable even when promoted to the first position.
let mut orders = super::optimize_orders(
equivalences,
available,
unique_keys,
cardinalities,
filters,
input_mapper,
)?;
// Count new arrangements.
//
// We collect the count for each input, to be used to calculate `new_arrangements` below.
let new_input_arrangements: Vec<usize> = orders
.iter()
.map(|o| {
o.iter()
.filter_map(|(c, key, input)| {
if c.arranged {
None
} else {
Some((*input, key.clone()))
}
})
.collect::<BTreeSet<_>>()
.len()
})
.collect();
// Inside each order, we take the `FilterCharacteristics` from each element, and OR it
// to every other element to the right. This is because we are gonna be looking for the
// worst `Characteristic` in every order, and for this it makes sense to include a
// filter in a `Characteristic` if the filter was applied not just at that input but
// any input before. For examples, see chbench.slt Query 02 and 11.
orders.iter_mut().for_each(|order| {
let mut sum = FilterCharacteristics::none();
for (JoinInputCharacteristics { filters, .. }, _, _) in order {
*filters |= sum;
sum = filters.clone();
}
});
// `orders` has one order for each starting collection, and now we have to choose one
// from these. First, we find the worst `Characteristics` inside each order, and then we
// find the best one among these across all orders, which goes into
// `max_min_characteristics`.
let max_min_characteristics = orders
.iter()
.flat_map(|order| order.iter().map(|(c, _, _)| c.clone()).min())
.max();
let mut order = if let Some(max_min_characteristics) = max_min_characteristics {
orders
.into_iter()
.filter(|o| {
o.iter().map(|(c, _, _)| c).min().unwrap() == &max_min_characteristics
})
// It can happen that `orders` has multiple such orders that have the same worst
// `Characteristic` as `max_min_characteristics`. In this case, we go beyond the
// worst `Characteristic`: we inspect the entire `Characteristic` vector of each
// of these orders, and choose the best among these. This pushes bad stuff to
// happen later, by which time we might have applied some filters.
.max_by_key(|o| o.clone())
.ok_or_else(|| {
TransformError::Internal(String::from(
"could not find max-min characteristics",
))
})?
.into_iter()
.map(|(c, key, r)| (r, key, Some(c)))
.collect::<Vec<_>>()
} else {
// if max_min_characteristics is None, then there must only be
// one input and thus only one order in orders
soft_assert_eq_or_log!(orders.len(), 1);
orders
.remove(0)
.into_iter()
.map(|(c, key, r)| (r, key, Some(c)))
.collect::<Vec<_>>()
};
let (start, mut start_key, start_characteristics) = order[0].clone();
// Count new arrangements for this choice of ordering.
let new_arrangements = inputs.len().saturating_sub(2) + new_input_arrangements[start];
// Implement arrangements in each of the inputs.
let (lifted_mfp, lifted_projections) =
super::implement_arrangements(inputs, available, order.iter());
// Permute `start_key` and `order` to compensate for projections being lifted as part of
// the mfp lifting in `implement_arrangements`.
if let Some(proj) = &lifted_projections[start] {
start_key.iter_mut().for_each(|k| {
k.permute(proj);
});
}
super::permute_order(&mut order, &lifted_projections);
// now that the starting arrangement has been implemented,
// remove it from `order` so `order` only contains information
// about the other inputs
order.remove(0);
// Install the implementation.
*implementation = JoinImplementation::Differential(
(start, Some(start_key), start_characteristics),
order,
);
super::install_lifted_mfp(&mut new_join, lifted_mfp)?;
// Hooray done!
Ok((new_join, new_arrangements))
} else {
Err(TransformError::Internal(String::from(
"differential::plan call on non-join expression.",
)))
}
}
}
/// Modify `inputs` to ensure specified arrangements are available.
///
/// Lift filter predicates when all needed arrangements are otherwise available.
///
/// Returns
/// - The lifted mfps combined into one mfp.
/// - Permutations for each input, which were lifted as part of the mfp lifting. These should be
/// applied to the join order.
fn implement_arrangements<'a>(
inputs: &mut [MirRelationExpr],
available_arrangements: &[Vec<Vec<MirScalarExpr>>],
needed_arrangements: impl Iterator<
Item = &'a (usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>),
>,
) -> (MapFilterProject, Vec<Option<Vec<usize>>>) {
// Collect needed arrangements by source index.
let mut needed = vec![Vec::new(); inputs.len()];
for (index, key, _characteristics) in needed_arrangements {
needed[*index].push(key.clone());
}
let mut lifted_mfps = vec![None; inputs.len()];
let mut lifted_projections = vec![None; inputs.len()];
// Transform inputs[index] based on needed and available arrangements.
// Specifically, lift intervening mfps if all arrangements exist.
for (index, needed) in needed.iter_mut().enumerate() {
needed.sort();
needed.dedup();
// We should lift any mfps, iff all arrangements are otherwise available.
if !needed.is_empty()
&& needed
.iter()
.all(|key| available_arrangements[index].contains(key))
{
lifted_mfps[index] = Some(MapFilterProject::extract_non_errors_from_expr_mut(
&mut inputs[index],
));
}
// Clean up existing arrangements, and install one with the needed keys.
while let MirRelationExpr::ArrangeBy { input: inner, .. } = &mut inputs[index] {
inputs[index] = inner.take_dangerous();
}
// If a mfp was lifted in order to install the arrangement, permute the arrangement and
// save the lifted projection.
if let Some(lifted_mfp) = &lifted_mfps[index] {
let (_, _, project) = lifted_mfp.as_map_filter_project();
for arrangement_key in needed.iter_mut() {
for k in arrangement_key.iter_mut() {
k.permute(&project);
}
}
lifted_projections[index] = Some(project);
}
if !needed.is_empty() {
inputs[index] = MirRelationExpr::arrange_by(inputs[index].take_dangerous(), needed);
}
}
// Combine lifted mfps into one.
let new_join_mapper = JoinInputMapper::new(inputs);
let mut arity = new_join_mapper.total_columns();
let combined_mfp = MapFilterProject::new(arity);
let mut combined_filter = Vec::new();
let mut combined_map = Vec::new();
let mut combined_project = Vec::new();
for (index, lifted_mfp) in lifted_mfps.into_iter().enumerate() {
if let Some(mut lifted_mfp) = lifted_mfp {
lifted_mfp.permute(
// globalize all input column references
new_join_mapper
.local_columns(index)
.zip(new_join_mapper.global_columns(index))
.collect(),
// shift the position of scalars to be after the last input
// column
arity,
);
let (mut map, mut filter, mut project) = lifted_mfp.as_map_filter_project();
arity += map.len();
combined_map.append(&mut map);
combined_filter.append(&mut filter);
combined_project.append(&mut project);
} else {
combined_project.extend(new_join_mapper.global_columns(index));
}
}
(
combined_mfp
.map(combined_map)
.filter(combined_filter)
.project(combined_project),
lifted_projections,
)
}
fn install_lifted_mfp(
new_join: &mut MirRelationExpr,
mfp: MapFilterProject,
) -> Result<(), TransformError> {
if !mfp.is_identity() {
let (mut map, mut filter, project) = mfp.as_map_filter_project();
if let MirRelationExpr::Join { equivalences, .. } = new_join {
for equivalence in equivalences.iter_mut() {
for expr in equivalence.iter_mut() {
// permute `equivalences` in light of the project being lifted
expr.permute(&project);
// if column references refer to mapped expressions that have been
// lifted, replace the column reference with the mapped expression.
#[allow(deprecated)]
expr.visit_mut_pre_post(
&mut |e| {
if let MirScalarExpr::Column(c) = e {
if *c >= mfp.input_arity {
*e = map[*c - mfp.input_arity].clone();
}
}
None
},
&mut |_| {},
)?;
}
}
// Canonicalize scalar expressions in maps and filters with respect to the join
// equivalences. This often makes some filters identical, which are then removed.
// The identical filters come from either
// - lifting several predicates that originally were pushed down by localizing to more
// than one inputs;
// - individual IS NOT NULL filters on each of the inputs, which become identical
// when rewritten using the join equivalences.
// (This allows for almost the same optimizations as when `Demand`
// used to insert Projections that were marking some columns to be
// identical, when Demand used to run after `JoinImplementation`.)
let canonicalizer_map = mz_expr::canonicalize::get_canonicalizer_map(equivalences);
for expr in map.iter_mut().chain(filter.iter_mut()) {
expr.visit_mut_post(&mut |e| {
if let Some(canonical_expr) = canonicalizer_map.get(e) {
*e = canonical_expr.clone();
}
})?
}
}
*new_join = new_join.clone().map(map).filter(filter).project(project);
}
Ok(())
}
/// Permute the keys in `order` to compensate for projections being lifted from inputs.
/// `lifted_projections` has an optional projection for each input.
fn permute_order(
order: &mut Vec<(usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>)>,
lifted_projections: &Vec<Option<Vec<usize>>>,
) {
order.iter_mut().for_each(|(index, key, _)| {
key.iter_mut().for_each(|kc| {
if let Some(proj) = &lifted_projections[*index] {
kc.permute(proj);
}
})
})
}
// Computes the best join orders for each input.
//
// If there are N inputs, returns N orders, with the ith input starting the ith order.
fn optimize_orders(
equivalences: &[Vec<MirScalarExpr>], // join equivalences: inside a Vec, the exprs are equivalent
available: &[Vec<Vec<MirScalarExpr>>], // available arrangements per input
unique_keys: &[Vec<Vec<usize>>], // unique keys per input
cardinalities: &[Option<usize>], // cardinalities of input relations
filters: &[FilterCharacteristics], // filter characteristics per input
input_mapper: &JoinInputMapper, // join helper
) -> Result<Vec<Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>>, TransformError> {
let mut orderer = Orderer::new(
equivalences,
available,
unique_keys,
cardinalities,
filters,
input_mapper,
);
(0..available.len())
.map(move |i| orderer.optimize_order_for(i))
.collect::<Result<Vec<_>, _>>()
}
struct Orderer<'a> {
inputs: usize,
equivalences: &'a [Vec<MirScalarExpr>],
arrangements: &'a [Vec<Vec<MirScalarExpr>>],
unique_keys: &'a [Vec<Vec<usize>>],
cardinalities: &'a [Option<usize>],
filters: &'a [FilterCharacteristics],
input_mapper: &'a JoinInputMapper,
reverse_equivalences: Vec<Vec<(usize, usize)>>,
unique_arrangement: Vec<Vec<bool>>,
order: Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>,
placed: Vec<bool>,
bound: Vec<Vec<MirScalarExpr>>,
equivalences_active: Vec<bool>,
arrangement_active: Vec<Vec<usize>>,
priority_queue:
std::collections::BinaryHeap<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>,
}
impl<'a> Orderer<'a> {
fn new(
equivalences: &'a [Vec<MirScalarExpr>],
arrangements: &'a [Vec<Vec<MirScalarExpr>>],
unique_keys: &'a [Vec<Vec<usize>>],
cardinalities: &'a [Option<usize>],
filters: &'a [FilterCharacteristics],
input_mapper: &'a JoinInputMapper,
) -> Self {
let inputs = arrangements.len();
// A map from inputs to the equivalence classes in which they are referenced.
let mut reverse_equivalences = vec![Vec::new(); inputs];
for (index, equivalence) in equivalences.iter().enumerate() {
for (index2, expr) in equivalence.iter().enumerate() {
for input in input_mapper.lookup_inputs(expr) {
reverse_equivalences[input].push((index, index2));
}
}
}
// Per-arrangement information about uniqueness of the arrangement key.
let mut unique_arrangement = vec![Vec::new(); inputs];
for (input, keys) in arrangements.iter().enumerate() {
for key in keys.iter() {
unique_arrangement[input].push(unique_keys[input].iter().any(|cols| {
cols.iter()
.all(|c| key.contains(&MirScalarExpr::Column(*c)))
}));
}
}
let order = Vec::with_capacity(inputs);
let placed = vec![false; inputs];
let bound = vec![Vec::new(); inputs];
let equivalences_active = vec![false; equivalences.len()];
let arrangement_active = vec![Vec::new(); inputs];
let priority_queue = std::collections::BinaryHeap::new();
Self {
inputs,
equivalences,
arrangements,
unique_keys,
cardinalities,
filters,
input_mapper,
reverse_equivalences,
unique_arrangement,
order,
placed,
bound,
equivalences_active,
arrangement_active,
priority_queue,
}
}
fn optimize_order_for(
&mut self,
start: usize,
) -> Result<Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>, TransformError> {
self.order.clear();
self.priority_queue.clear();
for input in 0..self.inputs {
self.placed[input] = false;
self.bound[input].clear();
self.arrangement_active[input].clear();
}
for index in 0..self.equivalences.len() {
self.equivalences_active[index] = false;
}
// Introduce cross joins as a possibility.
for input in 0..self.inputs {
let cardinality = self.cardinalities[input];
let is_unique = self.unique_keys[input].iter().any(|cols| cols.is_empty());
if let Some(pos) = self.arrangements[input]
.iter()
.position(|key| key.is_empty())
{
self.arrangement_active[input].push(pos);
self.priority_queue.push((
JoinInputCharacteristics::new(
is_unique,
0,
true,
cardinality,
self.filters[input].clone(),
input,
),
vec![],
input,
));
} else {
self.priority_queue.push((
JoinInputCharacteristics::new(
is_unique,
0,
false,
cardinality,
self.filters[input].clone(),
input,
),
vec![],
input,
));
}
}
// Main loop, ordering all the inputs.
if self.inputs > 1 {
self.order_input(start);
while self.order.len() < self.inputs - 1 {
let (characteristics, key, input) = self.priority_queue.pop().unwrap();
// put the tuple into `self.order` unless the tuple with the same
// input is already in `self.order`. For all inputs other than
// start, `self.placed[input]` is an indication of whether a
// corresponding tuple is already in `self.order`.
if !self.placed[input] {
// non-starting inputs are ordered in decreasing priority
self.order.push((characteristics, key, input));
self.order_input(input);
}
}
}
// `order` now contains all the inputs except the first. Let's create an item for the first
// input. We know which input that is, but we need to compute a key and characteristics.
// We start with some default values:
let mut start_tuple = (
JoinInputCharacteristics::new(
false,
0,
false,
self.cardinalities[start],
self.filters[start].clone(),
start,
),
vec![],
start,
);
// The key should line up with the key of the second input (if there is a second input).
// (At this point, `order[0]` is what will eventually be `order[1]`, i.e., the second input.)
if let Some((_, key, second)) = self.order.get(0) {
// for each component of the key of the second input, try to find the corresponding key
// component in the starting input
let candidate_start_key = key
.iter()
.filter_map(|k| {
let k = self.input_mapper.map_expr_to_global(k.clone(), *second);
self.input_mapper
.find_bound_expr(&k, &[start], self.equivalences)
.map(|bound_key| self.input_mapper.map_expr_to_local(bound_key))
})
.collect::<Vec<_>>();
if candidate_start_key.len() == key.len() {
let cardinality = self.cardinalities[start];
let is_unique = self.unique_keys[start].iter().any(|cols| {
cols.iter()
.all(|c| candidate_start_key.contains(&MirScalarExpr::Column(*c)))
});
let arranged = self.arrangements[start]
.iter()
.find(|arrangement_key| arrangement_key == &&candidate_start_key)
.is_some();
start_tuple = (
JoinInputCharacteristics::new(
is_unique,
candidate_start_key.len(),
arranged,
cardinality,
self.filters[start].clone(),
start,
),
candidate_start_key,
start,
);
} else {
// For the second input's key fields, there is nothing else to equate it with but
// the fields of the first input, so we should find a match for each of the fields.
// (For a later input, different fields of a key might be equated with fields coming
// from various inputs.)
// Technically, this happens as follows:
// The second input must have been placed in the `priority_queue` either
// 1) as a cross join possibility, or
// 2) when we called `order_input` on the starting input.
// In the 1) case, `key.len()` is 0. In the 2) case, it was the very first call to
// `order_input`, which means that `placed` was true only for the
// starting input, which means that `fully_supported` was true due to
// one of the expressions referring only to the starting input.
let msg = "Unreachable state in join order optimization".to_string();
return Err(TransformError::Internal(msg));
// (This couldn't be a soft_panic: we would form an arrangement with a wrong key.)
}
}
self.order.insert(0, start_tuple);
Ok(std::mem::replace(&mut self.order, Vec::new()))
}
/// Introduces a specific input and keys to the order, along with its characteristics.
///
/// This method places a next element in the order, and updates the associated state
/// about other candidates, including which columns are now bound and which potential
/// keys are available to consider (both arranged, and unarranged).
fn order_input(&mut self, input: usize) {
self.placed[input] = true;
for (equivalence, expr_index) in self.reverse_equivalences[input].iter() {
if !self.equivalences_active[*equivalence] {
// Placing `input` *may* activate the equivalence. Each of its columns
// come in to scope, which may result in an expression in `equivalence`
// becoming fully defined (when its support is contained in placed inputs)
let fully_supported = self
.input_mapper
.lookup_inputs(&self.equivalences[*equivalence][*expr_index])
.all(|i| self.placed[i]);
if fully_supported {
self.equivalences_active[*equivalence] = true;
for expr in self.equivalences[*equivalence].iter() {
// find the relations that columns in the expression belong to
let mut rels = self.input_mapper.lookup_inputs(expr);
// Skip the expression if
// * the expression is a literal -> this would translate
// to `rels` being empty
// * the expression has columns belonging to more than
// one relation -> TODO: see how we can plan better in
// this case. Arguably, if this happens, it would
// not be unreasonable to ask the user to write the
// query better.
if let Some(rel) = rels.next() {
if rels.next().is_none() {
let expr = self.input_mapper.map_expr_to_local(expr.clone());
// Update bound columns.
self.bound[rel].push(expr);
self.bound[rel].sort();
// Reconsider all available arrangements.
for (pos, key) in self.arrangements[rel].iter().enumerate() {
if !self.arrangement_active[rel].contains(&pos) {
// TODO: support the restoration of the
// following original lines, which have been
// commented out because Materialize may
// panic otherwise. The original line and comments
// here are:
// Determine if the arrangement is viable, which happens when the
// support of its key is all bound.
// if key.iter().all(|k| k.support().iter().all(|c| self.bound[*rel].contains(&ScalarExpr::Column(*c))) {
// Determine if the arrangement is viable,
// which happens when all its key components are bound.
if key.iter().all(|k| self.bound[rel].contains(k)) {
self.arrangement_active[rel].push(pos);
// TODO: This could be pre-computed, as it is independent of the order.
let is_unique = self.unique_arrangement[rel][pos];
self.priority_queue.push((
JoinInputCharacteristics::new(
is_unique,
key.len(),
true,
self.cardinalities[rel],
self.filters[rel].clone(),
rel,
),
key.clone(),
rel,
));
}
}
}
// does the relation we're joining on have a unique key wrt what's already bound?
let is_unique = self.unique_keys[rel].iter().any(|cols| {
cols.iter().all(|c| {
self.bound[rel].contains(&MirScalarExpr::Column(*c))
})
});
self.priority_queue.push((
JoinInputCharacteristics::new(
is_unique,
self.bound[rel].len(),
false,
self.cardinalities[rel],
self.filters[rel].clone(),
rel,
),
self.bound[rel].clone(),
rel,
));
}
}
}
}
}
}
}
}