differential_dataflow/operators/
reduce.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
//! Applies a reduction function on records grouped by key.
//!
//! The `reduce` operator acts on `(key, val)` data.
//! Records with the same key are grouped together, and a user-supplied reduction function is applied
//! to the key and the list of values.
//! The function is expected to populate a list of output values.

use timely::Container;
use timely::container::PushInto;
use crate::hashable::Hashable;
use crate::{Data, ExchangeData, Collection};
use crate::difference::{Semigroup, Abelian};

use timely::order::PartialOrder;
use timely::progress::frontier::Antichain;
use timely::progress::Timestamp;
use timely::dataflow::*;
use timely::dataflow::operators::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::operators::Capability;

use crate::trace::cursor::IntoOwned;

use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf, TraceAgent};
use crate::lattice::Lattice;
use crate::trace::{Batch, BatchReader, Cursor, Trace, Builder, ExertionLogic};
use crate::trace::cursor::CursorList;
use crate::trace::implementations::{KeySpine, ValSpine};

use crate::trace::TraceReader;

/// Extension trait for the `reduce` differential dataflow method.
pub trait Reduce<G: Scope, K: Data, V: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
    /// Applies a reduction function on records grouped by key.
    ///
    /// Input data must be structured as `(key, val)` pairs.
    /// The user-supplied reduction function takes as arguments
    ///
    /// 1. a reference to the key,
    /// 2. a reference to the slice of values and their accumulated updates,
    /// 3. a mutuable reference to a vector to populate with output values and accumulated updates.
    ///
    /// The user logic is only invoked for non-empty input collections, and it is safe to assume that the
    /// slice of input values is non-empty. The values are presented in sorted order, as defined by their
    /// `Ord` implementations.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Reduce;
    ///
    /// ::timely::example(|scope| {
    ///     // report the smallest value for each group
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| (x / 3, x))
    ///          .reduce(|_key, input, output| {
    ///              output.push((*input[0].0, 1))
    ///          });
    /// });
    /// ```
    fn reduce<L, V2: Data, R2: Ord+Abelian+'static>(&self, logic: L) -> Collection<G, (K, V2), R2>
    where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
        self.reduce_named("Reduce", logic)
    }

    /// As `reduce` with the ability to name the operator.
    fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
    where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static;
}

impl<G, K, V, R> Reduce<G, K, V, R> for Collection<G, (K, V), R>
    where
        G: Scope,
        G::Timestamp: Lattice+Ord,
        K: ExchangeData+Hashable,
        V: ExchangeData,
        R: ExchangeData+Semigroup,
 {
    fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
        where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
        self.arrange_by_key_named(&format!("Arrange: {}", name))
            .reduce_named(name, logic)
    }
}

impl<G, K: Data, V: Data, T1, R: Ord+Semigroup+'static> Reduce<G, K, V, R> for Arranged<G, T1>
where
    G: Scope<Timestamp=T1::Time>,
    T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a V, Diff=R>+Clone+'static,
    for<'a> T1::Key<'a> : IntoOwned<'a, Owned = K>,
    for<'a> T1::Val<'a> : IntoOwned<'a, Owned = V>,
{
    fn reduce_named<L, V2: Data, R2: Ord+Abelian+'static>(&self, name: &str, logic: L) -> Collection<G, (K, V2), R2>
        where L: FnMut(&K, &[(&V, R)], &mut Vec<(V2, R2)>)+'static {
        self.reduce_abelian::<_,K,V2,ValSpine<_,_,_,_>>(name, logic)
            .as_collection(|k,v| (k.clone(), v.clone()))
    }
}

/// Extension trait for the `threshold` and `distinct` differential dataflow methods.
pub trait Threshold<G: Scope, K: Data, R1: Semigroup> where G::Timestamp: Lattice+Ord {
    /// Transforms the multiplicity of records.
    ///
    /// The `threshold` function is obliged to map `R1::zero` to `R2::zero`, or at
    /// least the computation may behave as if it does. Otherwise, the transformation
    /// can be nearly arbitrary: the code does not assume any properties of `threshold`.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Threshold;
    ///
    /// ::timely::example(|scope| {
    ///     // report at most one of each key.
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x / 3)
    ///          .threshold(|_,c| c % 2);
    /// });
    /// ```
    fn threshold<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, thresh: F) -> Collection<G, K, R2> {
        self.threshold_named("Threshold", thresh)
    }

    /// A `threshold` with the ability to name the operator.
    fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K, &R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2>;

    /// Reduces the collection to one occurrence of each distinct element.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Threshold;
    ///
    /// ::timely::example(|scope| {
    ///     // report at most one of each key.
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x / 3)
    ///          .distinct();
    /// });
    /// ```
    fn distinct(&self) -> Collection<G, K, isize> {
        self.distinct_core()
    }

    /// Distinct for general integer differences.
    ///
    /// This method allows `distinct` to produce collections whose difference
    /// type is something other than an `isize` integer, for example perhaps an
    /// `i32`.
    fn distinct_core<R2: Ord+Abelian+'static+From<i8>>(&self) -> Collection<G, K, R2> {
        self.threshold_named("Distinct", |_,_| R2::from(1i8))
    }
}

impl<G: Scope, K: ExchangeData+Hashable, R1: ExchangeData+Semigroup> Threshold<G, K, R1> for Collection<G, K, R1>
where G::Timestamp: Lattice+Ord {
    fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, thresh: F) -> Collection<G, K, R2> {
        self.arrange_by_self_named(&format!("Arrange: {}", name))
            .threshold_named(name, thresh)
    }
}

impl<G, K: Data, T1, R1: Semigroup> Threshold<G, K, R1> for Arranged<G, T1>
where
    G: Scope<Timestamp=T1::Time>,
    T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a (), Diff=R1>+Clone+'static,
    for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
{
    fn threshold_named<R2: Ord+Abelian+'static, F: FnMut(&K,&R1)->R2+'static>(&self, name: &str, mut thresh: F) -> Collection<G, K, R2> {
        self.reduce_abelian::<_,K,(),KeySpine<K,G::Timestamp,R2>>(name, move |k,s,t| t.push(((), thresh(k, &s[0].1))))
            .as_collection(|k,_| k.clone())
    }
}

/// Extension trait for the `count` differential dataflow method.
pub trait Count<G: Scope, K: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
    /// Counts the number of occurrences of each element.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Count;
    ///
    /// ::timely::example(|scope| {
    ///     // report the number of occurrences of each key
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x / 3)
    ///          .count();
    /// });
    /// ```
    fn count(&self) -> Collection<G, (K, R), isize> {
        self.count_core()
    }

    /// Count for general integer differences.
    ///
    /// This method allows `count` to produce collections whose difference
    /// type is something other than an `isize` integer, for example perhaps an
    /// `i32`.
    fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2>;
}

impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> Count<G, K, R> for Collection<G, K, R>
where
    G::Timestamp: Lattice+Ord,
{
    fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
        self.arrange_by_self_named("Arrange: Count")
            .count_core()
    }
}

impl<G, K: Data, T1, R: Data+Semigroup> Count<G, K, R> for Arranged<G, T1>
where
    G: Scope<Timestamp=T1::Time>,
    T1: for<'a> TraceReader<Key<'a>=&'a K, Val<'a>=&'a (), Diff=R>+Clone+'static,
    for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
{
    fn count_core<R2: Ord + Abelian + From<i8> + 'static>(&self) -> Collection<G, (K, R), R2> {
        self.reduce_abelian::<_,K,R,ValSpine<K,R,G::Timestamp,R2>>("Count", |_k,s,t| t.push((s[0].1.clone(), R2::from(1i8))))
            .as_collection(|k,c| (k.clone(), c.clone()))
    }
}

/// Extension trait for the `reduce_core` differential dataflow method.
pub trait ReduceCore<G: Scope, K: ToOwned + ?Sized, V: Data, R: Semigroup> where G::Timestamp: Lattice+Ord {
    /// Applies `reduce` to arranged data, and returns an arrangement of output data.
    ///
    /// This method is used by the more ergonomic `reduce`, `distinct`, and `count` methods, although
    /// it can be very useful if one needs to manually attach and re-use existing arranged collections.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::reduce::ReduceCore;
    /// use differential_dataflow::trace::Trace;
    /// use differential_dataflow::trace::implementations::ValSpine;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let trace =
    ///     scope.new_collection_from(1 .. 10u32).1
    ///          .map(|x| (x, x))
    ///          .reduce_abelian::<_,ValSpine<_,_,_,_>>(
    ///             "Example",
    ///              move |_key, src, dst| dst.push((*src[0].0, 1))
    ///          )
    ///          .trace;
    /// });
    /// ```
    fn reduce_abelian<L, T2>(&self, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
        where
            T2: for<'a> Trace<Key<'a>= &'a K, Time=G::Timestamp>+'static,
            for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
            T2::Diff: Abelian,
            T2::Batch: Batch,
            T2::Builder: Builder<Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>>,
            L: FnMut(&K, &[(&V, R)], &mut Vec<(V, T2::Diff)>)+'static,
        {
            self.reduce_core::<_,T2>(name, move |key, input, output, change| {
                if !input.is_empty() {
                    logic(key, input, change);
                }
                change.extend(output.drain(..).map(|(x,mut d)| { d.negate(); (x, d) }));
                crate::consolidation::consolidate(change);
            })
        }

    /// Solves for output updates when presented with inputs and would-be outputs.
    ///
    /// Unlike `reduce_arranged`, this method may be called with an empty `input`,
    /// and it may not be safe to index into the first element.
    /// At least one of the two collections will be non-empty.
    fn reduce_core<L, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
        where
            T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
            for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
            T2::Batch: Batch,
            T2::Builder: Builder<Input = Vec<((K::Owned, V), T2::Time, T2::Diff)>>,
            L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
            ;
}

impl<G, K, V, R> ReduceCore<G, K, V, R> for Collection<G, (K, V), R>
where
    G: Scope,
    G::Timestamp: Lattice+Ord,
    K: ExchangeData+Hashable,
    V: ExchangeData,
    R: ExchangeData+Semigroup,
{
    fn reduce_core<L, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
        where
            V: Data,
            T2: for<'a> Trace<Key<'a>=&'a K, Time=G::Timestamp>+'static,
            for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
            T2::Batch: Batch,
            T2::Builder: Builder<Input = Vec<((K, V), T2::Time, T2::Diff)>>,
            L: FnMut(&K, &[(&V, R)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
    {
        self.arrange_by_key_named(&format!("Arrange: {}", name))
            .reduce_core(name, logic)
    }
}

/// A key-wise reduction of values in an input trace.
///
/// This method exists to provide reduce functionality without opinions about qualifying trace types.
pub fn reduce_trace<G, T1, T2, K, V, L>(trace: &Arranged<G, T1>, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
where
    G: Scope<Timestamp=T1::Time>,
    T1: TraceReader + Clone + 'static,
    for<'a> T1::Key<'a> : IntoOwned<'a, Owned = K>,
    T2: for<'a> Trace<Key<'a>=T1::Key<'a>, Time=T1::Time> + 'static,
    K: Ord + 'static,
    V: Data,
    for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
    T2::Batch: Batch,
    <T2::Builder as Builder>::Input: Container + PushInto<((K, V), T2::Time, T2::Diff)>,
    L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(V,T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
{
    let mut result_trace = None;

    // fabricate a data-parallel operator using the `unary_notify` pattern.
    let stream = {

        let result_trace = &mut result_trace;
        trace.stream.unary_frontier(Pipeline, name, move |_capability, operator_info| {

            let logger = {
                let scope = trace.stream.scope();
                let register = scope.log_register();
                register.get::<crate::logging::DifferentialEvent>("differential/arrange")
            };

            let activator = Some(trace.stream.scope().activator_for(operator_info.address.clone()));
            let mut empty = T2::new(operator_info.clone(), logger.clone(), activator);
            // If there is default exert logic set, install it.
            if let Some(exert_logic) = trace.stream.scope().config().get::<ExertionLogic>("differential/default_exert_logic").cloned() {
                empty.set_exert_logic(exert_logic);
            }


            let mut source_trace = trace.trace.clone();

            let (mut output_reader, mut output_writer) = TraceAgent::new(empty, operator_info, logger);

            // let mut output_trace = TraceRc::make_from(agent).0;
            *result_trace = Some(output_reader.clone());

            // let mut thinker1 = history_replay_prior::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
            // let mut thinker = history_replay::HistoryReplayer::<V, V2, G::Timestamp, R, R2>::new();
            let mut new_interesting_times = Vec::<G::Timestamp>::new();

            // Our implementation maintains a list of outstanding `(key, time)` synthetic interesting times,
            // as well as capabilities for these times (or their lower envelope, at least).
            let mut interesting = Vec::<(K, G::Timestamp)>::new();
            let mut capabilities = Vec::<Capability<G::Timestamp>>::new();

            // buffers and logic for computing per-key interesting times "efficiently".
            let mut interesting_times = Vec::<G::Timestamp>::new();

            // Upper and lower frontiers for the pending input and output batches to process.
            let mut upper_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
            let mut lower_limit = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());

            // Output batches may need to be built piecemeal, and these temp storage help there.
            let mut output_upper = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());
            let mut output_lower = Antichain::from_elem(<G::Timestamp as timely::progress::Timestamp>::minimum());

            let mut input_buffer = Vec::new();

            let id = trace.stream.scope().index();

            move |input, output| {

                // The `reduce` operator receives fully formed batches, which each serve as an indication
                // that the frontier has advanced to the upper bound of their description.
                //
                // Although we could act on each individually, several may have been sent, and it makes
                // sense to accumulate them first to coordinate their re-evaluation. We will need to pay
                // attention to which times need to be collected under which capability, so that we can
                // assemble output batches correctly. We will maintain several builders concurrently, and
                // place output updates into the appropriate builder.
                //
                // It turns out we must use notificators, as we cannot await empty batches from arrange to
                // indicate progress, as the arrange may not hold the capability to send such. Instead, we
                // must watch for progress here (and the upper bound of received batches) to tell us how
                // far we can process work.
                //
                // We really want to retire all batches we receive, so we want a frontier which reflects
                // both information from batches as well as progress information. I think this means that
                // we keep times that are greater than or equal to a time in the other frontier, deduplicated.

                let mut batch_cursors = Vec::new();
                let mut batch_storage = Vec::new();

                // Downgrade previous upper limit to be current lower limit.
                lower_limit.clear();
                lower_limit.extend(upper_limit.borrow().iter().cloned());

                // Drain the input stream of batches, validating the contiguity of the batch descriptions and
                // capturing a cursor for each of the batches as well as ensuring we hold a capability for the
                // times in the batch.
                input.for_each(|capability, batches| {

                    batches.swap(&mut input_buffer);
                    for batch in input_buffer.drain(..) {
                        upper_limit.clone_from(batch.upper());
                        batch_cursors.push(batch.cursor());
                        batch_storage.push(batch);
                    }

                    // Ensure that `capabilities` covers the capability of the batch.
                    capabilities.retain(|cap| !capability.time().less_than(cap.time()));
                    if !capabilities.iter().any(|cap| cap.time().less_equal(capability.time())) {
                        capabilities.push(capability.retain());
                    }
                });

                // Pull in any subsequent empty batches we believe to exist.
                source_trace.advance_upper(&mut upper_limit);

                // Only if our upper limit has advanced should we do work.
                if upper_limit != lower_limit {

                    // If we have no capabilities, then we (i) should not produce any outputs and (ii) could not send
                    // any produced outputs even if they were (incorrectly) produced. We cannot even send empty batches
                    // to indicate forward progress, and must hope that downstream operators look at progress frontiers
                    // as well as batch descriptions.
                    //
                    // We can (and should) advance source and output traces if `upper_limit` indicates this is possible.
                    if capabilities.iter().any(|c| !upper_limit.less_equal(c.time())) {

                        // `interesting` contains "warnings" about keys and times that may need to be re-considered.
                        // We first extract those times from this list that lie in the interval we will process.
                        sort_dedup(&mut interesting);
                        // `exposed` contains interesting (key, time)s now below `upper_limit`
                        let exposed = {
                            let (exposed, new_interesting) = interesting.drain(..).partition(|(_, time)| !upper_limit.less_equal(time));
                            interesting = new_interesting;
                            exposed
                        };

                        // Prepare an output buffer and builder for each capability.
                        //
                        // We buffer and build separately, as outputs are produced grouped by time, whereas the
                        // builder wants to see outputs grouped by value. While the per-key computation could
                        // do the re-sorting itself, buffering per-key outputs lets us double check the results
                        // against other implementations for accuracy.
                        //
                        // TODO: It would be better if all updates went into one batch, but timely dataflow prevents
                        //       this as long as it requires that there is only one capability for each message.
                        let mut buffers = Vec::<(G::Timestamp, Vec<(V, G::Timestamp, T2::Diff)>)>::new();
                        let mut builders = Vec::new();
                        for cap in capabilities.iter() {
                            buffers.push((cap.time().clone(), Vec::new()));
                            builders.push(T2::Builder::new());
                        }

                        let mut buffer = <<T2 as Trace>::Batcher as crate::trace::Batcher>::Output::default();

                        // cursors for navigating input and output traces.
                        let (mut source_cursor, source_storage): (T1::Cursor, _) = source_trace.cursor_through(lower_limit.borrow()).expect("failed to acquire source cursor");
                        let source_storage = &source_storage;
                        let (mut output_cursor, output_storage): (T2::Cursor, _) = output_reader.cursor_through(lower_limit.borrow()).expect("failed to acquire output cursor");
                        let output_storage = &output_storage;
                        let (mut batch_cursor, batch_storage) = (CursorList::new(batch_cursors, &batch_storage), batch_storage);
                        let batch_storage = &batch_storage;

                        let mut thinker = history_replay::HistoryReplayer::new();

                        // We now march through the keys we must work on, drawing from `batch_cursors` and `exposed`.
                        //
                        // We only keep valid cursors (those with more data) in `batch_cursors`, and so its length
                        // indicates whether more data remain. We move through `exposed` using (index) `exposed_position`.
                        // There could perhaps be a less provocative variable name.
                        let mut exposed_position = 0;
                        while batch_cursor.key_valid(batch_storage) || exposed_position < exposed.len() {

                            use std::borrow::Borrow;
                            use crate::trace::cursor::IntoOwned;

                            // Determine the next key we will work on; could be synthetic, could be from a batch.
                            let key1 = exposed.get(exposed_position).map(|x| <_ as IntoOwned>::borrow_as(&x.0));
                            let key2 = batch_cursor.get_key(batch_storage);
                            let key = match (key1, key2) {
                                (Some(key1), Some(key2)) => ::std::cmp::min(key1, key2),
                                (Some(key1), None)       => key1,
                                (None, Some(key2))       => key2,
                                (None, None)             => unreachable!(),
                            };

                            // `interesting_times` contains those times between `lower_issued` and `upper_limit`
                            // that we need to re-consider. We now populate it, but perhaps this should be left
                            // to the per-key computation, which may be able to avoid examining the times of some
                            // values (for example, in the case of min/max/topk).
                            interesting_times.clear();

                            // Populate `interesting_times` with synthetic interesting times (below `upper_limit`) for this key.
                            while exposed.get(exposed_position).map(|x| x.0.borrow()).map(|k| key.eq(&<T1::Key<'_> as IntoOwned>::borrow_as(&k))).unwrap_or(false) {
                                interesting_times.push(exposed[exposed_position].1.clone());
                                exposed_position += 1;
                            }

                            // tidy up times, removing redundancy.
                            sort_dedup(&mut interesting_times);

                            // do the per-key computation.
                            let _counters = thinker.compute(
                                key,
                                (&mut source_cursor, source_storage),
                                (&mut output_cursor, output_storage),
                                (&mut batch_cursor, batch_storage),
                                &mut interesting_times,
                                &mut logic,
                                &upper_limit,
                                &mut buffers[..],
                                &mut new_interesting_times,
                            );

                            if batch_cursor.get_key(batch_storage) == Some(key) {
                                batch_cursor.step_key(batch_storage);
                            }

                            // Record future warnings about interesting times (and assert they should be "future").
                            for time in new_interesting_times.drain(..) {
                                debug_assert!(upper_limit.less_equal(&time));
                                interesting.push((key.into_owned(), time));
                            }

                            // Sort each buffer by value and move into the corresponding builder.
                            // TODO: This makes assumptions about at least one of (i) the stability of `sort_by`,
                            //       (ii) that the buffers are time-ordered, and (iii) that the builders accept
                            //       arbitrarily ordered times.
                            for index in 0 .. buffers.len() {
                                buffers[index].1.sort_by(|x,y| x.0.cmp(&y.0));
                                for (val, time, diff) in buffers[index].1.drain(..) {
                                    buffer.push_into(((key.into_owned(), val), time, diff));
                                    builders[index].push(&mut buffer);
                                    buffer.clear();
                                }
                            }
                        }

                        // We start sealing output batches from the lower limit (previous upper limit).
                        // In principle, we could update `lower_limit` itself, and it should arrive at
                        // `upper_limit` by the end of the process.
                        output_lower.clear();
                        output_lower.extend(lower_limit.borrow().iter().cloned());

                        // build and ship each batch (because only one capability per message).
                        for (index, builder) in builders.drain(..).enumerate() {

                            // Form the upper limit of the next batch, which includes all times greater
                            // than the input batch, or the capabilities from i + 1 onward.
                            output_upper.clear();
                            output_upper.extend(upper_limit.borrow().iter().cloned());
                            for capability in &capabilities[index + 1 ..] {
                                output_upper.insert(capability.time().clone());
                            }

                            if output_upper.borrow() != output_lower.borrow() {

                                let batch = builder.done(output_lower.clone(), output_upper.clone(), Antichain::from_elem(G::Timestamp::minimum()));

                                // ship batch to the output, and commit to the output trace.
                                output.session(&capabilities[index]).give(batch.clone());
                                output_writer.insert(batch, Some(capabilities[index].time().clone()));

                                output_lower.clear();
                                output_lower.extend(output_upper.borrow().iter().cloned());
                            }
                        }

                        // This should be true, as the final iteration introduces no capabilities, and
                        // uses exactly `upper_limit` to determine the upper bound. Good to check though.
                        assert!(output_upper.borrow() == upper_limit.borrow());

                        // Determine the frontier of our interesting times.
                        let mut frontier = Antichain::<G::Timestamp>::new();
                        for (_, time) in &interesting {
                            frontier.insert_ref(time);
                        }

                        // Update `capabilities` to reflect interesting pairs described by `frontier`.
                        let mut new_capabilities = Vec::new();
                        for time in frontier.borrow().iter() {
                            if let Some(cap) = capabilities.iter().find(|c| c.time().less_equal(time)) {
                                new_capabilities.push(cap.delayed(time));
                            }
                            else {
                                println!("{}:\tfailed to find capability less than new frontier time:", id);
                                println!("{}:\t  time: {:?}", id, time);
                                println!("{}:\t  caps: {:?}", id, capabilities);
                                println!("{}:\t  uppr: {:?}", id, upper_limit);
                            }
                        }
                        capabilities = new_capabilities;

                        // ensure that observed progress is reflected in the output.
                        output_writer.seal(upper_limit.clone());
                    }
                    else {
                        output_writer.seal(upper_limit.clone());
                    }

                    // We only anticipate future times in advance of `upper_limit`.
                    source_trace.set_logical_compaction(upper_limit.borrow());
                    output_reader.set_logical_compaction(upper_limit.borrow());

                    // We will only slice the data between future batches.
                    source_trace.set_physical_compaction(upper_limit.borrow());
                    output_reader.set_physical_compaction(upper_limit.borrow());
                }

                // Exert trace maintenance if we have been so requested.
                output_writer.exert();
            }
        }
    )
    };

    Arranged { stream, trace: result_trace.unwrap() }
}


#[inline(never)]
fn sort_dedup<T: Ord>(list: &mut Vec<T>) {
    list.dedup();
    list.sort();
    list.dedup();
}

trait PerKeyCompute<'a, C1, C2, C3, V>
where
    C1: Cursor,
    C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
    C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
    V: Clone + Ord,
    for<'b> C2::Val<'b> : IntoOwned<'b, Owned = V>,
{
    fn new() -> Self;
    fn compute<L>(
        &mut self,
        key: C1::Key<'a>,
        source_cursor: (&mut C1, &'a C1::Storage),
        output_cursor: (&mut C2, &'a C2::Storage),
        batch_cursor: (&mut C3, &'a C3::Storage),
        times: &mut Vec<C1::Time>,
        logic: &mut L,
        upper_limit: &Antichain<C1::Time>,
        outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
        new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
    where
        L: FnMut(
            C1::Key<'a>,
            &[(C1::Val<'a>, C1::Diff)],
            &mut Vec<(V, C2::Diff)>,
            &mut Vec<(V, C2::Diff)>,
        );
}


/// Implementation based on replaying historical and new updates together.
mod history_replay {

    use crate::lattice::Lattice;
    use crate::trace::Cursor;
    use crate::trace::cursor::IntoOwned;
    use crate::operators::ValueHistory;
    use timely::progress::Antichain;

    use timely::PartialOrder;

    use super::{PerKeyCompute, sort_dedup};

    /// The `HistoryReplayer` is a compute strategy based on moving through existing inputs, interesting times, etc in
    /// time order, maintaining consolidated representations of updates with respect to future interesting times.
    pub struct HistoryReplayer<'a, C1, C2, C3, V>
    where
        C1: Cursor,
        C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
        C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
        V: Clone + Ord,
    {
        input_history: ValueHistory<'a, C1>,
        output_history: ValueHistory<'a, C2>,
        batch_history: ValueHistory<'a, C3>,
        input_buffer: Vec<(C1::Val<'a>, C1::Diff)>,
        output_buffer: Vec<(V, C2::Diff)>,
        update_buffer: Vec<(V, C2::Diff)>,
        output_produced: Vec<((V, C2::Time), C2::Diff)>,
        synth_times: Vec<C1::Time>,
        meets: Vec<C1::Time>,
        times_current: Vec<C1::Time>,
        temporary: Vec<C1::Time>,
    }

    impl<'a, C1, C2, C3, V> PerKeyCompute<'a, C1, C2, C3, V> for HistoryReplayer<'a, C1, C2, C3, V>
    where
        C1: Cursor,
        C2: Cursor<Key<'a> = C1::Key<'a>, Time = C1::Time>,
        C3: Cursor<Key<'a> = C1::Key<'a>, Val<'a> = C1::Val<'a>, Time = C1::Time, Diff = C1::Diff>,
        V: Clone + Ord,
        for<'b> C2::Val<'b> : IntoOwned<'b, Owned = V>,
    {
        fn new() -> Self {
            HistoryReplayer {
                input_history: ValueHistory::new(),
                output_history: ValueHistory::new(),
                batch_history: ValueHistory::new(),
                input_buffer: Vec::new(),
                output_buffer: Vec::new(),
                update_buffer: Vec::new(),
                output_produced: Vec::new(),
                synth_times: Vec::new(),
                meets: Vec::new(),
                times_current: Vec::new(),
                temporary: Vec::new(),
            }
        }
        #[inline(never)]
        fn compute<L>(
            &mut self,
            key: C1::Key<'a>,
            (source_cursor, source_storage): (&mut C1, &'a C1::Storage),
            (output_cursor, output_storage): (&mut C2, &'a C2::Storage),
            (batch_cursor, batch_storage): (&mut C3, &'a C3::Storage),
            times: &mut Vec<C1::Time>,
            logic: &mut L,
            upper_limit: &Antichain<C1::Time>,
            outputs: &mut [(C2::Time, Vec<(V, C2::Time, C2::Diff)>)],
            new_interesting: &mut Vec<C1::Time>) -> (usize, usize)
        where
            L: FnMut(
                C1::Key<'a>,
                &[(C1::Val<'a>, C1::Diff)],
                &mut Vec<(V, C2::Diff)>,
                &mut Vec<(V, C2::Diff)>,
            )
        {

            // The work we need to perform is at times defined principally by the contents of `batch_cursor`
            // and `times`, respectively "new work we just received" and "old times we were warned about".
            //
            // Our first step is to identify these times, so that we can use them to restrict the amount of
            // information we need to recover from `input` and `output`; as all times of interest will have
            // some time from `batch_cursor` or `times`, we can compute their meet and advance all other
            // loaded times by performing the lattice `join` with this value.

            // Load the batch contents.
            let mut batch_replay = self.batch_history.replay_key(batch_cursor, batch_storage, key, |time| time.into_owned());

            // We determine the meet of times we must reconsider (those from `batch` and `times`). This meet
            // can be used to advance other historical times, which may consolidate their representation. As
            // a first step, we determine the meets of each *suffix* of `times`, which we will use as we play
            // history forward.

            self.meets.clear();
            self.meets.extend(times.iter().cloned());
            for index in (1 .. self.meets.len()).rev() {
                self.meets[index-1] = self.meets[index-1].meet(&self.meets[index]);
            }

            // Determine the meet of times in `batch` and `times`.
            let mut meet = None;
            update_meet(&mut meet, self.meets.get(0));
            update_meet(&mut meet, batch_replay.meet());
            // if let Some(time) = self.meets.get(0) {
            //     meet = match meet {
            //         None => Some(self.meets[0].clone()),
            //         Some(x) => Some(x.meet(&self.meets[0])),
            //     };
            // }
            // if let Some(time) = batch_replay.meet() {
            //     meet = match meet {
            //         None => Some(time.clone()),
            //         Some(x) => Some(x.meet(&time)),
            //     };
            // }

            // Having determined the meet, we can load the input and output histories, where we
            // advance all times by joining them with `meet`. The resulting times are more compact
            // and guaranteed to accumulate identically for times greater or equal to `meet`.

            // Load the input and output histories.
            let mut input_replay = if let Some(meet) = meet.as_ref() {
                self.input_history.replay_key(source_cursor, source_storage, key, |time| {
                    let mut time = time.into_owned();
                    time.join_assign(meet);
                    time
                })
            }
            else {
                self.input_history.replay_key(source_cursor, source_storage, key, |time| time.into_owned())
            };
            let mut output_replay = if let Some(meet) = meet.as_ref() {
                self.output_history.replay_key(output_cursor, output_storage, key, |time| {
                    let mut time = time.into_owned();
                    time.join_assign(meet);
                    time
                })
            }
            else {
                self.output_history.replay_key(output_cursor, output_storage, key, |time| time.into_owned())
            };

            self.synth_times.clear();
            self.times_current.clear();
            self.output_produced.clear();

            // The frontier of times we may still consider.
            // Derived from frontiers of our update histories, supplied times, and synthetic times.

            let mut times_slice = &times[..];
            let mut meets_slice = &self.meets[..];

            let mut compute_counter = 0;
            let mut output_counter = 0;

            // We have candidate times from `batch` and `times`, as well as times identified by either
            // `input` or `output`. Finally, we may have synthetic times produced as the join of times
            // we consider in the course of evaluation. As long as any of these times exist, we need to
            // keep examining times.
            while let Some(next_time) = [   batch_replay.time(),
                                            times_slice.first(),
                                            input_replay.time(),
                                            output_replay.time(),
                                            self.synth_times.last(),
                                        ].iter().cloned().flatten().min().cloned() {

                // Advance input and output history replayers. This marks applicable updates as active.
                input_replay.step_while_time_is(&next_time);
                output_replay.step_while_time_is(&next_time);

                // One of our goals is to determine if `next_time` is "interesting", meaning whether we
                // have any evidence that we should re-evaluate the user logic at this time. For a time
                // to be "interesting" it would need to be the join of times that include either a time
                // from `batch`, `times`, or `synth`. Neither `input` nor `output` times are sufficient.

                // Advance batch history, and capture whether an update exists at `next_time`.
                let mut interesting = batch_replay.step_while_time_is(&next_time);
                if interesting {
                    if let Some(meet) = meet.as_ref() {
                        batch_replay.advance_buffer_by(meet);
                    }
                }

                // advance both `synth_times` and `times_slice`, marking this time interesting if in either.
                while self.synth_times.last() == Some(&next_time) {
                    // We don't know enough about `next_time` to avoid putting it in to `times_current`.
                    // TODO: If we knew that the time derived from a canceled batch update, we could remove the time.
                    self.times_current.push(self.synth_times.pop().expect("failed to pop from synth_times")); // <-- TODO: this could be a min-heap.
                    interesting = true;
                }
                while times_slice.first() == Some(&next_time) {
                    // We know nothing about why we were warned about `next_time`, and must include it to scare future times.
                    self.times_current.push(times_slice[0].clone());
                    times_slice = &times_slice[1..];
                    meets_slice = &meets_slice[1..];
                    interesting = true;
                }

                // Times could also be interesting if an interesting time is less than them, as they would join
                // and become the time itself. They may not equal the current time because whatever frontier we
                // are tracking may not have advanced far enough.
                // TODO: `batch_history` may or may not be super compact at this point, and so this check might
                //       yield false positives if not sufficiently compact. Maybe we should into this and see.
                interesting = interesting || batch_replay.buffer().iter().any(|&((_, ref t),_)| t.less_equal(&next_time));
                interesting = interesting || self.times_current.iter().any(|t| t.less_equal(&next_time));

                // We should only process times that are not in advance of `upper_limit`.
                //
                // We have no particular guarantee that known times will not be in advance of `upper_limit`.
                // We may have the guarantee that synthetic times will not be, as we test against the limit
                // before we add the time to `synth_times`.
                if !upper_limit.less_equal(&next_time) {

                    // We should re-evaluate the computation if this is an interesting time.
                    // If the time is uninteresting (and our logic is sound) it is not possible for there to be
                    // output produced. This sounds like a good test to have for debug builds!
                    if interesting {

                        compute_counter += 1;

                        // Assemble the input collection at `next_time`. (`self.input_buffer` cleared just after use).
                        debug_assert!(self.input_buffer.is_empty());
                        meet.as_ref().map(|meet| input_replay.advance_buffer_by(meet));
                        for &((value, ref time), ref diff) in input_replay.buffer().iter() {
                            if time.less_equal(&next_time) {
                                self.input_buffer.push((value, diff.clone()));
                            }
                            else {
                                self.temporary.push(next_time.join(time));
                            }
                        }
                        for &((value, ref time), ref diff) in batch_replay.buffer().iter() {
                            if time.less_equal(&next_time) {
                                self.input_buffer.push((value, diff.clone()));
                            }
                            else {
                                self.temporary.push(next_time.join(time));
                            }
                        }
                        crate::consolidation::consolidate(&mut self.input_buffer);

                        meet.as_ref().map(|meet| output_replay.advance_buffer_by(meet));
                        for &((value, ref time), ref diff) in output_replay.buffer().iter() {
                            if time.less_equal(&next_time) {
                                self.output_buffer.push((value.into_owned(), diff.clone()));
                            }
                            else {
                                self.temporary.push(next_time.join(time));
                            }
                        }
                        for &((ref value, ref time), ref diff) in self.output_produced.iter() {
                            if time.less_equal(&next_time) {
                                self.output_buffer.push(((*value).to_owned(), diff.clone()));
                            }
                            else {
                                self.temporary.push(next_time.join(time));
                            }
                        }
                        crate::consolidation::consolidate(&mut self.output_buffer);

                        // Apply user logic if non-empty input and see what happens!
                        if !self.input_buffer.is_empty() || !self.output_buffer.is_empty() {
                            logic(key, &self.input_buffer[..], &mut self.output_buffer, &mut self.update_buffer);
                            self.input_buffer.clear();
                            self.output_buffer.clear();
                        }

                        // output_replay.advance_buffer_by(&meet);
                        // for &((ref value, ref time), diff) in output_replay.buffer().iter() {
                        //     if time.less_equal(&next_time) {
                        //         self.output_buffer.push(((*value).clone(), -diff));
                        //     }
                        //     else {
                        //         self.temporary.push(next_time.join(time));
                        //     }
                        // }
                        // for &((ref value, ref time), diff) in self.output_produced.iter() {
                        //     if time.less_equal(&next_time) {
                        //         self.output_buffer.push(((*value).clone(), -diff));
                        //     }
                        //     else {
                        //         self.temporary.push(next_time.join(&time));
                        //     }
                        // }

                        // Having subtracted output updates from user output, consolidate the results to determine
                        // if there is anything worth reporting. Note: this also orders the results by value, so
                        // that could make the above merging plan even easier.
                        crate::consolidation::consolidate(&mut self.update_buffer);

                        // Stash produced updates into both capability-indexed buffers and `output_produced`.
                        // The two locations are important, in that we will compact `output_produced` as we move
                        // through times, but we cannot compact the output buffers because we need their actual
                        // times.
                        if !self.update_buffer.is_empty() {

                            output_counter += 1;

                            // We *should* be able to find a capability for `next_time`. Any thing else would
                            // indicate a logical error somewhere along the way; either we release a capability
                            // we should have kept, or we have computed the output incorrectly (or both!)
                            let idx = outputs.iter().rev().position(|(time, _)| time.less_equal(&next_time));
                            let idx = outputs.len() - idx.expect("failed to find index") - 1;
                            for (val, diff) in self.update_buffer.drain(..) {
                                self.output_produced.push(((val.clone(), next_time.clone()), diff.clone()));
                                outputs[idx].1.push((val, next_time.clone(), diff));
                            }

                            // Advance times in `self.output_produced` and consolidate the representation.
                            // NOTE: We only do this when we add records; it could be that there are situations
                            //       where we want to consolidate even without changes (because an initially
                            //       large collection can now be collapsed).
                            if let Some(meet) = meet.as_ref() {
                                for entry in &mut self.output_produced {
                                    (entry.0).1 = (entry.0).1.join(meet);
                                }
                            }
                            crate::consolidation::consolidate(&mut self.output_produced);
                        }
                    }

                    // Determine synthetic interesting times.
                    //
                    // Synthetic interesting times are produced differently for interesting and uninteresting
                    // times. An uninteresting time must join with an interesting time to become interesting,
                    // which means joins with `self.batch_history` and  `self.times_current`. I think we can
                    // skip `self.synth_times` as we haven't gotten to them yet, but we will and they will be
                    // joined against everything.

                    // Any time, even uninteresting times, must be joined with the current accumulation of
                    // batch times as well as the current accumulation of `times_current`.
                    for &((_, ref time), _) in batch_replay.buffer().iter() {
                        if !time.less_equal(&next_time) {
                            self.temporary.push(time.join(&next_time));
                        }
                    }
                    for time in self.times_current.iter() {
                        if !time.less_equal(&next_time) {
                            self.temporary.push(time.join(&next_time));
                        }
                    }

                    sort_dedup(&mut self.temporary);

                    // Introduce synthetic times, and re-organize if we add any.
                    let synth_len = self.synth_times.len();
                    for time in self.temporary.drain(..) {
                        // We can either service `join` now, or must delay for the future.
                        if upper_limit.less_equal(&time) {
                            debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&time)));
                            new_interesting.push(time);
                        }
                        else {
                            self.synth_times.push(time);
                        }
                    }
                    if self.synth_times.len() > synth_len {
                        self.synth_times.sort_by(|x,y| y.cmp(x));
                        self.synth_times.dedup();
                    }
                }
                else if interesting {
                    // We cannot process `next_time` now, and must delay it.
                    //
                    // I think we are probably only here because of an uninteresting time declared interesting,
                    // as initial interesting times are filtered to be in interval, and synthetic times are also
                    // filtered before introducing them to `self.synth_times`.
                    new_interesting.push(next_time.clone());
                    debug_assert!(outputs.iter().any(|(t,_)| t.less_equal(&next_time)))
                }


                // Update `meet` to track the meet of each source of times.
                meet = None;//T::maximum();
                update_meet(&mut meet, batch_replay.meet());
                update_meet(&mut meet, input_replay.meet());
                update_meet(&mut meet, output_replay.meet());
                for time in self.synth_times.iter() { update_meet(&mut meet, Some(time)); }
                // if let Some(time) = batch_replay.meet() { meet = meet.meet(time); }
                // if let Some(time) = input_replay.meet() { meet = meet.meet(time); }
                // if let Some(time) = output_replay.meet() { meet = meet.meet(time); }
                // for time in self.synth_times.iter() { meet = meet.meet(time); }
                update_meet(&mut meet, meets_slice.first());
                // if let Some(time) = meets_slice.first() { meet = meet.meet(time); }

                // Update `times_current` by the frontier.
                if let Some(meet) = meet.as_ref() {
                    for time in self.times_current.iter_mut() {
                        *time = time.join(meet);
                    }
                }

                sort_dedup(&mut self.times_current);
            }

            // Normalize the representation of `new_interesting`, deduplicating and ordering.
            sort_dedup(new_interesting);

            (compute_counter, output_counter)
        }
    }

    /// Updates an optional meet by an optional time.
    fn update_meet<T: Lattice+Clone>(meet: &mut Option<T>, other: Option<&T>) {
        if let Some(time) = other {
            if let Some(meet) = meet.as_mut() {
                *meet = meet.meet(time);
            }
            if meet.is_none() {
                *meet = Some(time.clone());
            }
        }
    }
}