1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

// Clippy's cognitive complexity is easy to reach.
//#![allow(clippy::cognitive_complexity)]

//! Determines the join implementation for join operators.
//!
//! This includes determining the type of join (e.g. differential linear, or delta queries),
//! determining the orders of collections, lifting predicates if useful arrangements exist,
//! and identifying opportunities to use indexes to replace filters.

use std::collections::BTreeMap;

use mz_expr::visit::{Visit, VisitChildren};
use mz_expr::JoinImplementation::{Differential, IndexedFilter, Unimplemented};
use mz_expr::{
    FilterCharacteristics, Id, JoinInputCharacteristics, JoinInputMapper, MapFilterProject,
    MirRelationExpr, MirScalarExpr, RECURSION_LIMIT,
};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_ore::{soft_assert_or_log, soft_panic_or_log};
use mz_repr::optimize::OptimizerFeatures;

use crate::analysis::{Cardinality, DerivedBuilder};
use crate::join_implementation::index_map::IndexMap;
use crate::predicate_pushdown::PredicatePushdown;
use crate::{StatisticsOracle, TransformCtx, TransformError};

/// Determines the join implementation for join operators.
#[derive(Debug)]
pub struct JoinImplementation {
    recursion_guard: RecursionGuard,
}

impl Default for JoinImplementation {
    /// Construct a new [`JoinImplementation`] where `recursion_guard`
    /// is initialized with [`RECURSION_LIMIT`] as limit.
    fn default() -> JoinImplementation {
        JoinImplementation {
            recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
        }
    }
}

impl CheckedRecursion for JoinImplementation {
    fn recursion_guard(&self) -> &RecursionGuard {
        &self.recursion_guard
    }
}

impl crate::Transform for JoinImplementation {
    #[mz_ore::instrument(
        target = "optimizer",
        level = "debug",
        fields(path.segment = "join_implementation")
    )]
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        ctx: &mut TransformCtx,
    ) -> Result<(), TransformError> {
        let result = self.action_recursive(
            relation,
            &mut IndexMap::new(ctx.indexes),
            ctx.stats,
            ctx.features,
        );
        mz_repr::explain::trace_plan(&*relation);
        result
    }
}

impl JoinImplementation {
    /// Pre-order visitor for each `MirRelationExpr` to find join operators.
    ///
    /// This method accumulates state about let-bound arrangements, so that
    /// join operators can more accurately assess their available arrangements.
    pub fn action_recursive(
        &self,
        relation: &mut MirRelationExpr,
        indexes: &mut IndexMap,
        stats: &dyn StatisticsOracle,
        features: &OptimizerFeatures,
    ) -> Result<(), TransformError> {
        self.checked_recur(|_| {
            if let MirRelationExpr::Let { id, value, body } = relation {
                self.action_recursive(value, indexes, stats, features)?;
                match &**value {
                    MirRelationExpr::ArrangeBy { keys, .. } => {
                        for key in keys {
                            indexes.add_local(*id, key.clone());
                        }
                    }
                    MirRelationExpr::Reduce { group_key, .. } => {
                        indexes.add_local(
                            *id,
                            (0..group_key.len()).map(MirScalarExpr::Column).collect(),
                        );
                    }
                    _ => {}
                }
                self.action_recursive(body, indexes, stats, features)?;
                indexes.remove_local(*id);
                Ok(())
            } else {
                let (mfp, mfp_input) =
                    MapFilterProject::extract_non_errors_from_expr_ref_mut(relation);
                mfp_input.try_visit_mut_children(|e| {
                    self.action_recursive(e, indexes, stats, features)
                })?;
                self.action(mfp_input, mfp, indexes, stats, features)?;
                Ok(())
            }
        })
    }

    /// Determines the join implementation for join operators.
    pub fn action(
        &self,
        relation: &mut MirRelationExpr,
        mfp_above: MapFilterProject,
        indexes: &IndexMap,
        stats: &dyn StatisticsOracle,
        features: &OptimizerFeatures,
    ) -> Result<(), TransformError> {
        if let MirRelationExpr::Join {
            inputs,
            equivalences,
            // (Note that `JoinImplementation` runs in a fixpoint loop.)
            // If the current implementation is
            //  - Unimplemented, then we need to come up with an implementation.
            //  - Differential, then we consider switching to a Delta join, because we might have
            //    inserted some ArrangeBys that create new arrangements when we came up with the
            //    Differential plan, in which case a Delta join might have become viable.
            //  - Delta, then we are good already.
            //  - IndexedFilter, then we just leave that alone, because those are out of scope
            //    for JoinImplementation (they are created by `LiteralConstraints`).
            // We don't want to change from a Differential plan to an other Differential plan, or
            // from a Delta plan to an other Delta plan, because the second run cannot distinguish
            // between an ArrangeBy that marks an already existing arrangement and an ArrangeBy
            // that was inserted by a previous run of JoinImplementation. (We should eventually
            // refactor this to make ArrangeBy unambiguous somehow. Maybe move JoinImplementation
            // to the lowering.)
            implementation: implementation @ (Unimplemented | Differential(..)),
        } = relation
        {
            // If we eagerly plan delta joins, we don't need the second run to "pick up" delta joins
            // that could be planned with the arrangements from a differential. If such a delta
            // join were viable, we'd have already planned it the first time.
            if features.enable_eager_delta_joins && !matches!(implementation, Unimplemented) {
                return Ok(());
            }

            let input_types = inputs.iter().map(|i| i.typ()).collect::<Vec<_>>();

            // Canonicalize the equivalence classes
            if matches!(implementation, Unimplemented) {
                // Let's do this only if it's the first run of JoinImplementation, in which case we
                // are guaranteed to produce a new plan, which will be compatible with the modified
                // equivalences from the below call. Otherwise, if we already have a Differential or
                // a Delta join, then we might discard the new plan and go with the old plan, which
                // was created previously for the old equivalences, and might be invalid for the
                // modified equivalences from the below call. Note that this issue can arise only if
                // `canonicalize_equivalences` is not idempotent, which unfortunately seems to be
                // the case.
                mz_expr::canonicalize::canonicalize_equivalences(
                    equivalences,
                    input_types.iter().map(|t| &t.column_types),
                );
            }

            // Common information of broad utility.
            let input_mapper = JoinInputMapper::new_from_input_types(&input_types);

            // The first fundamental question is whether we should employ a delta query or not.
            //
            // Here we conservatively use the rule that if sufficient arrangements exist we will
            // use a delta query (except for 2-input joins). (With eager delta joins, we will
            // settle for fewer arrangements in the delta join than in the differential join.)
            //
            // An arrangement is considered available for an input
            // - if it is a `Get` with columns present in `indexes`,
            //   - or the same wrapped by an IndexedFilter,
            // - if it is an `ArrangeBy` with the columns present (note that the ArrangeBy might
            //   have been inserted by a previous run of JoinImplementation),
            // - if it is a `Reduce` whose output is arranged the right way,
            // - if it is a filter wrapped around either of these (see the mfp extraction).
            //
            // The `IndexedFilter` case above is to avoid losing some Delta joins
            // due to `IndexedFilter` on a join input. This means that in the absolute worst
            // case (when the `IndexedFilter` doesn't filter out anything), we will fully
            // re-create some arrangements that we already have for that input. This worst case
            // is still better than what can happen if we lose a Delta join: Differential joins
            // will create several new arrangements that doesn't even have a size bound, i.e.,
            // they might be larger than any user-created index.

            let unique_keys = input_types
                .into_iter()
                .map(|typ| typ.keys)
                .collect::<Vec<_>>();
            let mut available_arrangements = vec![Vec::new(); inputs.len()];
            let mut filters = Vec::with_capacity(inputs.len());
            let mut cardinalities = Vec::with_capacity(inputs.len());

            // We figure out what predicates from mfp_above could be pushed to which input.
            // We won't actually push these down now; this just informs FilterCharacteristics.
            let (map, mut filter, _) = mfp_above.as_map_filter_project();
            let all_errors = filter.iter().all(|p| p.is_literal_err());
            let (_, pushed_through_map) = PredicatePushdown::push_filters_through_map(
                &map,
                &mut filter,
                mfp_above.input_arity,
                all_errors,
            )?;
            let (_, push_downs) = PredicatePushdown::push_filters_through_join(
                &input_mapper,
                equivalences,
                pushed_through_map,
            );

            for index in 0..inputs.len() {
                // We can work around mfps, as we can lift the mfps into the join execution.
                let (mfp, input) = MapFilterProject::extract_non_errors_from_expr(&inputs[index]);
                let (_, filter, project) = mfp.as_map_filter_project();

                // We gather filter characteristics:
                // - From the filter that is directly at the top mfp of the input.
                // - IndexedFilter joins are constructed from literal equality filters.
                // - If the input is an ArrangeBy, then we gather filter characteristics from
                //   the mfp below the ArrangeBy. (JoinImplementation often inserts ArrangeBys.)
                // - From filters that could be pushed down from above the join to this input.
                //   (In LIR, these will be executed right after the join path executes the join
                //   for this input.)
                // - (No need to look behind Gets, see the inline_mfp argument of RelationCSE.)
                let mut characteristics = FilterCharacteristics::filter_characteristics(&filter)?;
                if matches!(
                    input,
                    MirRelationExpr::Join {
                        implementation: IndexedFilter(..),
                        ..
                    }
                ) {
                    characteristics.add_literal_equality();
                }
                if let MirRelationExpr::ArrangeBy {
                    input: arrange_by_input,
                    ..
                } = input
                {
                    let (mfp, input) =
                        MapFilterProject::extract_non_errors_from_expr(arrange_by_input);
                    let (_, filter, _) = mfp.as_map_filter_project();
                    characteristics |= FilterCharacteristics::filter_characteristics(&filter)?;
                    if matches!(
                        input,
                        MirRelationExpr::Join {
                            implementation: IndexedFilter(..),
                            ..
                        }
                    ) {
                        characteristics.add_literal_equality();
                    }
                }
                let push_down_characteristics =
                    FilterCharacteristics::filter_characteristics(&push_downs[index])?;
                let push_down_factor = push_down_characteristics.worst_case_scaling_factor();
                characteristics |= push_down_characteristics;

                // Estimate cardinality
                if features.enable_cardinality_estimates {
                    let mut builder = DerivedBuilder::new(features);
                    // TODO(mgree): it would be good to not have to copy the statistics here
                    builder.require(Cardinality::with_stats(stats.as_map()));
                    let derived = builder.visit(input);

                    let estimate = *derived.as_view().value::<Cardinality>().unwrap();
                    // we've already accounted for the filters _in_ the term; these capture the ones above
                    let scaled = estimate * push_down_factor;
                    cardinalities.push(scaled.rounded());
                } else {
                    cardinalities.push(None);
                }

                filters.push(characteristics);

                // Collect available arrangements on this input.
                match input {
                    MirRelationExpr::Get { id, typ: _, .. } => {
                        available_arrangements[index]
                            .extend(indexes.get(*id).map(|key| key.to_vec()));
                    }
                    MirRelationExpr::ArrangeBy { input, keys } => {
                        // We may use any presented arrangement keys.
                        available_arrangements[index].extend(keys.clone());
                        if let MirRelationExpr::Get { id, typ: _, .. } = &**input {
                            available_arrangements[index]
                                .extend(indexes.get(*id).map(|key| key.to_vec()));
                        }
                    }
                    MirRelationExpr::Reduce { group_key, .. } => {
                        // The first `group_key.len()` columns form an arrangement key.
                        available_arrangements[index]
                            .push((0..group_key.len()).map(MirScalarExpr::Column).collect());
                    }
                    MirRelationExpr::Join {
                        implementation: IndexedFilter(id, ..),
                        ..
                    } => {
                        available_arrangements[index]
                            .extend(indexes.get(Id::Global(id.clone())).map(|key| key.to_vec()));
                    }
                    _ => {}
                }
                available_arrangements[index].sort();
                available_arrangements[index].dedup();
                let reverse_project = project
                    .into_iter()
                    .enumerate()
                    .map(|(i, c)| (c, i))
                    .collect::<BTreeMap<_, _>>();
                // Eliminate arrangements referring to columns that have been
                // projected away by surrounding MFPs.
                available_arrangements[index].retain(|key| {
                    key.iter()
                        .all(|k| k.support().iter().all(|c| reverse_project.contains_key(c)))
                });
                // Permute arrangements so columns reference what is after the MFP.
                for key in available_arrangements[index].iter_mut() {
                    for k in key.iter_mut() {
                        k.permute_map(&reverse_project);
                    }
                }
                // Currently we only support using arrangements all of whose
                // key components can be found in some equivalence.
                // Note: because `order_input` currently only finds arrangements
                // with exact key matches, the code below can be removed with no
                // change in behavior, but this is being kept for a future
                // TODO: expand `order_input`
                available_arrangements[index].retain(|key| {
                    key.iter().all(|k| {
                        let k = input_mapper.map_expr_to_global(k.clone(), index);
                        equivalences
                            .iter()
                            .any(|equivalence| equivalence.contains(&k))
                    })
                });
            }

            let old_implementation = implementation.clone();
            let num_inputs = inputs.len();
            // We've already planned a differential join... should we replace it with a delta join?
            //
            // This code path is only active when `eager_delta_joins` is false.
            if matches!(old_implementation, Differential(..)) {
                soft_assert_or_log!(
                    !features.enable_eager_delta_joins,
                    "eager delta joins run join implementation just once"
                );

                // Binary joins can't be delta joins---give up.
                if inputs.len() <= 2 {
                    return Ok(());
                }

                // Only plan a delta join if it's no new arrangements (beyond what differential planned).
                if let Ok((delta_query_plan, 0)) = delta_queries::plan(
                    relation,
                    &input_mapper,
                    &available_arrangements,
                    &unique_keys,
                    &cardinalities,
                    &filters,
                ) {
                    tracing::debug!(plan = ?delta_query_plan, "replacing differential join with delta join");
                    *relation = delta_query_plan;
                }

                return Ok(());
            }

            // To have reached here, we must be in our first run of join planning.
            //
            // We plan a differential join first.
            let (differential_query_plan, differential_new_arrangements) = differential::plan(
                relation,
                &input_mapper,
                &available_arrangements,
                &unique_keys,
                &cardinalities,
                &filters,
            )
            .expect("Failed to produce a differential join plan");

            // Binary joins _must_ be differential. We won't plan a delta join.
            if num_inputs <= 2 {
                // if inputs.len() == 0 then something is very wrong.
                soft_assert_or_log!(num_inputs != 0, "join with no inputs");
                // if inputs.len() == 1:
                // Single input joins are filters and should be planned as
                // differential plans instead of delta queries. Because a
                // a filter gets converted into a single input join only when
                // there are existing arrangements, without this early return,
                // filters will always be planned as delta queries.
                // Note: This can actually occur, see github-24511.slt.
                //
                // if inputs.len() == 2:
                // We decided to always plan this as a differential join for now, because the usual
                // advantage of a Delta join avoiding intermediate arrangements doesn't apply.
                // See more details here:
                // https://github.com/MaterializeInc/materialize/pull/16099#issuecomment-1316857374
                // https://github.com/MaterializeInc/materialize/pull/17708#discussion_r1112848747
                *relation = differential_query_plan;

                return Ok(());
            }

            // We are planning a multiway join for the first time.
            //
            // We compare the delta and differential join plans.
            //
            // A delta query requires that, for every path, there is an arrangement for every
            // input except for the starting one. Such queries are viable when:
            //
            //   (a) all the arrangements already exist, or
            //   (b) both:
            //       (i) we wouldn't create more arrangements than a differential join would
            //       (ii) `enable_eager_delta_joins` is on
            //
            // A differential join of k relations requires k-2 arrangements of intermediate
            // results (plus k arrangements of the inputs).
            //
            // Consider A ⨝ B ⨝ C ⨝ D. If planned as a differential join, we might have:
            //          A » B » C » D
            // This corresponds to the tree:
            //
            // A   B
            //  \ /
            //   ⨝   C
            //    \ /
            //     ⨝   D
            //      \ /
            //       ⨝
            //
            // At the two internal joins, the differential join will need two new arrangements.
            //
            // TODO(mgree): with this refactoring, we should compute `orders` once---both joins
            //              call `optimize_orders` and we can save some work.
            match delta_queries::plan(
                relation,
                &input_mapper,
                &available_arrangements,
                &unique_keys,
                &cardinalities,
                &filters,
            ) {
                // If delta plan's inputs need no new arrangements, pick the delta plan.
                Ok((delta_query_plan, 0)) => {
                    soft_assert_or_log!(
                        matches!(old_implementation, Unimplemented | Differential(..)),
                        "delta query plans should not be planned twice"
                    );
                    tracing::debug!(
                        plan = ?delta_query_plan,
                        differential_new_arrangements = differential_new_arrangements,
                        "picking delta query plan (no new arrangements)");
                    *relation = delta_query_plan;
                }
                // If the delta plan needs new arrangements, compare with the differential plan.
                Ok((delta_query_plan, delta_new_arrangements)) => {
                    tracing::debug!(
                        delta_new_arrangements = delta_new_arrangements,
                        differential_new_arrangements = differential_new_arrangements,
                        "comparing delta and differential joins",
                    );

                    if features.enable_eager_delta_joins
                        && delta_new_arrangements <= differential_new_arrangements
                    {
                        // If we're eagerly planning delta joins, pick the delta plan if it's more economical.
                        tracing::debug!(
                            plan = ?delta_query_plan,
                            "picking delta query plan");
                        *relation = delta_query_plan;
                    } else if let Unimplemented = old_implementation {
                        // If we haven't planned the join yet, use the differential plan.
                        tracing::debug!(
                            plan = ?differential_query_plan,
                            "picking differential query plan");
                        *relation = differential_query_plan;
                    } else {
                        // But don't replace an existing differential plan.
                        tracing::debug!(plan = ?old_implementation, "keeping old plan");
                        soft_assert_or_log!(
                            matches!(old_implementation, Differential(..)),
                            "implemented plan in second run of join implementation should be differential \
                             if the delta plan is not viable")
                    }
                }
                // If we can't plan a delta join, plan a differential join.
                Err(err) => {
                    soft_panic_or_log!("delta planning failed: {err}");
                    tracing::debug!(
                        plan = ?differential_query_plan,
                        "picking differential query plan (delta planning failed)");
                    *relation = differential_query_plan;
                }
            }
        }
        Ok(())
    }
}

mod index_map {
    use std::collections::BTreeMap;

    use mz_expr::{Id, LocalId, MirScalarExpr};

    use crate::IndexOracle;

    /// Keeps track of local and global indexes available while descending
    /// a `MirRelationExpr`.
    #[derive(Debug)]
    pub struct IndexMap<'a> {
        local: BTreeMap<LocalId, Vec<Vec<MirScalarExpr>>>,
        global: &'a dyn IndexOracle,
    }

    impl IndexMap<'_> {
        /// Creates a new index map with knowledge of the provided global indexes.
        pub fn new(global: &dyn IndexOracle) -> IndexMap {
            IndexMap {
                local: BTreeMap::new(),
                global,
            }
        }

        /// Adds a local index on the specified collection with the specified key.
        pub fn add_local(&mut self, id: LocalId, key: Vec<MirScalarExpr>) {
            self.local.entry(id).or_default().push(key)
        }

        /// Removes all local indexes on the specified collection.
        pub fn remove_local(&mut self, id: LocalId) {
            self.local.remove(&id);
        }

        pub fn get(&self, id: Id) -> Box<dyn Iterator<Item = &[MirScalarExpr]> + '_> {
            match id {
                Id::Global(id) => Box::new(self.global.indexes_on(id).map(|(_idx_id, key)| key)),
                Id::Local(id) => Box::new(
                    self.local
                        .get(&id)
                        .into_iter()
                        .flatten()
                        .map(|x| x.as_slice()),
                ),
            }
        }
    }
}

mod delta_queries {

    use std::collections::BTreeSet;

    use mz_expr::{
        FilterCharacteristics, JoinImplementation, JoinInputMapper, MirRelationExpr, MirScalarExpr,
    };

    use crate::TransformError;

    /// Creates a delta query plan, and any predicates that need to be lifted.
    /// It also returns the number of new arrangements necessary for this plan.
    ///
    /// The method returns `Err` if any errors occur during planning.
    pub fn plan(
        join: &MirRelationExpr,
        input_mapper: &JoinInputMapper,
        available: &[Vec<Vec<MirScalarExpr>>],
        unique_keys: &[Vec<Vec<usize>>],
        cardinalities: &[Option<usize>],
        filters: &[FilterCharacteristics],
    ) -> Result<(MirRelationExpr, usize), TransformError> {
        let mut new_join = join.clone();

        if let MirRelationExpr::Join {
            inputs,
            equivalences,
            implementation,
        } = &mut new_join
        {
            // Determine a viable order for each relation, or return `Err` if none found.
            let orders = super::optimize_orders(
                equivalences,
                available,
                unique_keys,
                cardinalities,
                filters,
                input_mapper,
            )?;

            // Count new arrangements.
            let new_arrangements: usize =
                orders
                    .iter()
                    .flat_map(|o| {
                        o.iter().skip(1).filter_map(|(c, key, input)| {
                            if c.arranged {
                                None
                            } else {
                                Some((input, key))
                            }
                        })
                    })
                    .collect::<BTreeSet<_>>()
                    .len();

            // Convert the order information into specific (input, key, characteristics) information.
            let mut orders = orders
                .into_iter()
                .map(|o| {
                    o.into_iter()
                        .skip(1)
                        .map(|(c, key, r)| (r, key, Some(c)))
                        .collect::<Vec<_>>()
                })
                .collect::<Vec<_>>();

            // Implement arrangements in each of the inputs.
            let (lifted_mfp, lifted_projections) =
                super::implement_arrangements(inputs, available, orders.iter().flatten());

            // Permute `order` to compensate for projections being lifted as part of
            // the mfp lifting in `implement_arrangements`.
            orders
                .iter_mut()
                .for_each(|order| super::permute_order(order, &lifted_projections));

            *implementation = JoinImplementation::DeltaQuery(orders);

            super::install_lifted_mfp(&mut new_join, lifted_mfp)?;

            // Hooray done!
            Ok((new_join, new_arrangements))
        } else {
            Err(TransformError::Internal(String::from(
                "delta_queries::plan call on non-join expression",
            )))
        }
    }
}

mod differential {
    use std::collections::BTreeSet;

    use mz_expr::{JoinImplementation, JoinInputMapper, MirRelationExpr, MirScalarExpr};
    use mz_ore::soft_assert_eq_or_log;

    use crate::join_implementation::{FilterCharacteristics, JoinInputCharacteristics};
    use crate::TransformError;

    /// Creates a linear differential plan, and any predicates that need to be lifted.
    /// It also returns the number of new arrangements necessary for this plan.
    pub fn plan(
        join: &MirRelationExpr,
        input_mapper: &JoinInputMapper,
        available: &[Vec<Vec<MirScalarExpr>>],
        unique_keys: &[Vec<Vec<usize>>],
        cardinalities: &[Option<usize>],
        filters: &[FilterCharacteristics],
    ) -> Result<(MirRelationExpr, usize), TransformError> {
        let mut new_join = join.clone();

        if let MirRelationExpr::Join {
            inputs,
            equivalences,
            implementation,
        } = &mut new_join
        {
            // We compute one order for each possible starting point, and we will choose one from
            // these.
            //
            // It is an invariant that the orders are in input order: the ith order begins with the ith input.
            //
            // We could change this preference at any point, but the list of orders should still inform.
            // Important, we should choose something stable under re-ordering, to converge under fixed
            // point iteration; we choose to start with the first input optimizing our criteria, which
            // should remain stable even when promoted to the first position.
            let mut orders = super::optimize_orders(
                equivalences,
                available,
                unique_keys,
                cardinalities,
                filters,
                input_mapper,
            )?;

            // Count new arrangements.
            //
            // We collect the count for each input, to be used to calculate `new_arrangements` below.
            let new_input_arrangements: Vec<usize> = orders
                .iter()
                .map(|o| {
                    o.iter()
                        .filter_map(|(c, key, input)| {
                            if c.arranged {
                                None
                            } else {
                                Some((*input, key.clone()))
                            }
                        })
                        .collect::<BTreeSet<_>>()
                        .len()
                })
                .collect();

            // Inside each order, we take the `FilterCharacteristics` from each element, and OR it
            // to every other element to the right. This is because we are gonna be looking for the
            // worst `Characteristic` in every order, and for this it makes sense to include a
            // filter in a `Characteristic` if the filter was applied not just at that input but
            // any input before. For examples, see chbench.slt Query 02 and 11.
            orders.iter_mut().for_each(|order| {
                let mut sum = FilterCharacteristics::none();
                for (JoinInputCharacteristics { filters, .. }, _, _) in order {
                    *filters |= sum;
                    sum = filters.clone();
                }
            });

            // `orders` has one order for each starting collection, and now we have to choose one
            // from these. First, we find the worst `Characteristics` inside each order, and then we
            // find the best one among these across all orders, which goes into
            // `max_min_characteristics`.
            let max_min_characteristics = orders
                .iter()
                .flat_map(|order| order.iter().map(|(c, _, _)| c.clone()).min())
                .max();
            let mut order = if let Some(max_min_characteristics) = max_min_characteristics {
                orders
                    .into_iter()
                    .filter(|o| {
                        o.iter().map(|(c, _, _)| c).min().unwrap() == &max_min_characteristics
                    })
                    // It can happen that `orders` has multiple such orders that have the same worst
                    // `Characteristic` as `max_min_characteristics`. In this case, we go beyond the
                    // worst `Characteristic`: we inspect the entire `Characteristic` vector of each
                    // of these orders, and choose the best among these. This pushes bad stuff to
                    // happen later, by which time we might have applied some filters.
                    .max_by_key(|o| o.clone())
                    .ok_or_else(|| {
                        TransformError::Internal(String::from(
                            "could not find max-min characteristics",
                        ))
                    })?
                    .into_iter()
                    .map(|(c, key, r)| (r, key, Some(c)))
                    .collect::<Vec<_>>()
            } else {
                // if max_min_characteristics is None, then there must only be
                // one input and thus only one order in orders
                soft_assert_eq_or_log!(orders.len(), 1);
                orders
                    .remove(0)
                    .into_iter()
                    .map(|(c, key, r)| (r, key, Some(c)))
                    .collect::<Vec<_>>()
            };

            let (start, mut start_key, start_characteristics) = order[0].clone();

            // Count new arrangements for this choice of ordering.
            let new_arrangements = inputs.len().saturating_sub(2) + new_input_arrangements[start];

            // Implement arrangements in each of the inputs.
            let (lifted_mfp, lifted_projections) =
                super::implement_arrangements(inputs, available, order.iter());

            // Permute `start_key` and `order` to compensate for projections being lifted as part of
            // the mfp lifting in `implement_arrangements`.
            if let Some(proj) = &lifted_projections[start] {
                start_key.iter_mut().for_each(|k| {
                    k.permute(proj);
                });
            }
            super::permute_order(&mut order, &lifted_projections);

            // now that the starting arrangement has been implemented,
            // remove it from `order` so `order` only contains information
            // about the other inputs
            order.remove(0);

            // Install the implementation.
            *implementation = JoinImplementation::Differential(
                (start, Some(start_key), start_characteristics),
                order,
            );

            super::install_lifted_mfp(&mut new_join, lifted_mfp)?;

            // Hooray done!
            Ok((new_join, new_arrangements))
        } else {
            Err(TransformError::Internal(String::from(
                "differential::plan call on non-join expression.",
            )))
        }
    }
}

/// Modify `inputs` to ensure specified arrangements are available.
///
/// Lift filter predicates when all needed arrangements are otherwise available.
///
/// Returns
///  - The lifted mfps combined into one mfp.
///  - Permutations for each input, which were lifted as part of the mfp lifting. These should be
///    applied to the join order.
fn implement_arrangements<'a>(
    inputs: &mut [MirRelationExpr],
    available_arrangements: &[Vec<Vec<MirScalarExpr>>],
    needed_arrangements: impl Iterator<
        Item = &'a (usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>),
    >,
) -> (MapFilterProject, Vec<Option<Vec<usize>>>) {
    // Collect needed arrangements by source index.
    let mut needed = vec![Vec::new(); inputs.len()];
    for (index, key, _characteristics) in needed_arrangements {
        needed[*index].push(key.clone());
    }

    let mut lifted_mfps = vec![None; inputs.len()];
    let mut lifted_projections = vec![None; inputs.len()];

    // Transform inputs[index] based on needed and available arrangements.
    // Specifically, lift intervening mfps if all arrangements exist.
    for (index, needed) in needed.iter_mut().enumerate() {
        needed.sort();
        needed.dedup();
        // We should lift any mfps, iff all arrangements are otherwise available.
        if !needed.is_empty()
            && needed
                .iter()
                .all(|key| available_arrangements[index].contains(key))
        {
            lifted_mfps[index] = Some(MapFilterProject::extract_non_errors_from_expr_mut(
                &mut inputs[index],
            ));
        }
        // Clean up existing arrangements, and install one with the needed keys.
        while let MirRelationExpr::ArrangeBy { input: inner, .. } = &mut inputs[index] {
            inputs[index] = inner.take_dangerous();
        }
        // If a mfp was lifted in order to install the arrangement, permute the arrangement and
        // save the lifted projection.
        if let Some(lifted_mfp) = &lifted_mfps[index] {
            let (_, _, project) = lifted_mfp.as_map_filter_project();
            for arrangement_key in needed.iter_mut() {
                for k in arrangement_key.iter_mut() {
                    k.permute(&project);
                }
            }
            lifted_projections[index] = Some(project);
        }
        if !needed.is_empty() {
            inputs[index] = MirRelationExpr::arrange_by(inputs[index].take_dangerous(), needed);
        }
    }

    // Combine lifted mfps into one.
    let new_join_mapper = JoinInputMapper::new(inputs);
    let mut arity = new_join_mapper.total_columns();
    let combined_mfp = MapFilterProject::new(arity);
    let mut combined_filter = Vec::new();
    let mut combined_map = Vec::new();
    let mut combined_project = Vec::new();
    for (index, lifted_mfp) in lifted_mfps.into_iter().enumerate() {
        if let Some(mut lifted_mfp) = lifted_mfp {
            lifted_mfp.permute(
                // globalize all input column references
                new_join_mapper
                    .local_columns(index)
                    .zip(new_join_mapper.global_columns(index))
                    .collect(),
                // shift the position of scalars to be after the last input
                // column
                arity,
            );
            let (mut map, mut filter, mut project) = lifted_mfp.as_map_filter_project();
            arity += map.len();
            combined_map.append(&mut map);
            combined_filter.append(&mut filter);
            combined_project.append(&mut project);
        } else {
            combined_project.extend(new_join_mapper.global_columns(index));
        }
    }

    (
        combined_mfp
            .map(combined_map)
            .filter(combined_filter)
            .project(combined_project),
        lifted_projections,
    )
}

fn install_lifted_mfp(
    new_join: &mut MirRelationExpr,
    mfp: MapFilterProject,
) -> Result<(), TransformError> {
    if !mfp.is_identity() {
        let (mut map, mut filter, project) = mfp.as_map_filter_project();
        if let MirRelationExpr::Join { equivalences, .. } = new_join {
            for equivalence in equivalences.iter_mut() {
                for expr in equivalence.iter_mut() {
                    // permute `equivalences` in light of the project being lifted
                    expr.permute(&project);
                    // if column references refer to mapped expressions that have been
                    // lifted, replace the column reference with the mapped expression.
                    #[allow(deprecated)]
                    expr.visit_mut_pre_post(
                        &mut |e| {
                            if let MirScalarExpr::Column(c) = e {
                                if *c >= mfp.input_arity {
                                    *e = map[*c - mfp.input_arity].clone();
                                }
                            }
                            None
                        },
                        &mut |_| {},
                    )?;
                }
            }
            // Canonicalize scalar expressions in maps and filters with respect to the join
            // equivalences. This often makes some filters identical, which are then removed.
            // The identical filters come from either
            //  - lifting several predicates that originally were pushed down by localizing to more
            //    than one inputs;
            //  - individual IS NOT NULL filters on each of the inputs, which become identical
            //    when rewritten using the join equivalences.
            //  (This allows for almost the same optimizations as when `Demand`
            //  used to insert Projections that were marking some columns to be
            //  identical, when Demand used to run after `JoinImplementation`.)
            let canonicalizer_map = mz_expr::canonicalize::get_canonicalizer_map(equivalences);
            for expr in map.iter_mut().chain(filter.iter_mut()) {
                expr.visit_mut_post(&mut |e| {
                    if let Some(canonical_expr) = canonicalizer_map.get(e) {
                        *e = canonical_expr.clone();
                    }
                })?
            }
        }
        *new_join = new_join.clone().map(map).filter(filter).project(project);
    }
    Ok(())
}

/// Permute the keys in `order` to compensate for projections being lifted from inputs.
/// `lifted_projections` has an optional projection for each input.
fn permute_order(
    order: &mut Vec<(usize, Vec<MirScalarExpr>, Option<JoinInputCharacteristics>)>,
    lifted_projections: &Vec<Option<Vec<usize>>>,
) {
    order.iter_mut().for_each(|(index, key, _)| {
        key.iter_mut().for_each(|kc| {
            if let Some(proj) = &lifted_projections[*index] {
                kc.permute(proj);
            }
        })
    })
}

// Computes the best join orders for each input.
//
// If there are N inputs, returns N orders, with the ith input starting the ith order.
fn optimize_orders(
    equivalences: &[Vec<MirScalarExpr>], // join equivalences: inside a Vec, the exprs are equivalent
    available: &[Vec<Vec<MirScalarExpr>>], // available arrangements per input
    unique_keys: &[Vec<Vec<usize>>],     // unique keys per input
    cardinalities: &[Option<usize>],     // cardinalities of input relations
    filters: &[FilterCharacteristics],   // filter characteristics per input
    input_mapper: &JoinInputMapper,      // join helper
) -> Result<Vec<Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>>, TransformError> {
    let mut orderer = Orderer::new(
        equivalences,
        available,
        unique_keys,
        cardinalities,
        filters,
        input_mapper,
    );
    (0..available.len())
        .map(move |i| orderer.optimize_order_for(i))
        .collect::<Result<Vec<_>, _>>()
}

struct Orderer<'a> {
    inputs: usize,
    equivalences: &'a [Vec<MirScalarExpr>],
    arrangements: &'a [Vec<Vec<MirScalarExpr>>],
    unique_keys: &'a [Vec<Vec<usize>>],
    cardinalities: &'a [Option<usize>],
    filters: &'a [FilterCharacteristics],
    input_mapper: &'a JoinInputMapper,
    reverse_equivalences: Vec<Vec<(usize, usize)>>,
    unique_arrangement: Vec<Vec<bool>>,

    order: Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>,
    placed: Vec<bool>,
    bound: Vec<Vec<MirScalarExpr>>,
    equivalences_active: Vec<bool>,
    arrangement_active: Vec<Vec<usize>>,
    priority_queue:
        std::collections::BinaryHeap<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>,
}

impl<'a> Orderer<'a> {
    fn new(
        equivalences: &'a [Vec<MirScalarExpr>],
        arrangements: &'a [Vec<Vec<MirScalarExpr>>],
        unique_keys: &'a [Vec<Vec<usize>>],
        cardinalities: &'a [Option<usize>],
        filters: &'a [FilterCharacteristics],
        input_mapper: &'a JoinInputMapper,
    ) -> Self {
        let inputs = arrangements.len();
        // A map from inputs to the equivalence classes in which they are referenced.
        let mut reverse_equivalences = vec![Vec::new(); inputs];
        for (index, equivalence) in equivalences.iter().enumerate() {
            for (index2, expr) in equivalence.iter().enumerate() {
                for input in input_mapper.lookup_inputs(expr) {
                    reverse_equivalences[input].push((index, index2));
                }
            }
        }
        // Per-arrangement information about uniqueness of the arrangement key.
        let mut unique_arrangement = vec![Vec::new(); inputs];
        for (input, keys) in arrangements.iter().enumerate() {
            for key in keys.iter() {
                unique_arrangement[input].push(unique_keys[input].iter().any(|cols| {
                    cols.iter()
                        .all(|c| key.contains(&MirScalarExpr::Column(*c)))
                }));
            }
        }

        let order = Vec::with_capacity(inputs);
        let placed = vec![false; inputs];
        let bound = vec![Vec::new(); inputs];
        let equivalences_active = vec![false; equivalences.len()];
        let arrangement_active = vec![Vec::new(); inputs];
        let priority_queue = std::collections::BinaryHeap::new();
        Self {
            inputs,
            equivalences,
            arrangements,
            unique_keys,
            cardinalities,
            filters,
            input_mapper,
            reverse_equivalences,
            unique_arrangement,
            order,
            placed,
            bound,
            equivalences_active,
            arrangement_active,
            priority_queue,
        }
    }

    fn optimize_order_for(
        &mut self,
        start: usize,
    ) -> Result<Vec<(JoinInputCharacteristics, Vec<MirScalarExpr>, usize)>, TransformError> {
        self.order.clear();
        self.priority_queue.clear();
        for input in 0..self.inputs {
            self.placed[input] = false;
            self.bound[input].clear();
            self.arrangement_active[input].clear();
        }
        for index in 0..self.equivalences.len() {
            self.equivalences_active[index] = false;
        }

        // Introduce cross joins as a possibility.
        for input in 0..self.inputs {
            let cardinality = self.cardinalities[input];

            let is_unique = self.unique_keys[input].iter().any(|cols| cols.is_empty());
            if let Some(pos) = self.arrangements[input]
                .iter()
                .position(|key| key.is_empty())
            {
                self.arrangement_active[input].push(pos);
                self.priority_queue.push((
                    JoinInputCharacteristics::new(
                        is_unique,
                        0,
                        true,
                        cardinality,
                        self.filters[input].clone(),
                        input,
                    ),
                    vec![],
                    input,
                ));
            } else {
                self.priority_queue.push((
                    JoinInputCharacteristics::new(
                        is_unique,
                        0,
                        false,
                        cardinality,
                        self.filters[input].clone(),
                        input,
                    ),
                    vec![],
                    input,
                ));
            }
        }

        // Main loop, ordering all the inputs.
        if self.inputs > 1 {
            self.order_input(start);
            while self.order.len() < self.inputs - 1 {
                let (characteristics, key, input) = self.priority_queue.pop().unwrap();
                // put the tuple into `self.order` unless the tuple with the same
                // input is already in `self.order`. For all inputs other than
                // start, `self.placed[input]` is an indication of whether a
                // corresponding tuple is already in `self.order`.
                if !self.placed[input] {
                    // non-starting inputs are ordered in decreasing priority
                    self.order.push((characteristics, key, input));
                    self.order_input(input);
                }
            }
        }

        // `order` now contains all the inputs except the first. Let's create an item for the first
        // input. We know which input that is, but we need to compute a key and characteristics.
        // We start with some default values:
        let mut start_tuple = (
            JoinInputCharacteristics::new(
                false,
                0,
                false,
                self.cardinalities[start],
                self.filters[start].clone(),
                start,
            ),
            vec![],
            start,
        );
        // The key should line up with the key of the second input (if there is a second input).
        // (At this point, `order[0]` is what will eventually be `order[1]`, i.e., the second input.)
        if let Some((_, key, second)) = self.order.get(0) {
            // for each component of the key of the second input, try to find the corresponding key
            // component in the starting input
            let candidate_start_key = key
                .iter()
                .filter_map(|k| {
                    let k = self.input_mapper.map_expr_to_global(k.clone(), *second);
                    self.input_mapper
                        .find_bound_expr(&k, &[start], self.equivalences)
                        .map(|bound_key| self.input_mapper.map_expr_to_local(bound_key))
                })
                .collect::<Vec<_>>();
            if candidate_start_key.len() == key.len() {
                let cardinality = self.cardinalities[start];
                let is_unique = self.unique_keys[start].iter().any(|cols| {
                    cols.iter()
                        .all(|c| candidate_start_key.contains(&MirScalarExpr::Column(*c)))
                });
                let arranged = self.arrangements[start]
                    .iter()
                    .find(|arrangement_key| arrangement_key == &&candidate_start_key)
                    .is_some();
                start_tuple = (
                    JoinInputCharacteristics::new(
                        is_unique,
                        candidate_start_key.len(),
                        arranged,
                        cardinality,
                        self.filters[start].clone(),
                        start,
                    ),
                    candidate_start_key,
                    start,
                );
            } else {
                // For the second input's key fields, there is nothing else to equate it with but
                // the fields of the first input, so we should find a match for each of the fields.
                // (For a later input, different fields of a key might be equated with fields coming
                // from various inputs.)
                // Technically, this happens as follows:
                // The second input must have been placed in the `priority_queue` either
                // 1) as a cross join possibility, or
                // 2) when we called `order_input` on the starting input.
                // In the 1) case, `key.len()` is 0. In the 2) case, it was the very first call to
                // `order_input`, which means that `placed` was true only for the
                // starting input, which means that `fully_supported` was true due to
                // one of the expressions referring only to the starting input.
                let msg = "Unreachable state in join order optimization".to_string();
                return Err(TransformError::Internal(msg));
                // (This couldn't be a soft_panic: we would form an arrangement with a wrong key.)
            }
        }
        self.order.insert(0, start_tuple);

        Ok(std::mem::replace(&mut self.order, Vec::new()))
    }

    /// Introduces a specific input and keys to the order, along with its characteristics.
    ///
    /// This method places a next element in the order, and updates the associated state
    /// about other candidates, including which columns are now bound and which potential
    /// keys are available to consider (both arranged, and unarranged).
    fn order_input(&mut self, input: usize) {
        self.placed[input] = true;
        for (equivalence, expr_index) in self.reverse_equivalences[input].iter() {
            if !self.equivalences_active[*equivalence] {
                // Placing `input` *may* activate the equivalence. Each of its columns
                // come in to scope, which may result in an expression in `equivalence`
                // becoming fully defined (when its support is contained in placed inputs)
                let fully_supported = self
                    .input_mapper
                    .lookup_inputs(&self.equivalences[*equivalence][*expr_index])
                    .all(|i| self.placed[i]);
                if fully_supported {
                    self.equivalences_active[*equivalence] = true;
                    for expr in self.equivalences[*equivalence].iter() {
                        // find the relations that columns in the expression belong to
                        let mut rels = self.input_mapper.lookup_inputs(expr);
                        // Skip the expression if
                        // * the expression is a literal -> this would translate
                        //   to `rels` being empty
                        // * the expression has columns belonging to more than
                        //   one relation -> TODO: see how we can plan better in
                        //   this case. Arguably, if this happens, it would
                        //   not be unreasonable to ask the user to write the
                        //   query better.
                        if let Some(rel) = rels.next() {
                            if rels.next().is_none() {
                                let expr = self.input_mapper.map_expr_to_local(expr.clone());

                                // Update bound columns.
                                self.bound[rel].push(expr);
                                self.bound[rel].sort();

                                // Reconsider all available arrangements.
                                for (pos, key) in self.arrangements[rel].iter().enumerate() {
                                    if !self.arrangement_active[rel].contains(&pos) {
                                        // TODO: support the restoration of the
                                        // following original lines, which have been
                                        // commented out because Materialize may
                                        // panic otherwise. The original line and comments
                                        // here are:
                                        // Determine if the arrangement is viable, which happens when the
                                        // support of its key is all bound.
                                        // if key.iter().all(|k| k.support().iter().all(|c| self.bound[*rel].contains(&ScalarExpr::Column(*c))) {

                                        // Determine if the arrangement is viable,
                                        // which happens when all its key components are bound.
                                        if key.iter().all(|k| self.bound[rel].contains(k)) {
                                            self.arrangement_active[rel].push(pos);
                                            // TODO: This could be pre-computed, as it is independent of the order.
                                            let is_unique = self.unique_arrangement[rel][pos];
                                            self.priority_queue.push((
                                                JoinInputCharacteristics::new(
                                                    is_unique,
                                                    key.len(),
                                                    true,
                                                    self.cardinalities[rel],
                                                    self.filters[rel].clone(),
                                                    rel,
                                                ),
                                                key.clone(),
                                                rel,
                                            ));
                                        }
                                    }
                                }

                                // does the relation we're joining on have a unique key wrt what's already bound?
                                let is_unique = self.unique_keys[rel].iter().any(|cols| {
                                    cols.iter().all(|c| {
                                        self.bound[rel].contains(&MirScalarExpr::Column(*c))
                                    })
                                });
                                self.priority_queue.push((
                                    JoinInputCharacteristics::new(
                                        is_unique,
                                        self.bound[rel].len(),
                                        false,
                                        self.cardinalities[rel],
                                        self.filters[rel].clone(),
                                        rel,
                                    ),
                                    self.bound[rel].clone(),
                                    rel,
                                ));
                            }
                        }
                    }
                }
            }
        }
    }
}