tinyvec/
tinyvec.rs

1#![cfg(feature = "alloc")]
2
3use super::*;
4
5use alloc::vec::{self, Vec};
6use core::convert::TryFrom;
7use tinyvec_macros::impl_mirrored;
8
9#[cfg(feature = "rustc_1_57")]
10use alloc::collections::TryReserveError;
11
12#[cfg(feature = "serde")]
13use core::marker::PhantomData;
14#[cfg(feature = "serde")]
15use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
16#[cfg(feature = "serde")]
17use serde::ser::{Serialize, SerializeSeq, Serializer};
18
19/// Helper to make a `TinyVec`.
20///
21/// You specify the backing array type, and optionally give all the elements you
22/// want to initially place into the array.
23///
24/// ```rust
25/// use tinyvec::*;
26///
27/// // The backing array type can be specified in the macro call
28/// let empty_tv = tiny_vec!([u8; 16]);
29/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
30/// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
31///
32/// // Or left to inference
33/// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!();
34/// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3);
35/// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
36/// ```
37#[macro_export]
38#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
39macro_rules! tiny_vec {
40  ($array_type:ty => $($elem:expr),* $(,)?) => {
41    {
42      // https://github.com/rust-lang/lang-team/issues/28
43      const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*;
44      // If we have more `$elem` than the `CAPACITY` we will simply go directly
45      // to constructing on the heap.
46      match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) {
47        $crate::TinyVecConstructor::Inline(f) => {
48          f($crate::array_vec!($array_type => $($elem),*))
49        }
50        $crate::TinyVecConstructor::Heap(f) => {
51          f(vec!($($elem),*))
52        }
53      }
54    }
55  };
56  ($array_type:ty) => {
57    $crate::TinyVec::<$array_type>::default()
58  };
59  ($($elem:expr),*) => {
60    $crate::tiny_vec!(_ => $($elem),*)
61  };
62  ($elem:expr; $n:expr) => {
63    $crate::TinyVec::from([$elem; $n])
64  };
65  () => {
66    $crate::tiny_vec!(_)
67  };
68}
69
70#[doc(hidden)] // Internal implementation details of `tiny_vec!`
71pub enum TinyVecConstructor<A: Array> {
72  Inline(fn(ArrayVec<A>) -> TinyVec<A>),
73  Heap(fn(Vec<A::Item>) -> TinyVec<A>),
74}
75
76/// A vector that starts inline, but can automatically move to the heap.
77///
78/// * Requires the `alloc` feature
79///
80/// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or
81/// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The
82/// interface for the type as a whole is a bunch of methods that just match on
83/// the enum variant and then call the same method on the inner vec.
84///
85/// ## Construction
86///
87/// Because it's an enum, you can construct a `TinyVec` simply by making an
88/// `ArrayVec` or `Vec` and then putting it into the enum.
89///
90/// There is also a macro
91///
92/// ```rust
93/// # use tinyvec::*;
94/// let empty_tv = tiny_vec!([u8; 16]);
95/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
96/// ```
97#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
98pub enum TinyVec<A: Array> {
99  #[allow(missing_docs)]
100  Inline(ArrayVec<A>),
101  #[allow(missing_docs)]
102  Heap(Vec<A::Item>),
103}
104
105impl<A> Clone for TinyVec<A>
106where
107  A: Array + Clone,
108  A::Item: Clone,
109{
110  #[inline]
111  fn clone(&self) -> Self {
112    match self {
113      TinyVec::Heap(v) => TinyVec::Heap(v.clone()),
114      TinyVec::Inline(v) => TinyVec::Inline(v.clone()),
115    }
116  }
117
118  #[inline]
119  fn clone_from(&mut self, o: &Self) {
120    if o.len() > self.len() {
121      self.reserve(o.len() - self.len());
122    } else {
123      self.truncate(o.len());
124    }
125    let (start, end) = o.split_at(self.len());
126    for (dst, src) in self.iter_mut().zip(start) {
127      dst.clone_from(src);
128    }
129    self.extend_from_slice(end);
130  }
131}
132
133impl<A: Array> Default for TinyVec<A> {
134  #[inline]
135  #[must_use]
136  fn default() -> Self {
137    TinyVec::Inline(ArrayVec::default())
138  }
139}
140
141impl<A: Array> Deref for TinyVec<A> {
142  type Target = [A::Item];
143
144  impl_mirrored! {
145    type Mirror = TinyVec;
146    #[inline(always)]
147    #[must_use]
148    fn deref(self: &Self) -> &Self::Target;
149  }
150}
151
152impl<A: Array> DerefMut for TinyVec<A> {
153  impl_mirrored! {
154    type Mirror = TinyVec;
155    #[inline(always)]
156    #[must_use]
157    fn deref_mut(self: &mut Self) -> &mut Self::Target;
158  }
159}
160
161impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> {
162  type Output = <I as SliceIndex<[A::Item]>>::Output;
163  #[inline(always)]
164  #[must_use]
165  fn index(&self, index: I) -> &Self::Output {
166    &self.deref()[index]
167  }
168}
169
170impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> {
171  #[inline(always)]
172  #[must_use]
173  fn index_mut(&mut self, index: I) -> &mut Self::Output {
174    &mut self.deref_mut()[index]
175  }
176}
177
178#[cfg(feature = "std")]
179#[cfg_attr(docs_rs, doc(cfg(feature = "std")))]
180impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> {
181  #[inline(always)]
182  fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
183    self.extend_from_slice(buf);
184    Ok(buf.len())
185  }
186
187  #[inline(always)]
188  fn flush(&mut self) -> std::io::Result<()> {
189    Ok(())
190  }
191}
192
193#[cfg(feature = "serde")]
194#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
195impl<A: Array> Serialize for TinyVec<A>
196where
197  A::Item: Serialize,
198{
199  #[must_use]
200  fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
201  where
202    S: Serializer,
203  {
204    let mut seq = serializer.serialize_seq(Some(self.len()))?;
205    for element in self.iter() {
206      seq.serialize_element(element)?;
207    }
208    seq.end()
209  }
210}
211
212#[cfg(feature = "serde")]
213#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
214impl<'de, A: Array> Deserialize<'de> for TinyVec<A>
215where
216  A::Item: Deserialize<'de>,
217{
218  fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
219  where
220    D: Deserializer<'de>,
221  {
222    deserializer.deserialize_seq(TinyVecVisitor(PhantomData))
223  }
224}
225
226#[cfg(feature = "arbitrary")]
227#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]
228impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A>
229where
230  A: Array,
231  A::Item: arbitrary::Arbitrary<'a>,
232{
233  fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
234    let v = Vec::arbitrary(u)?;
235    let mut tv = TinyVec::Heap(v);
236    tv.shrink_to_fit();
237    Ok(tv)
238  }
239}
240
241impl<A: Array> TinyVec<A> {
242  /// Returns whether elements are on heap
243  #[inline(always)]
244  #[must_use]
245  pub fn is_heap(&self) -> bool {
246    match self {
247      TinyVec::Heap(_) => true,
248      TinyVec::Inline(_) => false,
249    }
250  }
251  /// Returns whether elements are on stack
252  #[inline(always)]
253  #[must_use]
254  pub fn is_inline(&self) -> bool {
255    !self.is_heap()
256  }
257
258  /// Shrinks the capacity of the vector as much as possible.\
259  /// It is inlined if length is less than `A::CAPACITY`.
260  /// ```rust
261  /// use tinyvec::*;
262  /// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3);
263  /// assert!(tv.is_heap());
264  /// let _ = tv.pop();
265  /// assert!(tv.is_heap());
266  /// tv.shrink_to_fit();
267  /// assert!(tv.is_inline());
268  /// ```
269  pub fn shrink_to_fit(&mut self) {
270    let vec = match self {
271      TinyVec::Inline(_) => return,
272      TinyVec::Heap(h) => h,
273    };
274
275    if vec.len() > A::CAPACITY {
276      return vec.shrink_to_fit();
277    }
278
279    let moved_vec = core::mem::replace(vec, Vec::new());
280
281    let mut av = ArrayVec::default();
282    let mut rest = av.fill(moved_vec);
283    debug_assert!(rest.next().is_none());
284    *self = TinyVec::Inline(av);
285  }
286
287  /// Moves the content of the TinyVec to the heap, if it's inline.
288  /// ```rust
289  /// use tinyvec::*;
290  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
291  /// assert!(tv.is_inline());
292  /// tv.move_to_the_heap();
293  /// assert!(tv.is_heap());
294  /// ```
295  #[allow(clippy::missing_inline_in_public_items)]
296  pub fn move_to_the_heap(&mut self) {
297    let arr = match self {
298      TinyVec::Heap(_) => return,
299      TinyVec::Inline(a) => a,
300    };
301
302    let v = arr.drain_to_vec();
303    *self = TinyVec::Heap(v);
304  }
305
306  /// Tries to move the content of the TinyVec to the heap, if it's inline.
307  ///
308  /// # Errors
309  ///
310  /// If the allocator reports a failure, then an error is returned and the
311  /// content is kept on the stack.
312  ///
313  /// ```rust
314  /// use tinyvec::*;
315  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
316  /// assert!(tv.is_inline());
317  /// assert_eq!(Ok(()), tv.try_move_to_the_heap());
318  /// assert!(tv.is_heap());
319  /// ```
320  #[cfg(feature = "rustc_1_57")]
321  pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> {
322    let arr = match self {
323      TinyVec::Heap(_) => return Ok(()),
324      TinyVec::Inline(a) => a,
325    };
326
327    let v = arr.try_drain_to_vec()?;
328    *self = TinyVec::Heap(v);
329    return Ok(());
330  }
331
332  /// If TinyVec is inline, moves the content of it to the heap.
333  /// Also reserves additional space.
334  /// ```rust
335  /// use tinyvec::*;
336  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
337  /// assert!(tv.is_inline());
338  /// tv.move_to_the_heap_and_reserve(32);
339  /// assert!(tv.is_heap());
340  /// assert!(tv.capacity() >= 35);
341  /// ```
342  pub fn move_to_the_heap_and_reserve(&mut self, n: usize) {
343    let arr = match self {
344      TinyVec::Heap(h) => return h.reserve(n),
345      TinyVec::Inline(a) => a,
346    };
347
348    let v = arr.drain_to_vec_and_reserve(n);
349    *self = TinyVec::Heap(v);
350  }
351
352  /// If TinyVec is inline, try to move the content of it to the heap.
353  /// Also reserves additional space.
354  ///
355  /// # Errors
356  ///
357  /// If the allocator reports a failure, then an error is returned.
358  ///
359  /// ```rust
360  /// use tinyvec::*;
361  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
362  /// assert!(tv.is_inline());
363  /// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32));
364  /// assert!(tv.is_heap());
365  /// assert!(tv.capacity() >= 35);
366  /// ```
367  #[cfg(feature = "rustc_1_57")]
368  pub fn try_move_to_the_heap_and_reserve(
369    &mut self, n: usize,
370  ) -> Result<(), TryReserveError> {
371    let arr = match self {
372      TinyVec::Heap(h) => return h.try_reserve(n),
373      TinyVec::Inline(a) => a,
374    };
375
376    let v = arr.try_drain_to_vec_and_reserve(n)?;
377    *self = TinyVec::Heap(v);
378    return Ok(());
379  }
380
381  /// Reserves additional space.
382  /// Moves to the heap if array can't hold `n` more items
383  /// ```rust
384  /// use tinyvec::*;
385  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
386  /// assert!(tv.is_inline());
387  /// tv.reserve(1);
388  /// assert!(tv.is_heap());
389  /// assert!(tv.capacity() >= 5);
390  /// ```
391  pub fn reserve(&mut self, n: usize) {
392    let arr = match self {
393      TinyVec::Heap(h) => return h.reserve(n),
394      TinyVec::Inline(a) => a,
395    };
396
397    if n > arr.capacity() - arr.len() {
398      let v = arr.drain_to_vec_and_reserve(n);
399      *self = TinyVec::Heap(v);
400    }
401
402    /* In this place array has enough place, so no work is needed more */
403    return;
404  }
405
406  /// Tries to reserve additional space.
407  /// Moves to the heap if array can't hold `n` more items.
408  ///
409  /// # Errors
410  ///
411  /// If the allocator reports a failure, then an error is returned.
412  ///
413  /// ```rust
414  /// use tinyvec::*;
415  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
416  /// assert!(tv.is_inline());
417  /// assert_eq!(Ok(()), tv.try_reserve(1));
418  /// assert!(tv.is_heap());
419  /// assert!(tv.capacity() >= 5);
420  /// ```
421  #[cfg(feature = "rustc_1_57")]
422  pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> {
423    let arr = match self {
424      TinyVec::Heap(h) => return h.try_reserve(n),
425      TinyVec::Inline(a) => a,
426    };
427
428    if n > arr.capacity() - arr.len() {
429      let v = arr.try_drain_to_vec_and_reserve(n)?;
430      *self = TinyVec::Heap(v);
431    }
432
433    /* In this place array has enough place, so no work is needed more */
434    return Ok(());
435  }
436
437  /// Reserves additional space.
438  /// Moves to the heap if array can't hold `n` more items
439  ///
440  /// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact)
441  /// ```text
442  /// Note that the allocator may give the collection more space than it requests.
443  /// Therefore, capacity can not be relied upon to be precisely minimal.
444  /// Prefer `reserve` if future insertions are expected.
445  /// ```
446  /// ```rust
447  /// use tinyvec::*;
448  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
449  /// assert!(tv.is_inline());
450  /// tv.reserve_exact(1);
451  /// assert!(tv.is_heap());
452  /// assert!(tv.capacity() >= 5);
453  /// ```
454  pub fn reserve_exact(&mut self, n: usize) {
455    let arr = match self {
456      TinyVec::Heap(h) => return h.reserve_exact(n),
457      TinyVec::Inline(a) => a,
458    };
459
460    if n > arr.capacity() - arr.len() {
461      let v = arr.drain_to_vec_and_reserve(n);
462      *self = TinyVec::Heap(v);
463    }
464
465    /* In this place array has enough place, so no work is needed more */
466    return;
467  }
468
469  /// Tries to reserve additional space.
470  /// Moves to the heap if array can't hold `n` more items
471  ///
472  /// # Errors
473  ///
474  /// If the allocator reports a failure, then an error is returned.
475  ///
476  /// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact)
477  /// ```text
478  /// Note that the allocator may give the collection more space than it requests.
479  /// Therefore, capacity can not be relied upon to be precisely minimal.
480  /// Prefer `reserve` if future insertions are expected.
481  /// ```
482  /// ```rust
483  /// use tinyvec::*;
484  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
485  /// assert!(tv.is_inline());
486  /// assert_eq!(Ok(()), tv.try_reserve_exact(1));
487  /// assert!(tv.is_heap());
488  /// assert!(tv.capacity() >= 5);
489  /// ```
490  #[cfg(feature = "rustc_1_57")]
491  pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> {
492    let arr = match self {
493      TinyVec::Heap(h) => return h.try_reserve_exact(n),
494      TinyVec::Inline(a) => a,
495    };
496
497    if n > arr.capacity() - arr.len() {
498      let v = arr.try_drain_to_vec_and_reserve(n)?;
499      *self = TinyVec::Heap(v);
500    }
501
502    /* In this place array has enough place, so no work is needed more */
503    return Ok(());
504  }
505
506  /// Makes a new TinyVec with _at least_ the given capacity.
507  ///
508  /// If the requested capacity is less than or equal to the array capacity you
509  /// get an inline vec. If it's greater than you get a heap vec.
510  /// ```
511  /// # use tinyvec::*;
512  /// let t = TinyVec::<[u8; 10]>::with_capacity(5);
513  /// assert!(t.is_inline());
514  /// assert!(t.capacity() >= 5);
515  ///
516  /// let t = TinyVec::<[u8; 10]>::with_capacity(20);
517  /// assert!(t.is_heap());
518  /// assert!(t.capacity() >= 20);
519  /// ```
520  #[inline]
521  #[must_use]
522  pub fn with_capacity(cap: usize) -> Self {
523    if cap <= A::CAPACITY {
524      TinyVec::Inline(ArrayVec::default())
525    } else {
526      TinyVec::Heap(Vec::with_capacity(cap))
527    }
528  }
529}
530
531impl<A: Array> TinyVec<A> {
532  /// Move all values from `other` into this vec.
533  #[cfg(feature = "rustc_1_40")]
534  #[inline]
535  pub fn append(&mut self, other: &mut Self) {
536    self.reserve(other.len());
537
538    /* Doing append should be faster, because it is effectively a memcpy */
539    match (self, other) {
540      (TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh),
541      (TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)),
542      (ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)),
543    }
544  }
545
546  /// Move all values from `other` into this vec.
547  #[cfg(not(feature = "rustc_1_40"))]
548  #[inline]
549  pub fn append(&mut self, other: &mut Self) {
550    match other {
551      TinyVec::Inline(a) => self.extend(a.drain(..)),
552      TinyVec::Heap(h) => self.extend(h.drain(..)),
553    }
554  }
555
556  impl_mirrored! {
557    type Mirror = TinyVec;
558
559    /// Remove an element, swapping the end of the vec into its place.
560    ///
561    /// ## Panics
562    /// * If the index is out of bounds.
563    ///
564    /// ## Example
565    /// ```rust
566    /// use tinyvec::*;
567    /// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap");
568    ///
569    /// assert_eq!(tv.swap_remove(1), "bar");
570    /// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]);
571    ///
572    /// assert_eq!(tv.swap_remove(0), "foo");
573    /// assert_eq!(tv.as_slice(), &["quack", "zap"][..]);
574    /// ```
575    #[inline]
576    pub fn swap_remove(self: &mut Self, index: usize) -> A::Item;
577
578    /// Remove and return the last element of the vec, if there is one.
579    ///
580    /// ## Failure
581    /// * If the vec is empty you get `None`.
582    #[inline]
583    pub fn pop(self: &mut Self) -> Option<A::Item>;
584
585    /// Removes the item at `index`, shifting all others down by one index.
586    ///
587    /// Returns the removed element.
588    ///
589    /// ## Panics
590    ///
591    /// If the index is out of bounds.
592    ///
593    /// ## Example
594    ///
595    /// ```rust
596    /// use tinyvec::*;
597    /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
598    /// assert_eq!(tv.remove(1), 2);
599    /// assert_eq!(tv.as_slice(), &[1, 3][..]);
600    /// ```
601    #[inline]
602    pub fn remove(self: &mut Self, index: usize) -> A::Item;
603
604    /// The length of the vec (in elements).
605    #[inline(always)]
606    #[must_use]
607    pub fn len(self: &Self) -> usize;
608
609    /// The capacity of the `TinyVec`.
610    ///
611    /// When not heap allocated this is fixed based on the array type.
612    /// Otherwise its the result of the underlying Vec::capacity.
613    #[inline(always)]
614    #[must_use]
615    pub fn capacity(self: &Self) -> usize;
616
617    /// Reduces the vec's length to the given value.
618    ///
619    /// If the vec is already shorter than the input, nothing happens.
620    #[inline]
621    pub fn truncate(self: &mut Self, new_len: usize);
622
623    /// A mutable pointer to the backing array.
624    ///
625    /// ## Safety
626    ///
627    /// This pointer has provenance over the _entire_ backing array/buffer.
628    #[inline(always)]
629    #[must_use]
630    pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item;
631
632    /// A const pointer to the backing array.
633    ///
634    /// ## Safety
635    ///
636    /// This pointer has provenance over the _entire_ backing array/buffer.
637    #[inline(always)]
638    #[must_use]
639    pub fn as_ptr(self: &Self) -> *const A::Item;
640  }
641
642  /// Walk the vec and keep only the elements that pass the predicate given.
643  ///
644  /// ## Example
645  ///
646  /// ```rust
647  /// use tinyvec::*;
648  ///
649  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
650  /// tv.retain(|&x| x % 2 == 0);
651  /// assert_eq!(tv.as_slice(), &[2, 4][..]);
652  /// ```
653  #[inline]
654  pub fn retain<F: FnMut(&A::Item) -> bool>(self: &mut Self, acceptable: F) {
655    match self {
656      TinyVec::Inline(i) => i.retain(acceptable),
657      TinyVec::Heap(h) => h.retain(acceptable),
658    }
659  }
660
661  /// Helper for getting the mut slice.
662  #[inline(always)]
663  #[must_use]
664  pub fn as_mut_slice(self: &mut Self) -> &mut [A::Item] {
665    self.deref_mut()
666  }
667
668  /// Helper for getting the shared slice.
669  #[inline(always)]
670  #[must_use]
671  pub fn as_slice(self: &Self) -> &[A::Item] {
672    self.deref()
673  }
674
675  /// Removes all elements from the vec.
676  #[inline(always)]
677  pub fn clear(&mut self) {
678    self.truncate(0)
679  }
680
681  /// De-duplicates the vec.
682  #[cfg(feature = "nightly_slice_partition_dedup")]
683  #[inline(always)]
684  pub fn dedup(&mut self)
685  where
686    A::Item: PartialEq,
687  {
688    self.dedup_by(|a, b| a == b)
689  }
690
691  /// De-duplicates the vec according to the predicate given.
692  #[cfg(feature = "nightly_slice_partition_dedup")]
693  #[inline(always)]
694  pub fn dedup_by<F>(&mut self, same_bucket: F)
695  where
696    F: FnMut(&mut A::Item, &mut A::Item) -> bool,
697  {
698    let len = {
699      let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
700      dedup.len()
701    };
702    self.truncate(len);
703  }
704
705  /// De-duplicates the vec according to the key selector given.
706  #[cfg(feature = "nightly_slice_partition_dedup")]
707  #[inline(always)]
708  pub fn dedup_by_key<F, K>(&mut self, mut key: F)
709  where
710    F: FnMut(&mut A::Item) -> K,
711    K: PartialEq,
712  {
713    self.dedup_by(|a, b| key(a) == key(b))
714  }
715
716  /// Creates a draining iterator that removes the specified range in the vector
717  /// and yields the removed items.
718  ///
719  /// **Note: This method has significant performance issues compared to
720  /// matching on the TinyVec and then calling drain on the Inline or Heap value
721  /// inside. The draining iterator has to branch on every single access. It is
722  /// provided for simplicity and compatability only.**
723  ///
724  /// ## Panics
725  /// * If the start is greater than the end
726  /// * If the end is past the edge of the vec.
727  ///
728  /// ## Example
729  /// ```rust
730  /// use tinyvec::*;
731  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
732  /// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect();
733  /// assert_eq!(tv.as_slice(), &[1][..]);
734  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
735  ///
736  /// tv.drain(..);
737  /// assert_eq!(tv.as_slice(), &[]);
738  /// ```
739  #[inline]
740  pub fn drain<R: RangeBounds<usize>>(
741    &mut self, range: R,
742  ) -> TinyVecDrain<'_, A> {
743    match self {
744      TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)),
745      TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)),
746    }
747  }
748
749  /// Clone each element of the slice into this vec.
750  /// ```rust
751  /// use tinyvec::*;
752  /// let mut tv = tiny_vec!([i32; 4] => 1, 2);
753  /// tv.extend_from_slice(&[3, 4]);
754  /// assert_eq!(tv.as_slice(), [1, 2, 3, 4]);
755  /// ```
756  #[inline]
757  pub fn extend_from_slice(&mut self, sli: &[A::Item])
758  where
759    A::Item: Clone,
760  {
761    self.reserve(sli.len());
762    match self {
763      TinyVec::Inline(a) => a.extend_from_slice(sli),
764      TinyVec::Heap(h) => h.extend_from_slice(sli),
765    }
766  }
767
768  /// Wraps up an array and uses the given length as the initial length.
769  ///
770  /// Note that the `From` impl for arrays assumes the full length is used.
771  ///
772  /// ## Panics
773  ///
774  /// The length must be less than or equal to the capacity of the array.
775  #[inline]
776  #[must_use]
777  #[allow(clippy::match_wild_err_arm)]
778  pub fn from_array_len(data: A, len: usize) -> Self {
779    match Self::try_from_array_len(data, len) {
780      Ok(out) => out,
781      Err(_) => {
782        panic!("TinyVec: length {} exceeds capacity {}!", len, A::CAPACITY)
783      }
784    }
785  }
786
787  /// This is an internal implementation detail of the `tiny_vec!` macro, and
788  /// using it other than from that macro is not supported by this crate's
789  /// SemVer guarantee.
790  #[inline(always)]
791  #[doc(hidden)]
792  pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> {
793    if cap <= A::CAPACITY {
794      TinyVecConstructor::Inline(TinyVec::Inline)
795    } else {
796      TinyVecConstructor::Heap(TinyVec::Heap)
797    }
798  }
799
800  /// Inserts an item at the position given, moving all following elements +1
801  /// index.
802  ///
803  /// ## Panics
804  /// * If `index` > `len`
805  ///
806  /// ## Example
807  /// ```rust
808  /// use tinyvec::*;
809  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
810  /// tv.insert(1, 4);
811  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]);
812  /// tv.insert(4, 5);
813  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]);
814  /// ```
815  #[inline]
816  pub fn insert(&mut self, index: usize, item: A::Item) {
817    assert!(
818      index <= self.len(),
819      "insertion index (is {}) should be <= len (is {})",
820      index,
821      self.len()
822    );
823
824    let arr = match self {
825      TinyVec::Heap(v) => return v.insert(index, item),
826      TinyVec::Inline(a) => a,
827    };
828
829    if let Some(x) = arr.try_insert(index, item) {
830      let mut v = Vec::with_capacity(arr.len() * 2);
831      let mut it =
832        arr.iter_mut().map(|r| core::mem::replace(r, Default::default()));
833      v.extend(it.by_ref().take(index));
834      v.push(x);
835      v.extend(it);
836      *self = TinyVec::Heap(v);
837    }
838  }
839
840  /// If the vec is empty.
841  #[inline(always)]
842  #[must_use]
843  pub fn is_empty(&self) -> bool {
844    self.len() == 0
845  }
846
847  /// Makes a new, empty vec.
848  #[inline(always)]
849  #[must_use]
850  pub fn new() -> Self {
851    Self::default()
852  }
853
854  /// Place an element onto the end of the vec.
855  /// ## Panics
856  /// * If the length of the vec would overflow the capacity.
857  /// ```rust
858  /// use tinyvec::*;
859  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
860  /// tv.push(4);
861  /// assert_eq!(tv.as_slice(), &[1, 2, 3, 4]);
862  /// ```
863  #[inline]
864  pub fn push(&mut self, val: A::Item) {
865    // The code path for moving the inline contents to the heap produces a lot
866    // of instructions, but we have a strong guarantee that this is a cold
867    // path. LLVM doesn't know this, inlines it, and this tends to cause a
868    // cascade of other bad inlining decisions because the body of push looks
869    // huge even though nearly every call executes the same few instructions.
870    //
871    // Moving the logic out of line with #[cold] causes the hot code to  be
872    // inlined together, and we take the extra cost of a function call only
873    // in rare cases.
874    #[cold]
875    fn drain_to_heap_and_push<A: Array>(
876      arr: &mut ArrayVec<A>, val: A::Item,
877    ) -> TinyVec<A> {
878      /* Make the Vec twice the size to amortize the cost of draining */
879      let mut v = arr.drain_to_vec_and_reserve(arr.len());
880      v.push(val);
881      TinyVec::Heap(v)
882    }
883
884    match self {
885      TinyVec::Heap(v) => v.push(val),
886      TinyVec::Inline(arr) => {
887        if let Some(x) = arr.try_push(val) {
888          *self = drain_to_heap_and_push(arr, x);
889        }
890      }
891    }
892  }
893
894  /// Resize the vec to the new length.
895  ///
896  /// If it needs to be longer, it's filled with clones of the provided value.
897  /// If it needs to be shorter, it's truncated.
898  ///
899  /// ## Example
900  ///
901  /// ```rust
902  /// use tinyvec::*;
903  ///
904  /// let mut tv = tiny_vec!([&str; 10] => "hello");
905  /// tv.resize(3, "world");
906  /// assert_eq!(tv.as_slice(), &["hello", "world", "world"][..]);
907  ///
908  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
909  /// tv.resize(2, 0);
910  /// assert_eq!(tv.as_slice(), &[1, 2][..]);
911  /// ```
912  #[inline]
913  pub fn resize(&mut self, new_len: usize, new_val: A::Item)
914  where
915    A::Item: Clone,
916  {
917    self.resize_with(new_len, || new_val.clone());
918  }
919
920  /// Resize the vec to the new length.
921  ///
922  /// If it needs to be longer, it's filled with repeated calls to the provided
923  /// function. If it needs to be shorter, it's truncated.
924  ///
925  /// ## Example
926  ///
927  /// ```rust
928  /// use tinyvec::*;
929  ///
930  /// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3);
931  /// tv.resize_with(5, Default::default);
932  /// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]);
933  ///
934  /// let mut tv = tiny_vec!([i32; 2]);
935  /// let mut p = 1;
936  /// tv.resize_with(4, || {
937  ///   p *= 2;
938  ///   p
939  /// });
940  /// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]);
941  /// ```
942  #[inline]
943  pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) {
944    match new_len.checked_sub(self.len()) {
945      None => return self.truncate(new_len),
946      Some(n) => self.reserve(n),
947    }
948
949    match self {
950      TinyVec::Inline(a) => a.resize_with(new_len, f),
951      TinyVec::Heap(v) => v.resize_with(new_len, f),
952    }
953  }
954
955  /// Splits the collection at the point given.
956  ///
957  /// * `[0, at)` stays in this vec
958  /// * `[at, len)` ends up in the new vec.
959  ///
960  /// ## Panics
961  /// * if at > len
962  ///
963  /// ## Example
964  ///
965  /// ```rust
966  /// use tinyvec::*;
967  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
968  /// let tv2 = tv.split_off(1);
969  /// assert_eq!(tv.as_slice(), &[1][..]);
970  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
971  /// ```
972  #[inline]
973  pub fn split_off(&mut self, at: usize) -> Self {
974    match self {
975      TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)),
976      TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)),
977    }
978  }
979
980  /// Creates a splicing iterator that removes the specified range in the
981  /// vector, yields the removed items, and replaces them with elements from
982  /// the provided iterator.
983  ///
984  /// `splice` fuses the provided iterator, so elements after the first `None`
985  /// are ignored.
986  ///
987  /// ## Panics
988  /// * If the start is greater than the end.
989  /// * If the end is past the edge of the vec.
990  /// * If the provided iterator panics.
991  ///
992  /// ## Example
993  /// ```rust
994  /// use tinyvec::*;
995  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
996  /// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect();
997  /// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]);
998  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
999  ///
1000  /// tv.splice(.., None);
1001  /// assert_eq!(tv.as_slice(), &[]);
1002  /// ```
1003  #[inline]
1004  pub fn splice<R, I>(
1005    &mut self, range: R, replacement: I,
1006  ) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
1007  where
1008    R: RangeBounds<usize>,
1009    I: IntoIterator<Item = A::Item>,
1010  {
1011    use core::ops::Bound;
1012    let start = match range.start_bound() {
1013      Bound::Included(x) => *x,
1014      Bound::Excluded(x) => x.saturating_add(1),
1015      Bound::Unbounded => 0,
1016    };
1017    let end = match range.end_bound() {
1018      Bound::Included(x) => x.saturating_add(1),
1019      Bound::Excluded(x) => *x,
1020      Bound::Unbounded => self.len(),
1021    };
1022    assert!(
1023      start <= end,
1024      "TinyVec::splice> Illegal range, {} to {}",
1025      start,
1026      end
1027    );
1028    assert!(
1029      end <= self.len(),
1030      "TinyVec::splice> Range ends at {} but length is only {}!",
1031      end,
1032      self.len()
1033    );
1034
1035    TinyVecSplice {
1036      removal_start: start,
1037      removal_end: end,
1038      parent: self,
1039      replacement: replacement.into_iter().fuse(),
1040    }
1041  }
1042
1043  /// Wraps an array, using the given length as the starting length.
1044  ///
1045  /// If you want to use the whole length of the array, you can just use the
1046  /// `From` impl.
1047  ///
1048  /// ## Failure
1049  ///
1050  /// If the given length is greater than the capacity of the array this will
1051  /// error, and you'll get the array back in the `Err`.
1052  #[inline]
1053  pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
1054    let arr = ArrayVec::try_from_array_len(data, len)?;
1055    Ok(TinyVec::Inline(arr))
1056  }
1057}
1058
1059/// Draining iterator for `TinyVecDrain`
1060///
1061/// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain)
1062#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1063pub enum TinyVecDrain<'p, A: Array> {
1064  #[allow(missing_docs)]
1065  Inline(ArrayVecDrain<'p, A::Item>),
1066  #[allow(missing_docs)]
1067  Heap(vec::Drain<'p, A::Item>),
1068}
1069
1070impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> {
1071  type Item = A::Item;
1072
1073  impl_mirrored! {
1074    type Mirror = TinyVecDrain;
1075
1076    #[inline]
1077    fn next(self: &mut Self) -> Option<Self::Item>;
1078    #[inline]
1079    fn nth(self: &mut Self, n: usize) -> Option<Self::Item>;
1080    #[inline]
1081    fn size_hint(self: &Self) -> (usize, Option<usize>);
1082    #[inline]
1083    fn last(self: Self) -> Option<Self::Item>;
1084    #[inline]
1085    fn count(self: Self) -> usize;
1086  }
1087
1088  #[inline]
1089  fn for_each<F: FnMut(Self::Item)>(self, f: F) {
1090    match self {
1091      TinyVecDrain::Inline(i) => i.for_each(f),
1092      TinyVecDrain::Heap(h) => h.for_each(f),
1093    }
1094  }
1095}
1096
1097impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> {
1098  impl_mirrored! {
1099    type Mirror = TinyVecDrain;
1100
1101    #[inline]
1102    fn next_back(self: &mut Self) -> Option<Self::Item>;
1103
1104    #[cfg(feature = "rustc_1_40")]
1105    #[inline]
1106    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1107  }
1108}
1109
1110/// Splicing iterator for `TinyVec`
1111/// See [`TinyVec::splice`](TinyVec::<A>::splice)
1112#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1113pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
1114  parent: &'p mut TinyVec<A>,
1115  removal_start: usize,
1116  removal_end: usize,
1117  replacement: I,
1118}
1119
1120impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I>
1121where
1122  A: Array,
1123  I: Iterator<Item = A::Item>,
1124{
1125  type Item = A::Item;
1126
1127  #[inline]
1128  fn next(&mut self) -> Option<A::Item> {
1129    if self.removal_start < self.removal_end {
1130      match self.replacement.next() {
1131        Some(replacement) => {
1132          let removed = core::mem::replace(
1133            &mut self.parent[self.removal_start],
1134            replacement,
1135          );
1136          self.removal_start += 1;
1137          Some(removed)
1138        }
1139        None => {
1140          let removed = self.parent.remove(self.removal_start);
1141          self.removal_end -= 1;
1142          Some(removed)
1143        }
1144      }
1145    } else {
1146      None
1147    }
1148  }
1149
1150  #[inline]
1151  fn size_hint(&self) -> (usize, Option<usize>) {
1152    let len = self.len();
1153    (len, Some(len))
1154  }
1155}
1156
1157impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I>
1158where
1159  A: Array,
1160  I: Iterator<Item = A::Item>,
1161{
1162  #[inline]
1163  fn len(&self) -> usize {
1164    self.removal_end - self.removal_start
1165  }
1166}
1167
1168impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I>
1169where
1170  A: Array,
1171  I: Iterator<Item = A::Item>,
1172{
1173}
1174
1175impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I>
1176where
1177  A: Array,
1178  I: Iterator<Item = A::Item> + DoubleEndedIterator,
1179{
1180  #[inline]
1181  fn next_back(&mut self) -> Option<A::Item> {
1182    if self.removal_start < self.removal_end {
1183      match self.replacement.next_back() {
1184        Some(replacement) => {
1185          let removed = core::mem::replace(
1186            &mut self.parent[self.removal_end - 1],
1187            replacement,
1188          );
1189          self.removal_end -= 1;
1190          Some(removed)
1191        }
1192        None => {
1193          let removed = self.parent.remove(self.removal_end - 1);
1194          self.removal_end -= 1;
1195          Some(removed)
1196        }
1197      }
1198    } else {
1199      None
1200    }
1201  }
1202}
1203
1204impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
1205  for TinyVecSplice<'p, A, I>
1206{
1207  fn drop(&mut self) {
1208    for _ in self.by_ref() {}
1209
1210    let (lower_bound, _) = self.replacement.size_hint();
1211    self.parent.reserve(lower_bound);
1212
1213    for replacement in self.replacement.by_ref() {
1214      self.parent.insert(self.removal_end, replacement);
1215      self.removal_end += 1;
1216    }
1217  }
1218}
1219
1220impl<A: Array> AsMut<[A::Item]> for TinyVec<A> {
1221  #[inline(always)]
1222  #[must_use]
1223  fn as_mut(&mut self) -> &mut [A::Item] {
1224    &mut *self
1225  }
1226}
1227
1228impl<A: Array> AsRef<[A::Item]> for TinyVec<A> {
1229  #[inline(always)]
1230  #[must_use]
1231  fn as_ref(&self) -> &[A::Item] {
1232    &*self
1233  }
1234}
1235
1236impl<A: Array> Borrow<[A::Item]> for TinyVec<A> {
1237  #[inline(always)]
1238  #[must_use]
1239  fn borrow(&self) -> &[A::Item] {
1240    &*self
1241  }
1242}
1243
1244impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> {
1245  #[inline(always)]
1246  #[must_use]
1247  fn borrow_mut(&mut self) -> &mut [A::Item] {
1248    &mut *self
1249  }
1250}
1251
1252impl<A: Array> Extend<A::Item> for TinyVec<A> {
1253  #[inline]
1254  fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
1255    let iter = iter.into_iter();
1256    let (lower_bound, _) = iter.size_hint();
1257    self.reserve(lower_bound);
1258
1259    let a = match self {
1260      TinyVec::Heap(h) => return h.extend(iter),
1261      TinyVec::Inline(a) => a,
1262    };
1263
1264    let mut iter = a.fill(iter);
1265    let maybe = iter.next();
1266
1267    let surely = match maybe {
1268      Some(x) => x,
1269      None => return,
1270    };
1271
1272    let mut v = a.drain_to_vec_and_reserve(a.len());
1273    v.push(surely);
1274    v.extend(iter);
1275    *self = TinyVec::Heap(v);
1276  }
1277}
1278
1279impl<A: Array> From<ArrayVec<A>> for TinyVec<A> {
1280  #[inline(always)]
1281  #[must_use]
1282  fn from(arr: ArrayVec<A>) -> Self {
1283    TinyVec::Inline(arr)
1284  }
1285}
1286
1287impl<A: Array> From<A> for TinyVec<A> {
1288  fn from(array: A) -> Self {
1289    TinyVec::Inline(ArrayVec::from(array))
1290  }
1291}
1292
1293impl<T, A> From<&'_ [T]> for TinyVec<A>
1294where
1295  T: Clone + Default,
1296  A: Array<Item = T>,
1297{
1298  #[inline]
1299  #[must_use]
1300  fn from(slice: &[T]) -> Self {
1301    if let Ok(arr) = ArrayVec::try_from(slice) {
1302      TinyVec::Inline(arr)
1303    } else {
1304      TinyVec::Heap(slice.into())
1305    }
1306  }
1307}
1308
1309impl<T, A> From<&'_ mut [T]> for TinyVec<A>
1310where
1311  T: Clone + Default,
1312  A: Array<Item = T>,
1313{
1314  #[inline]
1315  #[must_use]
1316  fn from(slice: &mut [T]) -> Self {
1317    Self::from(&*slice)
1318  }
1319}
1320
1321impl<A: Array> FromIterator<A::Item> for TinyVec<A> {
1322  #[inline]
1323  #[must_use]
1324  fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
1325    let mut av = Self::default();
1326    av.extend(iter);
1327    av
1328  }
1329}
1330
1331/// Iterator for consuming an `TinyVec` and returning owned elements.
1332#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1333pub enum TinyVecIterator<A: Array> {
1334  #[allow(missing_docs)]
1335  Inline(ArrayVecIterator<A>),
1336  #[allow(missing_docs)]
1337  Heap(alloc::vec::IntoIter<A::Item>),
1338}
1339
1340impl<A: Array> TinyVecIterator<A> {
1341  impl_mirrored! {
1342    type Mirror = TinyVecIterator;
1343    /// Returns the remaining items of this iterator as a slice.
1344    #[inline]
1345    #[must_use]
1346    pub fn as_slice(self: &Self) -> &[A::Item];
1347  }
1348}
1349
1350impl<A: Array> FusedIterator for TinyVecIterator<A> {}
1351
1352impl<A: Array> Iterator for TinyVecIterator<A> {
1353  type Item = A::Item;
1354
1355  impl_mirrored! {
1356    type Mirror = TinyVecIterator;
1357
1358    #[inline]
1359    fn next(self: &mut Self) -> Option<Self::Item>;
1360
1361    #[inline(always)]
1362    #[must_use]
1363    fn size_hint(self: &Self) -> (usize, Option<usize>);
1364
1365    #[inline(always)]
1366    fn count(self: Self) -> usize;
1367
1368    #[inline]
1369    fn last(self: Self) -> Option<Self::Item>;
1370
1371    #[inline]
1372    fn nth(self: &mut Self, n: usize) -> Option<A::Item>;
1373  }
1374}
1375
1376impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> {
1377  impl_mirrored! {
1378    type Mirror = TinyVecIterator;
1379
1380    #[inline]
1381    fn next_back(self: &mut Self) -> Option<Self::Item>;
1382
1383    #[cfg(feature = "rustc_1_40")]
1384    #[inline]
1385    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1386  }
1387}
1388
1389impl<A: Array> Debug for TinyVecIterator<A>
1390where
1391  A::Item: Debug,
1392{
1393  #[allow(clippy::missing_inline_in_public_items)]
1394  fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
1395    f.debug_tuple("TinyVecIterator").field(&self.as_slice()).finish()
1396  }
1397}
1398
1399impl<A: Array> IntoIterator for TinyVec<A> {
1400  type Item = A::Item;
1401  type IntoIter = TinyVecIterator<A>;
1402  #[inline(always)]
1403  #[must_use]
1404  fn into_iter(self) -> Self::IntoIter {
1405    match self {
1406      TinyVec::Inline(a) => TinyVecIterator::Inline(a.into_iter()),
1407      TinyVec::Heap(v) => TinyVecIterator::Heap(v.into_iter()),
1408    }
1409  }
1410}
1411
1412impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> {
1413  type Item = &'a mut A::Item;
1414  type IntoIter = core::slice::IterMut<'a, A::Item>;
1415  #[inline(always)]
1416  #[must_use]
1417  fn into_iter(self) -> Self::IntoIter {
1418    self.iter_mut()
1419  }
1420}
1421
1422impl<'a, A: Array> IntoIterator for &'a TinyVec<A> {
1423  type Item = &'a A::Item;
1424  type IntoIter = core::slice::Iter<'a, A::Item>;
1425  #[inline(always)]
1426  #[must_use]
1427  fn into_iter(self) -> Self::IntoIter {
1428    self.iter()
1429  }
1430}
1431
1432impl<A: Array> PartialEq for TinyVec<A>
1433where
1434  A::Item: PartialEq,
1435{
1436  #[inline]
1437  #[must_use]
1438  fn eq(&self, other: &Self) -> bool {
1439    self.as_slice().eq(other.as_slice())
1440  }
1441}
1442impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {}
1443
1444impl<A: Array> PartialOrd for TinyVec<A>
1445where
1446  A::Item: PartialOrd,
1447{
1448  #[inline]
1449  #[must_use]
1450  fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
1451    self.as_slice().partial_cmp(other.as_slice())
1452  }
1453}
1454impl<A: Array> Ord for TinyVec<A>
1455where
1456  A::Item: Ord,
1457{
1458  #[inline]
1459  #[must_use]
1460  fn cmp(&self, other: &Self) -> core::cmp::Ordering {
1461    self.as_slice().cmp(other.as_slice())
1462  }
1463}
1464
1465impl<A: Array> PartialEq<&A> for TinyVec<A>
1466where
1467  A::Item: PartialEq,
1468{
1469  #[inline]
1470  #[must_use]
1471  fn eq(&self, other: &&A) -> bool {
1472    self.as_slice().eq(other.as_slice())
1473  }
1474}
1475
1476impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A>
1477where
1478  A::Item: PartialEq,
1479{
1480  #[inline]
1481  #[must_use]
1482  fn eq(&self, other: &&[A::Item]) -> bool {
1483    self.as_slice().eq(*other)
1484  }
1485}
1486
1487impl<A: Array> Hash for TinyVec<A>
1488where
1489  A::Item: Hash,
1490{
1491  #[inline]
1492  fn hash<H: Hasher>(&self, state: &mut H) {
1493    self.as_slice().hash(state)
1494  }
1495}
1496
1497// // // // // // // //
1498// Formatting impls
1499// // // // // // // //
1500
1501impl<A: Array> Binary for TinyVec<A>
1502where
1503  A::Item: Binary,
1504{
1505  #[allow(clippy::missing_inline_in_public_items)]
1506  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1507    write!(f, "[")?;
1508    if f.alternate() {
1509      write!(f, "\n    ")?;
1510    }
1511    for (i, elem) in self.iter().enumerate() {
1512      if i > 0 {
1513        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1514      }
1515      Binary::fmt(elem, f)?;
1516    }
1517    if f.alternate() {
1518      write!(f, ",\n")?;
1519    }
1520    write!(f, "]")
1521  }
1522}
1523
1524impl<A: Array> Debug for TinyVec<A>
1525where
1526  A::Item: Debug,
1527{
1528  #[allow(clippy::missing_inline_in_public_items)]
1529  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1530    write!(f, "[")?;
1531    if f.alternate() {
1532      write!(f, "\n    ")?;
1533    }
1534    for (i, elem) in self.iter().enumerate() {
1535      if i > 0 {
1536        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1537      }
1538      Debug::fmt(elem, f)?;
1539    }
1540    if f.alternate() {
1541      write!(f, ",\n")?;
1542    }
1543    write!(f, "]")
1544  }
1545}
1546
1547impl<A: Array> Display for TinyVec<A>
1548where
1549  A::Item: Display,
1550{
1551  #[allow(clippy::missing_inline_in_public_items)]
1552  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1553    write!(f, "[")?;
1554    if f.alternate() {
1555      write!(f, "\n    ")?;
1556    }
1557    for (i, elem) in self.iter().enumerate() {
1558      if i > 0 {
1559        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1560      }
1561      Display::fmt(elem, f)?;
1562    }
1563    if f.alternate() {
1564      write!(f, ",\n")?;
1565    }
1566    write!(f, "]")
1567  }
1568}
1569
1570impl<A: Array> LowerExp for TinyVec<A>
1571where
1572  A::Item: LowerExp,
1573{
1574  #[allow(clippy::missing_inline_in_public_items)]
1575  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1576    write!(f, "[")?;
1577    if f.alternate() {
1578      write!(f, "\n    ")?;
1579    }
1580    for (i, elem) in self.iter().enumerate() {
1581      if i > 0 {
1582        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1583      }
1584      LowerExp::fmt(elem, f)?;
1585    }
1586    if f.alternate() {
1587      write!(f, ",\n")?;
1588    }
1589    write!(f, "]")
1590  }
1591}
1592
1593impl<A: Array> LowerHex for TinyVec<A>
1594where
1595  A::Item: LowerHex,
1596{
1597  #[allow(clippy::missing_inline_in_public_items)]
1598  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1599    write!(f, "[")?;
1600    if f.alternate() {
1601      write!(f, "\n    ")?;
1602    }
1603    for (i, elem) in self.iter().enumerate() {
1604      if i > 0 {
1605        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1606      }
1607      LowerHex::fmt(elem, f)?;
1608    }
1609    if f.alternate() {
1610      write!(f, ",\n")?;
1611    }
1612    write!(f, "]")
1613  }
1614}
1615
1616impl<A: Array> Octal for TinyVec<A>
1617where
1618  A::Item: Octal,
1619{
1620  #[allow(clippy::missing_inline_in_public_items)]
1621  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1622    write!(f, "[")?;
1623    if f.alternate() {
1624      write!(f, "\n    ")?;
1625    }
1626    for (i, elem) in self.iter().enumerate() {
1627      if i > 0 {
1628        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1629      }
1630      Octal::fmt(elem, f)?;
1631    }
1632    if f.alternate() {
1633      write!(f, ",\n")?;
1634    }
1635    write!(f, "]")
1636  }
1637}
1638
1639impl<A: Array> Pointer for TinyVec<A>
1640where
1641  A::Item: Pointer,
1642{
1643  #[allow(clippy::missing_inline_in_public_items)]
1644  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1645    write!(f, "[")?;
1646    if f.alternate() {
1647      write!(f, "\n    ")?;
1648    }
1649    for (i, elem) in self.iter().enumerate() {
1650      if i > 0 {
1651        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1652      }
1653      Pointer::fmt(elem, f)?;
1654    }
1655    if f.alternate() {
1656      write!(f, ",\n")?;
1657    }
1658    write!(f, "]")
1659  }
1660}
1661
1662impl<A: Array> UpperExp for TinyVec<A>
1663where
1664  A::Item: UpperExp,
1665{
1666  #[allow(clippy::missing_inline_in_public_items)]
1667  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1668    write!(f, "[")?;
1669    if f.alternate() {
1670      write!(f, "\n    ")?;
1671    }
1672    for (i, elem) in self.iter().enumerate() {
1673      if i > 0 {
1674        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1675      }
1676      UpperExp::fmt(elem, f)?;
1677    }
1678    if f.alternate() {
1679      write!(f, ",\n")?;
1680    }
1681    write!(f, "]")
1682  }
1683}
1684
1685impl<A: Array> UpperHex for TinyVec<A>
1686where
1687  A::Item: UpperHex,
1688{
1689  #[allow(clippy::missing_inline_in_public_items)]
1690  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1691    write!(f, "[")?;
1692    if f.alternate() {
1693      write!(f, "\n    ")?;
1694    }
1695    for (i, elem) in self.iter().enumerate() {
1696      if i > 0 {
1697        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1698      }
1699      UpperHex::fmt(elem, f)?;
1700    }
1701    if f.alternate() {
1702      write!(f, ",\n")?;
1703    }
1704    write!(f, "]")
1705  }
1706}
1707
1708#[cfg(feature = "serde")]
1709#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1710struct TinyVecVisitor<A: Array>(PhantomData<A>);
1711
1712#[cfg(feature = "serde")]
1713impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A>
1714where
1715  A::Item: Deserialize<'de>,
1716{
1717  type Value = TinyVec<A>;
1718
1719  fn expecting(
1720    &self, formatter: &mut core::fmt::Formatter,
1721  ) -> core::fmt::Result {
1722    formatter.write_str("a sequence")
1723  }
1724
1725  fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
1726  where
1727    S: SeqAccess<'de>,
1728  {
1729    let mut new_tinyvec = match seq.size_hint() {
1730      Some(expected_size) => TinyVec::with_capacity(expected_size),
1731      None => Default::default(),
1732    };
1733
1734    while let Some(value) = seq.next_element()? {
1735      new_tinyvec.push(value);
1736    }
1737
1738    Ok(new_tinyvec)
1739  }
1740}