1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
//! A dataflow subgraph
//!
//! Timely dataflow graphs can be nested hierarchically, where some region of
//! graph is grouped, and presents upwards as an operator. This grouping needs
//! some care, to make sure that the presented operator reflects the behavior
//! of the grouped operators.

use std::rc::Rc;
use std::cell::RefCell;
use std::collections::BinaryHeap;
use std::cmp::Reverse;

use crate::logging::TimelyLogger as Logger;
use crate::logging::TimelyProgressLogger as ProgressLogger;

use crate::scheduling::Schedule;
use crate::scheduling::activate::Activations;

use crate::progress::frontier::{Antichain, MutableAntichain, MutableAntichainFilter};
use crate::progress::{Timestamp, Operate, operate::SharedProgress};
use crate::progress::{Location, Port, Source, Target};

use crate::progress::ChangeBatch;
use crate::progress::broadcast::Progcaster;
use crate::progress::reachability;
use crate::progress::timestamp::Refines;

use crate::worker::ProgressMode;

// IMPORTANT : by convention, a child identifier of zero is used to indicate inputs and outputs of
// the Subgraph itself. An identifier greater than zero corresponds to an actual child, which can
// be found at position (id - 1) in the `children` field of the Subgraph.

/// A builder for interactively initializing a `Subgraph`.
///
/// This collects all the information necessary to get a `Subgraph` up and
/// running, and is important largely through its `build` method which
/// actually creates a `Subgraph`.
pub struct SubgraphBuilder<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp,
{
    /// The name of this subgraph.
    pub name: String,

    /// A sequence of integers uniquely identifying the subgraph.
    pub path: Vec<usize>,

    /// The index assigned to the subgraph by its parent.
    index: usize,

    // handles to the children of the scope. index i corresponds to entry i-1, unless things change.
    children: Vec<PerOperatorState<TInner>>,
    child_count: usize,

    edge_stash: Vec<(Source, Target)>,

    // shared state written to by the datapath, counting records entering this subgraph instance.
    input_messages: Vec<Rc<RefCell<ChangeBatch<TInner>>>>,

    // expressed capabilities, used to filter changes against.
    output_capabilities: Vec<MutableAntichain<TOuter>>,

    /// Logging handle
    logging: Option<Logger>,

    /// Progress logging handle
    progress_logging: Option<ProgressLogger>,
}

impl<TOuter, TInner> SubgraphBuilder<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp+Refines<TOuter>,
{
    /// Allocates a new input to the subgraph and returns the target to that input in the outer graph.
    pub fn new_input(&mut self, shared_counts: Rc<RefCell<ChangeBatch<TInner>>>) -> Target {
        self.input_messages.push(shared_counts);
        Target::new(self.index, self.input_messages.len() - 1)
    }

    /// Allocates a new output from the subgraph and returns the source of that output in the outer graph.
    pub fn new_output(&mut self) -> Source {
        self.output_capabilities.push(MutableAntichain::new());
        Source::new(self.index, self.output_capabilities.len() - 1)
    }

    /// Introduces a dependence from the source to the target.
    ///
    /// This method does not effect data movement, but rather reveals to the progress tracking infrastructure
    /// that messages produced by `source` should be expected to be consumed at `target`.
    pub fn connect(&mut self, source: Source, target: Target) {
        self.edge_stash.push((source, target));
    }

    /// Creates a new Subgraph from a channel allocator and "descriptive" indices.
    pub fn new_from(
        index: usize,
        mut path: Vec<usize>,
        logging: Option<Logger>,
        progress_logging: Option<ProgressLogger>,
        name: &str,
    )
        -> SubgraphBuilder<TOuter, TInner>
    {
        path.push(index);

        // Put an empty placeholder for "outer scope" representative.
        let children = vec![PerOperatorState::empty(0, 0)];

        SubgraphBuilder {
            name: name.to_owned(),
            path,
            index,
            children,
            child_count: 1,
            edge_stash: Vec::new(),
            input_messages: Vec::new(),
            output_capabilities: Vec::new(),
            logging,
            progress_logging,
        }
    }

    /// Allocates a new child identifier, for later use.
    pub fn allocate_child_id(&mut self) -> usize {
        self.child_count += 1;
        self.child_count - 1
    }

    /// Adds a new child to the subgraph.
    pub fn add_child(&mut self, child: Box<dyn Operate<TInner>>, index: usize, identifier: usize) {
        {
            let mut child_path = self.path.clone();
            child_path.push(index);
            self.logging.as_mut().map(|l| l.log(crate::logging::OperatesEvent {
                id: identifier,
                addr: child_path,
                name: child.name().to_owned(),
            }));
        }
        self.children.push(PerOperatorState::new(child, index, self.path.clone(), identifier, self.logging.clone()))
    }

    /// Now that initialization is complete, actually build a subgraph.
    pub fn build<A: crate::worker::AsWorker>(mut self, worker: &mut A) -> Subgraph<TOuter, TInner> {
        // at this point, the subgraph is frozen. we should initialize any internal state which
        // may have been determined after construction (e.g. the numbers of inputs and outputs).
        // we also need to determine what to return as a summary and initial capabilities, which
        // will depend on child summaries and capabilities, as well as edges in the subgraph.

        // perhaps first check that the children are sanely identified
        self.children.sort_by(|x,y| x.index.cmp(&y.index));
        assert!(self.children.iter().enumerate().all(|(i,x)| i == x.index));

        let inputs = self.input_messages.len();
        let outputs = self.output_capabilities.len();

        // Create empty child zero represenative.
        self.children[0] = PerOperatorState::empty(outputs, inputs);

        let mut builder = reachability::Builder::new();

        // Child 0 has `inputs` outputs and `outputs` inputs, not yet connected.
        builder.add_node(0, outputs, inputs, vec![vec![Antichain::new(); inputs]; outputs]);
        for (index, child) in self.children.iter().enumerate().skip(1) {
            builder.add_node(index, child.inputs, child.outputs, child.internal_summary.clone());
        }

        for (source, target) in self.edge_stash {
            self.children[source.node].edges[source.port].push(target);
            builder.add_edge(source, target);
        }

        // The `None` argument is optional logging infrastructure.
        let path = self.path.clone();
        let reachability_logging =
        worker.log_register()
            .get::<reachability::logging::TrackerEvent>("timely/reachability")
            .map(|logger| reachability::logging::TrackerLogger::new(path, logger));
        let (tracker, scope_summary) = builder.build(reachability_logging);

        let progcaster = Progcaster::new(worker, &self.path, self.logging.clone(), self.progress_logging.clone());

        let mut incomplete = vec![true; self.children.len()];
        incomplete[0] = false;
        let incomplete_count = incomplete.len() - 1;

        let activations = worker.activations();

        activations.borrow_mut().activate(&self.path[..]);

        Subgraph {
            name: self.name,
            path: self.path,
            inputs,
            outputs,
            incomplete,
            incomplete_count,
            activations,
            temp_active: BinaryHeap::new(),
            maybe_shutdown: Vec::new(),
            children: self.children,
            input_messages: self.input_messages,
            output_capabilities: self.output_capabilities,

            local_pointstamp: ChangeBatch::new(),
            final_pointstamp: ChangeBatch::new(),
            progcaster,
            pointstamp_tracker: tracker,

            shared_progress: Rc::new(RefCell::new(SharedProgress::new(inputs, outputs))),
            scope_summary,

            progress_mode: worker.config().progress_mode,
        }
    }
}


/// A dataflow subgraph.
///
/// The subgraph type contains the infrastructure required to describe the topology of and track
/// progress within a dataflow subgraph.
pub struct Subgraph<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp+Refines<TOuter>,
{
    name: String,           // an informative name.
    /// Path of identifiers from the root.
    pub path: Vec<usize>,
    inputs: usize,          // number of inputs.
    outputs: usize,         // number of outputs.

    // handles to the children of the scope. index i corresponds to entry i-1, unless things change.
    children: Vec<PerOperatorState<TInner>>,

    incomplete: Vec<bool>,   // the incompletion status of each child.
    incomplete_count: usize, // the number of incomplete children.

    // shared activations (including children).
    activations: Rc<RefCell<Activations>>,
    temp_active: BinaryHeap<Reverse<usize>>,
    maybe_shutdown: Vec<usize>,

    // shared state written to by the datapath, counting records entering this subgraph instance.
    input_messages: Vec<Rc<RefCell<ChangeBatch<TInner>>>>,

    // expressed capabilities, used to filter changes against.
    output_capabilities: Vec<MutableAntichain<TOuter>>,

    // pointstamp messages to exchange. ultimately destined for `messages` or `internal`.
    local_pointstamp: ChangeBatch<(Location, TInner)>,
    final_pointstamp: ChangeBatch<(Location, TInner)>,

    // Graph structure and pointstamp tracker.
    // pointstamp_builder: reachability::Builder<TInner>,
    pointstamp_tracker: reachability::Tracker<TInner>,

    // channel / whatever used to communicate pointstamp updates to peers.
    progcaster: Progcaster<TInner>,

    shared_progress: Rc<RefCell<SharedProgress<TOuter>>>,
    scope_summary: Vec<Vec<Antichain<TInner::Summary>>>,

    progress_mode: ProgressMode,
}

impl<TOuter, TInner> Schedule for Subgraph<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp+Refines<TOuter>,
{
    fn name(&self) -> &str { &self.name }

    fn path(&self) -> &[usize] { &self.path }

    fn schedule(&mut self) -> bool {

        // This method performs several actions related to progress tracking
        // and child operator scheduling. The actions have been broken apart
        // into atomic actions that should be able to be safely executed in
        // isolation, by a potentially clueless user (yours truly).

        self.accept_frontier();         // Accept supplied frontier changes.
        self.harvest_inputs();          // Count records entering the scope.

        // Receive post-exchange progress updates.
        self.progcaster.recv(&mut self.final_pointstamp);

        // Commit and propagate final pointstamps.
        self.propagate_pointstamps();

        {   // Enqueue active children; scoped to let borrow drop.
            let temp_active = &mut self.temp_active;
            self.activations
                .borrow_mut()
                .for_extensions(&self.path[..], |index| temp_active.push(Reverse(index)));
        }

        // Schedule child operators.
        //
        // We should be able to schedule arbitrary subsets of children, as
        // long as we eventually schedule all children that need to do work.
        let mut previous = 0;
        while let Some(Reverse(index)) = self.temp_active.pop() {
            // De-duplicate, and don't revisit.
            if index > previous {
                // TODO: This is a moment where a scheduling decision happens.
                self.activate_child(index);
                previous = index;
            }
        }

        // Transmit produced progress updates.
        self.send_progress();

        // If child scopes surface more final pointstamp updates we must re-execute.
        if !self.final_pointstamp.is_empty() {
            self.activations.borrow_mut().activate(&self.path[..]);
        }

        // A subgraph is incomplete if any child is incomplete, or there are outstanding messages.
        let incomplete = self.incomplete_count > 0;
        let tracking = self.pointstamp_tracker.tracking_anything();

        incomplete || tracking
    }
}


impl<TOuter, TInner> Subgraph<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp+Refines<TOuter>,
{
    /// Schedules a child operator and collects progress statements.
    ///
    /// The return value indicates that the child task cannot yet shut down.
    fn activate_child(&mut self, child_index: usize) -> bool {

        let child = &mut self.children[child_index];

        let incomplete = child.schedule();

        if incomplete != self.incomplete[child_index] {
            if incomplete { self.incomplete_count += 1; }
            else          { self.incomplete_count -= 1; }
            self.incomplete[child_index] = incomplete;
        }

        if !incomplete {
            // Consider shutting down the child, if neither capabilities nor input frontier.
            let child_state = self.pointstamp_tracker.node_state(child_index);
            let frontiers_empty = child_state.targets.iter().all(|x| x.implications.is_empty());
            let no_capabilities = child_state.sources.iter().all(|x| x.pointstamps.is_empty());
            if frontiers_empty && no_capabilities {
                child.shut_down();
            }
        }
        else {
            // In debug mode, check that the progress statements do not violate invariants.
            #[cfg(debug_assertions)] {
                child.validate_progress(self.pointstamp_tracker.node_state(child_index));
            }
        }

        // Extract progress statements into either pre- or post-exchange buffers.
        if child.local {
            child.extract_progress(&mut self.local_pointstamp, &mut self.temp_active);
        }
        else {
            child.extract_progress(&mut self.final_pointstamp, &mut self.temp_active);
        }

        incomplete
    }

    /// Move frontier changes from parent into progress statements.
    fn accept_frontier(&mut self) {
        for (port, changes) in self.shared_progress.borrow_mut().frontiers.iter_mut().enumerate() {
            let source = Source::new(0, port);
            for (time, value) in changes.drain() {
                self.pointstamp_tracker.update_source(
                    source,
                    TInner::to_inner(time),
                    value
                );
            }
        }
    }

    /// Collects counts of records entering the scope.
    ///
    /// This method moves message counts from the output of child zero to the inputs to
    /// attached operators. This is a bit of a hack, because normally one finds capabilities
    /// at an operator output, rather than message counts. These counts are used only at
    /// mark [XXX] where they are reported upwards to the parent scope.
    fn harvest_inputs(&mut self) {
        for input in 0 .. self.inputs {
            let source = Location::new_source(0, input);
            let mut borrowed = self.input_messages[input].borrow_mut();
            for (time, delta) in borrowed.drain() {
                for target in &self.children[0].edges[input] {
                    self.local_pointstamp.update((Location::from(*target), time.clone()), delta);
                }
                self.local_pointstamp.update((source, time), -delta);
            }
        }
    }

    /// Commits pointstamps in `self.final_pointstamp`.
    ///
    /// This method performs several steps that for reasons of correctness must
    /// be performed atomically, before control is returned. These are:
    ///
    /// 1. Changes to child zero's outputs are reported as consumed messages.
    /// 2. Changes to child zero's inputs are reported as produced messages.
    /// 3. Frontiers for child zero's inputs are reported as internal capabilities.
    ///
    /// Perhaps importantly, the frontiers for child zero are determined *without*
    /// the messages that are produced for child zero inputs, as we only want to
    /// report retained internal capabilities, and not now-external messages.
    ///
    /// In the course of propagating progress changes, we also propagate progress
    /// changes for all of the managed child operators.
    fn propagate_pointstamps(&mut self) {

        // Process exchanged pointstamps. Handle child 0 statements carefully.
        for ((location, timestamp), delta) in self.final_pointstamp.drain() {

            // Child 0 corresponds to the parent scope and has special handling.
            if location.node == 0 {
                match location.port {
                    // [XXX] Report child 0's capabilities as consumed messages.
                    //       Note the re-negation of delta, to make counts positive.
                    Port::Source(scope_input) => {
                        self.shared_progress
                            .borrow_mut()
                            .consumeds[scope_input]
                            .update(timestamp.to_outer(), -delta);
                    },
                    // [YYY] Report child 0's input messages as produced messages.
                    //       Do not otherwise record, as we will not see subtractions,
                    //       and we do not want to present their implications upward.
                    Port::Target(scope_output) => {
                        self.shared_progress
                            .borrow_mut()
                            .produceds[scope_output]
                            .update(timestamp.to_outer(), delta);
                    },
                }
            }
            else {
                self.pointstamp_tracker.update(location, timestamp, delta);
            }
        }

        // Propagate implications of progress changes.
        self.pointstamp_tracker.propagate_all();

        // Drain propagated information into shared progress structure.
        for ((location, time), diff) in self.pointstamp_tracker.pushed().drain() {
            self.maybe_shutdown.push(location.node);
            // Targets are actionable, sources are not.
            if let crate::progress::Port::Target(port) = location.port {
                if self.children[location.node].notify {
                    self.temp_active.push(Reverse(location.node));
                }
                // TODO: This logic could also be guarded by `.notify`, but
                // we want to be a bit careful to make sure all related logic
                // agrees with this (e.g. initialization, operator logic, etc.)
                self.children[location.node]
                    .shared_progress
                    .borrow_mut()
                    .frontiers[port]
                    .update(time, diff);
            }
        }

        // Consider scheduling each recipient of progress information to shut down.
        self.maybe_shutdown.sort();
        self.maybe_shutdown.dedup();
        for child_index in self.maybe_shutdown.drain(..) {
            let child_state = self.pointstamp_tracker.node_state(child_index);
            let frontiers_empty = child_state.targets.iter().all(|x| x.implications.is_empty());
            let no_capabilities = child_state.sources.iter().all(|x| x.pointstamps.is_empty());
            if frontiers_empty && no_capabilities {
                self.temp_active.push(Reverse(child_index));
            }
        }

        // Extract child zero frontier changes and report as internal capability changes.
        for (output, internal) in self.shared_progress.borrow_mut().internals.iter_mut().enumerate() {
            self.pointstamp_tracker
                .pushed_output()[output]
                .drain()
                .map(|(time, diff)| (time.to_outer(), diff))
                .filter_through(&mut self.output_capabilities[output])
                .for_each(|(time, diff)| internal.update(time, diff));
        }
    }

    /// Sends local progress updates to all workers.
    ///
    /// This method does not guarantee that all of `self.local_pointstamps` are
    /// sent, but that no blocking pointstamps remain
    fn send_progress(&mut self) {

        // If we are requested to eagerly send progress updates, or if there are
        // updates visible in the scope-wide frontier, we must send all updates.
        let must_send = self.progress_mode == ProgressMode::Eager || {
            let tracker = &mut self.pointstamp_tracker;
            self.local_pointstamp
                .iter()
                .any(|((location, time), diff)|
                    // Must publish scope-wide visible subtractions.
                    tracker.is_global(*location, time) && *diff < 0
                )
        };

        if must_send {
            self.progcaster.send(&mut self.local_pointstamp);
        }
    }
}


impl<TOuter, TInner> Operate<TOuter> for Subgraph<TOuter, TInner>
where
    TOuter: Timestamp,
    TInner: Timestamp+Refines<TOuter>,
{
    fn local(&self) -> bool { false }
    fn inputs(&self)  -> usize { self.inputs }
    fn outputs(&self) -> usize { self.outputs }

    // produces connectivity summaries from inputs to outputs, and reports initial internal
    // capabilities on each of the outputs (projecting capabilities from contained scopes).
    fn get_internal_summary(&mut self) -> (Vec<Vec<Antichain<TOuter::Summary>>>, Rc<RefCell<SharedProgress<TOuter>>>) {

        // double-check that child 0 (the outside world) is correctly shaped.
        assert_eq!(self.children[0].outputs, self.inputs());
        assert_eq!(self.children[0].inputs, self.outputs());

        // Note that we need to have `self.inputs()` elements in the summary
        // with each element containing `self.outputs()` antichains regardless
        // of how long `self.scope_summary` is
        let mut internal_summary = vec![vec![Antichain::new(); self.outputs()]; self.inputs()];
        for (input_idx, input) in self.scope_summary.iter().enumerate() {
            for (output_idx, output) in input.iter().enumerate() {
                let antichain = &mut internal_summary[input_idx][output_idx];
                antichain.reserve(output.elements().len());
                antichain.extend(output.elements().iter().cloned().map(TInner::summarize));
            }
        }

        debug_assert_eq!(
            internal_summary.len(),
            self.inputs(),
            "the internal summary should have as many elements as there are inputs",
        );
        debug_assert!(
            internal_summary.iter().all(|summary| summary.len() == self.outputs()),
            "each element of the internal summary should have as many elements as there are outputs",
        );

        // Each child has expressed initial capabilities (their `shared_progress.internals`).
        // We introduce these into the progress tracker to determine the scope's initial
        // internal capabilities.
        for child in self.children.iter_mut() {
            child.extract_progress(&mut self.final_pointstamp, &mut self.temp_active);
        }

        self.propagate_pointstamps();  // Propagate expressed capabilities to output frontiers.

        // Return summaries and shared progress information.
        (internal_summary, self.shared_progress.clone())
    }

    fn set_external_summary(&mut self) {
        self.accept_frontier();
        self.propagate_pointstamps();  // ensure propagation of input frontiers.
        self.children
            .iter_mut()
            .flat_map(|child| child.operator.as_mut())
            .for_each(|op| op.set_external_summary());
    }
}

struct PerOperatorState<T: Timestamp> {

    name: String,       // name of the operator
    index: usize,       // index of the operator within its parent scope
    id: usize,          // worker-unique identifier

    local: bool,        // indicates whether the operator will exchange data or not
    notify: bool,
    inputs: usize,      // number of inputs to the operator
    outputs: usize,     // number of outputs from the operator

    operator: Option<Box<dyn Operate<T>>>,

    edges: Vec<Vec<Target>>,    // edges from the outputs of the operator

    shared_progress: Rc<RefCell<SharedProgress<T>>>,

    internal_summary: Vec<Vec<Antichain<T::Summary>>>,   // cached result from get_internal_summary.

    logging: Option<Logger>,
}

impl<T: Timestamp> PerOperatorState<T> {

    fn empty(inputs: usize, outputs: usize) -> PerOperatorState<T> {
        PerOperatorState {
            name:       "External".to_owned(),
            operator:   None,
            index:      0,
            id:         usize::max_value(),
            local:      false,
            notify:     true,
            inputs,
            outputs,

            edges: vec![Vec::new(); outputs],

            logging: None,

            shared_progress: Rc::new(RefCell::new(SharedProgress::new(inputs,outputs))),
            internal_summary: Vec::new(),
        }
    }

    pub fn new(
        mut scope: Box<dyn Operate<T>>,
        index: usize,
        mut _path: Vec<usize>,
        identifier: usize,
        logging: Option<Logger>
    ) -> PerOperatorState<T>
    {
        let local = scope.local();
        let inputs = scope.inputs();
        let outputs = scope.outputs();
        let notify = scope.notify_me();

        let (internal_summary, shared_progress) = scope.get_internal_summary();

        assert_eq!(
            internal_summary.len(),
            inputs,
            "operator summary has {} inputs when {} were expected",
            internal_summary.len(),
            inputs,
        );
        assert!(
            !internal_summary.iter().any(|x| x.len() != outputs),
            "operator summary had too few outputs",
        );

        PerOperatorState {
            name:               scope.name().to_owned(),
            operator:           Some(scope),
            index,
            id:                 identifier,
            local,
            notify,
            inputs,
            outputs,
            edges:              vec![vec![]; outputs],

            logging,

            shared_progress,
            internal_summary,
        }
    }

    pub fn schedule(&mut self) -> bool {

        if let Some(ref mut operator) = self.operator {

            // Perhaps log information about the start of the schedule call.
            if let Some(l) = self.logging.as_mut() {
                // FIXME: There is no contract that the operator must consume frontier changes.
                //        This report could be spurious.
                // TODO:  Perhaps fold this in to `ScheduleEvent::start()` as a "reason"?
                let frontiers = &mut self.shared_progress.borrow_mut().frontiers[..];
                if frontiers.iter_mut().any(|buffer| !buffer.is_empty()) {
                    l.log(crate::logging::PushProgressEvent { op_id: self.id })
                }

                l.log(crate::logging::ScheduleEvent::start(self.id));
            }

            let incomplete = operator.schedule();

            // Perhaps log information about the stop of the schedule call.
            if let Some(l) = self.logging.as_mut() {
                l.log(crate::logging::ScheduleEvent::stop(self.id));
            }

            incomplete
        }
        else {

            // If the operator is closed and we are reporting progress at it, something has surely gone wrong.
            if self.shared_progress.borrow_mut().frontiers.iter_mut().any(|x| !x.is_empty()) {
                println!("Operator prematurely shut down: {}", self.name);
                println!("  {:?}", self.notify);
                println!("  {:?}", self.shared_progress.borrow_mut().frontiers);
                panic!();
            }

            // A closed operator shouldn't keep anything open.
            false
        }
    }

    fn shut_down(&mut self) {
        if self.operator.is_some() {
            if let Some(l) = self.logging.as_mut() {
                l.log(crate::logging::ShutdownEvent{ id: self.id });
            }
            self.operator = None;
        }
    }

    /// Extracts shared progress information and converts to pointstamp changes.
    fn extract_progress(&mut self, pointstamps: &mut ChangeBatch<(Location, T)>, temp_active: &mut BinaryHeap<Reverse<usize>>) {

        let shared_progress = &mut *self.shared_progress.borrow_mut();

        // Migrate consumeds, internals, produceds into progress statements.
        for (input, consumed) in shared_progress.consumeds.iter_mut().enumerate() {
            let target = Location::new_target(self.index, input);
            for (time, delta) in consumed.drain() {
                pointstamps.update((target, time), -delta);
            }
        }
        for (output, internal) in shared_progress.internals.iter_mut().enumerate() {
            let source = Location::new_source(self.index, output);
            for (time, delta) in internal.drain() {
                pointstamps.update((source, time.clone()), delta);
            }
        }
        for (output, produced) in shared_progress.produceds.iter_mut().enumerate() {
            for (time, delta) in produced.drain() {
                for target in &self.edges[output] {
                    pointstamps.update((Location::from(*target), time.clone()), delta);
                    temp_active.push(Reverse(target.node));
                }
            }
        }
    }

    /// Test the validity of `self.shared_progress`.
    ///
    /// The validity of shared progress information depends on both the external frontiers and the
    /// internal capabilities, as events can occur that cannot be explained locally otherwise.
    #[allow(dead_code)]
    fn validate_progress(&mut self, child_state: &reachability::PerOperator<T>) {

        let shared_progress = &mut *self.shared_progress.borrow_mut();

        // Increments to internal capabilities require a consumed input message, a
        for (output, internal) in shared_progress.internals.iter_mut().enumerate() {
            for (time, diff) in internal.iter() {
                if *diff > 0 {
                    let consumed = shared_progress.consumeds.iter_mut().any(|x| x.iter().any(|(t,d)| *d > 0 && t.less_equal(time)));
                    let internal = child_state.sources[output].implications.less_equal(time);
                    if !consumed && !internal {
                        println!("Increment at {:?}, not supported by\n\tconsumed: {:?}\n\tinternal: {:?}", time, shared_progress.consumeds, child_state.sources[output].implications);
                        panic!("Progress error; internal {:?}", self.name);
                    }
                }
            }
        }
        for (output, produced) in shared_progress.produceds.iter_mut().enumerate() {
            for (time, diff) in produced.iter() {
                if *diff > 0 {
                    let consumed = shared_progress.consumeds.iter_mut().any(|x| x.iter().any(|(t,d)| *d > 0 && t.less_equal(time)));
                    let internal = child_state.sources[output].implications.less_equal(time);
                    if !consumed && !internal {
                        println!("Increment at {:?}, not supported by\n\tconsumed: {:?}\n\tinternal: {:?}", time, shared_progress.consumeds, child_state.sources[output].implications);
                        panic!("Progress error; produced {:?}", self.name);
                    }
                }
            }
        }
    }
}

// Explicitly shut down the operator to get logged information.
impl<T: Timestamp> Drop for PerOperatorState<T> {
    fn drop(&mut self) {
        self.shut_down();
    }
}