1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! A source that reads from an a persist shard.

use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use mz_dyncfg::ConfigSet;
use mz_persist_client::project::{error_free, ProjectionPushdown};
use std::convert::Infallible;
use std::fmt::Debug;
use std::future::Future;
use std::hash::Hash;
use std::pin::Pin;
use std::sync::Arc;
use std::time::Instant;

use differential_dataflow::lattice::Lattice;
use futures::{future::Either, StreamExt};
use mz_expr::{ColumnSpecs, Interpreter, MfpPlan, ResultSpec, UnmaterializableFunc};
use mz_ore::cast::CastFrom;
use mz_ore::collections::CollectionExt;
use mz_ore::vec::VecExt;
use mz_persist_client::cache::PersistClientCache;
use mz_persist_client::cfg::{PersistConfig, RetryParameters};
use mz_persist_client::fetch::{FetchedBlob, FetchedPart};
use mz_persist_client::fetch::{SerdeLeasedBatchPart, ShardSourcePart};
use mz_persist_client::operators::shard_source::{shard_source, SnapshotMode};
use mz_persist_types::codec_impls::UnitSchema;
use mz_persist_types::{Codec, Codec64};
use mz_repr::{Datum, DatumVec, Diff, GlobalId, RelationType, Row, RowArena, Timestamp};
use mz_storage_types::controller::{CollectionMetadata, TxnsCodecRow};
use mz_storage_types::errors::DataflowError;
use mz_storage_types::sources::SourceData;
use mz_storage_types::stats::RelationPartStats;
use mz_timely_util::builder_async::{
    Event, OperatorBuilder as AsyncOperatorBuilder, PressOnDropButton,
};
use mz_timely_util::probe::ProbeNotify;
use mz_txn_wal::operator::{txns_progress, TxnsContext};
use serde::{Deserialize, Serialize};
use timely::communication::Push;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::Message;
use timely::dataflow::operators::generic::builder_rc::OperatorBuilder;
use timely::dataflow::operators::generic::OutputHandleCore;
use timely::dataflow::operators::{Capability, Leave, OkErr};
use timely::dataflow::operators::{CapabilitySet, ConnectLoop, Feedback};
use timely::dataflow::scopes::Child;
use timely::dataflow::ScopeParent;
use timely::dataflow::{Scope, Stream};
use timely::order::TotalOrder;
use timely::progress::timestamp::PathSummary;
use timely::progress::Antichain;
use timely::progress::Timestamp as TimelyTimestamp;
use timely::scheduling::Activator;
use timely::PartialOrder;
use tokio::sync::mpsc::UnboundedSender;
use tracing::trace;

use crate::metrics::BackpressureMetrics;

/// This opaque token represents progress within a timestamp, allowing finer-grained frontier
/// progress than would otherwise be possible.
///
/// This is "opaque" since we'd like to reserve the right to change the definition in the future
/// without downstreams being able to rely on the precise representation. (At the moment, this
/// is a simple batch counter, though we may change it to eg. reflect progress through the keyspace
/// in the future.)
#[derive(
    Copy, Clone, PartialEq, Default, Eq, PartialOrd, Ord, Debug, Serialize, Deserialize, Hash,
)]
pub struct Subtime(u64);

impl PartialOrder for Subtime {
    fn less_equal(&self, other: &Self) -> bool {
        self.0.less_equal(&other.0)
    }
}

impl TotalOrder for Subtime {}

impl PathSummary<Subtime> for Subtime {
    fn results_in(&self, src: &Subtime) -> Option<Subtime> {
        self.0.results_in(&src.0).map(Subtime)
    }

    fn followed_by(&self, other: &Self) -> Option<Self> {
        self.0.followed_by(&other.0).map(Subtime)
    }
}

impl TimelyTimestamp for Subtime {
    type Summary = Subtime;

    fn minimum() -> Self {
        Subtime(0)
    }
}

impl Subtime {
    /// The smallest non-zero summary for the opaque timestamp type.
    pub const fn least_summary() -> Self {
        Subtime(1)
    }
}

/// Creates a new source that reads from a persist shard, distributing the work
/// of reading data to all timely workers.
///
/// All times emitted will have been [advanced by] the given `as_of` frontier.
/// All updates at times greater or equal to `until` will be suppressed.
/// The `map_filter_project` argument, if supplied, may be partially applied,
/// and any un-applied part of the argument will be left behind in the argument.
///
/// Users of this function have the ability to apply flow control to the output
/// to limit the in-flight data (measured in bytes) it can emit. The flow control
/// input is a timely stream that communicates the frontier at which the data
/// emitted from by this source have been dropped.
///
/// **Note:** Because this function is reading batches from `persist`, it is working
/// at batch granularity. In practice, the source will be overshooting the target
/// flow control upper by an amount that is related to the size of batches.
///
/// If no flow control is desired an empty stream whose frontier immediately advances
/// to the empty antichain can be used. An easy easy of creating such stream is by
/// using [`timely::dataflow::operators::generic::operator::empty`].
///
/// [advanced by]: differential_dataflow::lattice::Lattice::advance_by
pub fn persist_source<G>(
    scope: &mut G,
    source_id: GlobalId,
    persist_clients: Arc<PersistClientCache>,
    txns_ctx: &TxnsContext,
    // In case we need to use a dyncfg to decide which operators to render in a
    // dataflow.
    worker_dyncfgs: &ConfigSet,
    metadata: CollectionMetadata,
    as_of: Option<Antichain<Timestamp>>,
    snapshot_mode: SnapshotMode,
    until: Antichain<Timestamp>,
    map_filter_project: Option<&mut MfpPlan>,
    max_inflight_bytes: Option<usize>,
    start_signal: impl Future<Output = ()> + 'static,
    error_handler: impl FnOnce(String) -> Pin<Box<dyn Future<Output = ()>>> + 'static,
) -> (
    Stream<G, (Row, Timestamp, Diff)>,
    Stream<G, (DataflowError, Timestamp, Diff)>,
    Vec<PressOnDropButton>,
)
where
    G: Scope<Timestamp = mz_repr::Timestamp>,
{
    let shard_metrics = persist_clients.shard_metrics(&metadata.data_shard, &source_id.to_string());

    let mut tokens = vec![];

    let stream = scope.scoped(&format!("granular_backpressure({})", source_id), |scope| {
        let (flow_control, flow_control_probe) = match max_inflight_bytes {
            Some(max_inflight_bytes) => {
                let backpressure_metrics = BackpressureMetrics {
                    emitted_bytes: Arc::clone(&shard_metrics.backpressure_emitted_bytes),
                    last_backpressured_bytes: Arc::clone(
                        &shard_metrics.backpressure_last_backpressured_bytes,
                    ),
                    retired_bytes: Arc::clone(&shard_metrics.backpressure_retired_bytes),
                };

                let probe = mz_timely_util::probe::Handle::default();
                let progress_stream = mz_timely_util::probe::source(
                    scope.clone(),
                    format!("decode_backpressure_probe({source_id})"),
                    probe.clone(),
                );
                let flow_control = FlowControl {
                    progress_stream,
                    max_inflight_bytes,
                    summary: (Default::default(), Subtime::least_summary()),
                    metrics: Some(backpressure_metrics),
                };
                (Some(flow_control), Some(probe))
            }
            None => (None, None),
        };

        // Our default listen sleeps are tuned for the case of a shard that is
        // written once a second, but txn-wal allows these to be lazy.
        // Override the tuning to reduce crdb load. The pubsub fallback
        // responsibility is then replaced by manual "one state" wakeups in the
        // txns_progress operator.
        let cfg = Arc::clone(&persist_clients.cfg().configs);
        let subscribe_sleep = match metadata.txns_shard {
            Some(_) => Some(move || mz_txn_wal::operator::txns_data_shard_retry_params(&cfg)),
            None => None,
        };

        let (stream, source_tokens) = persist_source_core(
            scope,
            source_id,
            Arc::clone(&persist_clients),
            metadata.clone(),
            as_of.clone(),
            snapshot_mode,
            until.clone(),
            map_filter_project,
            flow_control,
            subscribe_sleep,
            start_signal,
            error_handler,
        );
        tokens.extend(source_tokens);

        let stream = match flow_control_probe {
            Some(probe) => stream.probe_notify_with(vec![probe]),
            None => stream,
        };

        stream.leave()
    });

    // If a txns_shard was provided, then this shard is in the txn-wal
    // system. This means the "logical" upper may be ahead of the "physical"
    // upper. Render a dataflow operator that passes through the input and
    // translates the progress frontiers as necessary.
    let (stream, txns_tokens) = match metadata.txns_shard {
        Some(txns_shard) => txns_progress::<SourceData, (), Timestamp, i64, _, TxnsCodecRow, _, _>(
            stream,
            &source_id.to_string(),
            txns_ctx,
            worker_dyncfgs,
            move || {
                let (c, l) = (
                    Arc::clone(&persist_clients),
                    metadata.persist_location.clone(),
                );
                async move { c.open(l).await.expect("location is valid") }
            },
            txns_shard,
            metadata.data_shard,
            as_of
                .expect("as_of is provided for table sources")
                .into_option()
                .expect("shard is not closed"),
            until,
            Arc::new(metadata.relation_desc),
            Arc::new(UnitSchema),
        ),
        None => (stream, vec![]),
    };
    tokens.extend(txns_tokens);
    let (ok_stream, err_stream) = stream.ok_err(|(d, t, r)| match d {
        Ok(row) => Ok((row, t.0, r)),
        Err(err) => Err((err, t.0, r)),
    });
    (ok_stream, err_stream, tokens)
}

type RefinedScope<'g, G> = Child<'g, G, (<G as ScopeParent>::Timestamp, Subtime)>;

/// Creates a new source that reads from a persist shard, distributing the work
/// of reading data to all timely workers.
///
/// All times emitted will have been [advanced by] the given `as_of` frontier.
///
/// [advanced by]: differential_dataflow::lattice::Lattice::advance_by
#[allow(clippy::needless_borrow)]
pub fn persist_source_core<'g, G>(
    scope: &RefinedScope<'g, G>,
    source_id: GlobalId,
    persist_clients: Arc<PersistClientCache>,
    metadata: CollectionMetadata,
    as_of: Option<Antichain<Timestamp>>,
    snapshot_mode: SnapshotMode,
    until: Antichain<Timestamp>,
    map_filter_project: Option<&mut MfpPlan>,
    flow_control: Option<FlowControl<RefinedScope<'g, G>>>,
    // If Some, an override for the default listen sleep retry parameters.
    listen_sleep: Option<impl Fn() -> RetryParameters + 'static>,
    start_signal: impl Future<Output = ()> + 'static,
    error_handler: impl FnOnce(String) -> Pin<Box<dyn Future<Output = ()>>> + 'static,
) -> (
    Stream<
        RefinedScope<'g, G>,
        (
            Result<Row, DataflowError>,
            (mz_repr::Timestamp, Subtime),
            Diff,
        ),
    >,
    Vec<PressOnDropButton>,
)
where
    G: Scope<Timestamp = mz_repr::Timestamp>,
{
    let cfg = persist_clients.cfg().clone();
    let name = source_id.to_string();
    let desc = metadata.relation_desc.clone();
    let ignores_data = map_filter_project
        .as_ref()
        .map_or(false, |x| x.ignores_input());
    let project = if ignores_data {
        ProjectionPushdown::IgnoreAllNonErr {
            err_col_name: "err",
            key_bytes: SourceData(Ok(Row::default())).encode_to_vec(),
            val_bytes: ().encode_to_vec(),
        }
    } else {
        ProjectionPushdown::FetchAll
    };
    let filter_plan = map_filter_project.as_ref().map(|p| (*p).clone());

    let desc_transformer = match flow_control {
        Some(flow_control) => Some(move |mut scope: _, descs: &Stream<_, _>, chosen_worker| {
            let (stream, token) = backpressure(
                &mut scope,
                &format!("backpressure({source_id})"),
                descs,
                flow_control,
                chosen_worker,
                None,
            );
            (stream, vec![token])
        }),
        None => None,
    };

    let metrics = Arc::clone(persist_clients.metrics());
    let filter_name = name.clone();
    // The `until` gives us an upper bound on the possible values of `mz_now` this query may see.
    // Ranges are inclusive, so it's safe to use the maximum timestamp as the upper bound when
    // `until ` is the empty antichain.
    let upper = until.as_option().cloned().unwrap_or(Timestamp::MAX);
    let (fetched, token) = shard_source(
        &mut scope.clone(),
        &name,
        move || {
            let (c, l) = (
                Arc::clone(&persist_clients),
                metadata.persist_location.clone(),
            );
            async move { c.open(l).await.unwrap() }
        },
        metadata.data_shard,
        as_of,
        snapshot_mode,
        until.clone(),
        desc_transformer,
        Arc::new(metadata.relation_desc),
        Arc::new(UnitSchema),
        move |stats, frontier| {
            let Some(lower) = frontier.as_option().copied() else {
                // If the frontier has advanced to the empty antichain,
                // we'll never emit any rows from any part.
                return false;
            };

            if lower > upper {
                // The frontier timestamp is larger than the until of the dataflow:
                // anything from this part will necessarily be filtered out.
                return false;
            }

            let time_range =
                ResultSpec::value_between(Datum::MzTimestamp(lower), Datum::MzTimestamp(upper));
            if let Some(plan) = &filter_plan {
                let metrics = &metrics.pushdown.part_stats;
                let stats = RelationPartStats::new(&filter_name, metrics, &desc, stats);
                filter_may_match(desc.typ(), time_range, stats, plan)
            } else {
                true
            }
        },
        listen_sleep,
        start_signal,
        error_handler,
        project,
    );
    let rows = decode_and_mfp(cfg, &fetched, &name, until, map_filter_project);
    (rows, token)
}

fn filter_may_match(
    relation_type: &RelationType,
    time_range: ResultSpec,
    stats: RelationPartStats,
    plan: &MfpPlan,
) -> bool {
    let arena = RowArena::new();
    let mut ranges = ColumnSpecs::new(relation_type, &arena);
    ranges.push_unmaterializable(UnmaterializableFunc::MzNow, time_range);

    if stats.err_count().into_iter().any(|count| count > 0) {
        // If the error collection is nonempty, we always keep the part.
        return true;
    }

    for (id, _) in relation_type.column_types.iter().enumerate() {
        let result_spec = stats.col_stats(id, &arena);
        ranges.push_column(id, result_spec);
    }
    let result = ranges.mfp_plan_filter(plan).range;
    result.may_contain(Datum::True) || result.may_fail()
}

pub fn decode_and_mfp<G>(
    cfg: PersistConfig,
    fetched: &Stream<G, FetchedBlob<SourceData, (), Timestamp, Diff>>,
    name: &str,
    until: Antichain<Timestamp>,
    mut map_filter_project: Option<&mut MfpPlan>,
) -> Stream<G, (Result<Row, DataflowError>, G::Timestamp, Diff)>
where
    G: Scope<Timestamp = (mz_repr::Timestamp, Subtime)>,
{
    let scope = fetched.scope();
    let mut builder = OperatorBuilder::new(
        format!("persist_source::decode_and_mfp({})", name),
        scope.clone(),
    );
    let operator_info = builder.operator_info();

    let mut fetched_input = builder.new_input(fetched, Pipeline);
    let (mut updates_output, updates_stream) =
        builder.new_output::<ConsolidatingContainerBuilder<_>>();

    // Re-used state for processing and building rows.
    let mut datum_vec = mz_repr::DatumVec::new();
    let mut row_builder = Row::default();

    // Extract the MFP if it exists; leave behind an identity MFP in that case.
    let map_filter_project = map_filter_project.as_mut().map(|mfp| mfp.take());

    builder.build(move |_caps| {
        let name = name.to_owned();
        // Acquire an activator to reschedule the operator when it has unfinished work.
        let activations = scope.activations();
        let activator = Activator::new(operator_info.address, activations);
        // Maintain a list of work to do
        let mut pending_work = std::collections::VecDeque::new();

        move |_frontier| {
            fetched_input.for_each(|time, data| {
                let capability = time.retain();
                for fetched_blob in data.drain(..) {
                    pending_work.push_back(PendingWork {
                        capability: capability.clone(),
                        part: PendingPart::Unparsed(fetched_blob),
                    })
                }
            });

            // Get dyncfg values once per schedule to amortize the cost of
            // loading the atomics.
            let yield_fuel = cfg.storage_source_decode_fuel();
            let yield_fn = |_, work| work >= yield_fuel;
            let optimize_ignored_data_decode = cfg.optimize_ignored_data_decode();

            let mut work = 0;
            let start_time = Instant::now();
            let mut output = updates_output.activate();
            while !pending_work.is_empty() && !yield_fn(start_time, work) {
                let done = pending_work.front_mut().unwrap().do_work(
                    &mut work,
                    &name,
                    optimize_ignored_data_decode,
                    start_time,
                    yield_fn,
                    &until,
                    map_filter_project.as_ref(),
                    &mut datum_vec,
                    &mut row_builder,
                    &mut output,
                );
                if done {
                    pending_work.pop_front();
                }
            }
            if !pending_work.is_empty() {
                activator.activate();
            }
        }
    });

    updates_stream
}

/// Pending work to read from fetched parts
struct PendingWork {
    /// The time at which the work should happen.
    capability: Capability<(mz_repr::Timestamp, Subtime)>,
    /// Pending fetched part.
    part: PendingPart,
}

enum PendingPart {
    Unparsed(FetchedBlob<SourceData, (), Timestamp, Diff>),
    Parsed {
        part: ShardSourcePart<SourceData, (), Timestamp, Diff>,
        error_free: bool,
    },
}

impl PendingPart {
    /// Returns the contained `FetchedPart`, first parsing it from a
    /// `FetchedBlob` if necessary.
    ///
    /// Also returns a bool, which is true if the part is known (from pushdown
    /// stats) to be free of `SourceData(Err(_))`s. It will be false if the part
    /// is known to contain errors or if it's unknown.
    fn part_mut(&mut self) -> (&mut FetchedPart<SourceData, (), Timestamp, Diff>, bool) {
        match self {
            PendingPart::Unparsed(x) => {
                let error_free = error_free(x.stats(), "err").unwrap_or(false);
                *self = PendingPart::Parsed {
                    part: x.parse(),
                    error_free,
                };
                // Won't recurse any further.
                self.part_mut()
            }
            PendingPart::Parsed { part, error_free } => (&mut part.part, *error_free),
        }
    }
}

impl PendingWork {
    /// Perform work, reading from the fetched part, decoding, and sending outputs, while checking
    /// `yield_fn` whether more fuel is available.
    fn do_work<P, YFn>(
        &mut self,
        work: &mut usize,
        name: &str,
        optimize_ignored_data_decode: bool,
        start_time: Instant,
        yield_fn: YFn,
        until: &Antichain<Timestamp>,
        map_filter_project: Option<&MfpPlan>,
        datum_vec: &mut DatumVec,
        row_builder: &mut Row,
        output: &mut OutputHandleCore<
            '_,
            (mz_repr::Timestamp, Subtime),
            ConsolidatingContainerBuilder<
                Vec<(
                    Result<Row, DataflowError>,
                    (mz_repr::Timestamp, Subtime),
                    Diff,
                )>,
            >,
            P,
        >,
    ) -> bool
    where
        P: Push<
            Message<
                (mz_repr::Timestamp, Subtime),
                Vec<(
                    Result<Row, DataflowError>,
                    (mz_repr::Timestamp, Subtime),
                    Diff,
                )>,
            >,
        >,
        YFn: Fn(Instant, usize) -> bool,
    {
        let mut session = output.session_with_builder(&self.capability);
        let (fetched_part, part_is_error_free) = self.part.part_mut();
        let is_filter_pushdown_audit = fetched_part.is_filter_pushdown_audit();
        let mut row_buf = None;
        let row_override = map_filter_project
            .as_ref()
            .map(|p| optimize_ignored_data_decode && part_is_error_free && p.ignores_input())
            .unwrap_or(false)
            .then(|| (SourceData(Ok(Row::default())), ()));
        while let Some(((key, val), time, diff)) =
            fetched_part.next_with_storage(&mut row_buf, &mut None, row_override.clone())
        {
            if until.less_equal(&time) {
                continue;
            }
            match (key, val) {
                (Ok(SourceData(Ok(row))), Ok(())) => {
                    if let Some(mfp) = map_filter_project {
                        // We originally accounted work as the number of outputs, to give downstream
                        // operators a chance to reduce down anything we've emitted. This mfp call
                        // might have a restrictive filter, which would have been counted as no
                        // work. However, in practice, we've been decode_and_mfp be a source of
                        // interactivity loss during rehydration, so we now also count each mfp
                        // evaluation against our fuel.
                        *work += 1;
                        let arena = mz_repr::RowArena::new();
                        let mut datums_local = datum_vec.borrow_with(&row);
                        for result in mfp.evaluate(
                            &mut datums_local,
                            &arena,
                            time,
                            diff,
                            |time| !until.less_equal(time),
                            row_builder,
                        ) {
                            if let Some(_stats) = &is_filter_pushdown_audit {
                                // NB: The tag added by this scope is used for alerting. The panic
                                // message may be changed arbitrarily, but the tag key and val must
                                // stay the same.
                                sentry::with_scope(
                                    |scope| {
                                        scope
                                            .set_tag("alert_id", "persist_pushdown_audit_violation")
                                    },
                                    || {
                                        // TODO: include more (redacted) information here.
                                        panic!(
                                            "persist filter pushdown correctness violation! {}",
                                            name
                                        );
                                    },
                                );
                            }
                            match result {
                                Ok((row, time, diff)) => {
                                    // Additional `until` filtering due to temporal filters.
                                    if !until.less_equal(&time) {
                                        let mut emit_time = *self.capability.time();
                                        emit_time.0 = time;
                                        session.give((Ok(row), emit_time, diff));
                                        *work += 1;
                                    }
                                }
                                Err((err, time, diff)) => {
                                    // Additional `until` filtering due to temporal filters.
                                    if !until.less_equal(&time) {
                                        let mut emit_time = *self.capability.time();
                                        emit_time.0 = time;
                                        session.give((Err(err), emit_time, diff));
                                        *work += 1;
                                    }
                                }
                            }
                        }
                        // At the moment, this is the only case where we can re-use the allocs for
                        // the `SourceData`/`Row` we decoded. This could be improved if this timely
                        // operator used a different container than `Vec<Row>`.
                        drop(datums_local);
                        row_buf.replace(SourceData(Ok(row)));
                    } else {
                        let mut emit_time = *self.capability.time();
                        emit_time.0 = time;
                        session.give((Ok(row), emit_time, diff));
                        *work += 1;
                    }
                }
                (Ok(SourceData(Err(err))), Ok(())) => {
                    let mut emit_time = *self.capability.time();
                    emit_time.0 = time;
                    session.give((Err(err), emit_time, diff));
                    *work += 1;
                }
                // TODO(petrosagg): error handling
                (Err(_), Ok(_)) | (Ok(_), Err(_)) | (Err(_), Err(_)) => {
                    panic!("decoding failed")
                }
            }
            if yield_fn(start_time, *work) {
                return false;
            }
        }
        true
    }
}

/// A trait representing a type that can be used in `backpressure`.
pub trait Backpressureable: Clone + 'static {
    /// Return the weight of the object, in bytes.
    fn byte_size(&self) -> usize;
}

impl Backpressureable for (usize, SerdeLeasedBatchPart) {
    fn byte_size(&self) -> usize {
        self.1.encoded_size_bytes()
    }
}

/// Flow control configuration.
#[derive(Debug)]
pub struct FlowControl<G: Scope> {
    /// Stream providing in-flight frontier updates.
    ///
    /// As implied by its type, this stream never emits data, only progress updates.
    ///
    /// TODO: Replace `Infallible` with `!` once the latter is stabilized.
    pub progress_stream: Stream<G, Infallible>,
    /// Maximum number of in-flight bytes.
    pub max_inflight_bytes: usize,
    /// The minimum range of timestamps (be they granular or not) that must be emitted,
    /// ignoring `max_inflight_bytes` to ensure forward progress is made.
    pub summary: <G::Timestamp as TimelyTimestamp>::Summary,

    /// Optional metrics for the `backpressure` operator to keep up-to-date.
    pub metrics: Option<BackpressureMetrics>,
}

/// Apply flow control to the `data` input, based on the given `FlowControl`.
///
/// The `FlowControl` should have a `progress_stream` that is the pristine, unaltered
/// frontier of the downstream operator we want to backpressure from, a `max_inflight_bytes`,
/// and a `summary`. Note that the `data` input expects all the second part of the tuple
/// timestamp to be 0, and all data to be on the `chosen_worker` worker.
///
/// The `summary` represents the _minimum_ range of timestamps that needs to be emitted before
/// reasoning about `max_inflight_bytes`. In practice this means that we may overshoot
/// `max_inflight_bytes`.
///
/// The implementation of this operator is very subtle. Many inline comments have been added.
pub fn backpressure<T, G, O>(
    scope: &mut G,
    name: &str,
    data: &Stream<G, O>,
    flow_control: FlowControl<G>,
    chosen_worker: usize,
    // A probe used to inspect this operator during unit-testing
    probe: Option<UnboundedSender<(Antichain<(T, Subtime)>, usize, usize)>>,
) -> (Stream<G, O>, PressOnDropButton)
where
    T: TimelyTimestamp + Lattice + Codec64 + TotalOrder,
    G: Scope<Timestamp = (T, Subtime)>,
    O: Backpressureable + std::fmt::Debug,
{
    let worker_index = scope.index();

    let (flow_control_stream, flow_control_max_bytes, metrics) = (
        flow_control.progress_stream,
        flow_control.max_inflight_bytes,
        flow_control.metrics,
    );

    // Both the `flow_control` input and the data input are disconnected from the output. We manually
    // manage the output's frontier using a `CapabilitySet`. Note that we also adjust the
    // `flow_control` progress stream using the `summary` here, using a `feedback` operator in a
    // non-circular fashion.
    let (handle, summaried_flow) = scope.feedback(flow_control.summary.clone());
    flow_control_stream.connect_loop(handle);

    let mut builder = AsyncOperatorBuilder::new(
        format!("persist_source_backpressure({})", name),
        scope.clone(),
    );
    let (data_output, data_stream) = builder.new_output();

    let mut data_input = builder.new_disconnected_input(data, Pipeline);
    let mut flow_control_input = builder.new_disconnected_input(&summaried_flow, Pipeline);

    // Helper method used to synthesize current and next frontier for ordered times.
    fn synthesize_frontiers<T: PartialOrder + Clone>(
        mut frontier: Antichain<(T, Subtime)>,
        mut time: (T, Subtime),
        part_number: &mut u64,
    ) -> (
        (T, Subtime),
        Antichain<(T, Subtime)>,
        Antichain<(T, Subtime)>,
    ) {
        let mut next_frontier = frontier.clone();
        time.1 = Subtime(*part_number);
        frontier.insert(time.clone());
        *part_number += 1;
        let mut next_time = time.clone();
        next_time.1 = Subtime(*part_number);
        next_frontier.insert(next_time);
        (time, frontier, next_frontier)
    }

    // _Refine_ the data stream by amending the second input with the part number. This also
    // ensures that we order the parts by time.
    let data_input = async_stream::stream!({
        let mut part_number = 0;
        let mut parts: Vec<((T, Subtime), O)> = Vec::new();
        loop {
            match data_input.next().await {
                None => {
                    let empty = Antichain::new();
                    parts.sort_by_key(|val| val.0.clone());
                    for (part_time, d) in parts.drain(..) {
                        let (part_time, frontier, next_frontier) = synthesize_frontiers(
                            empty.clone(),
                            part_time.clone(),
                            &mut part_number,
                        );
                        yield Either::Right((part_time, d, frontier, next_frontier))
                    }
                    break;
                }
                Some(Event::Data(time, data)) => {
                    for d in data {
                        parts.push((time.clone(), d));
                    }
                }
                Some(Event::Progress(prog)) => {
                    let mut i = 0;
                    parts.sort_by_key(|val| val.0.clone());
                    // This can be replaced with `Vec::drain_filter` when it stabilizes.
                    // `drain_filter_swapping` doesn't work as it reorders the vec.
                    while i < parts.len() {
                        if !prog.less_equal(&parts[i].0) {
                            let (part_time, d) = parts.remove(i);
                            let (part_time, frontier, next_frontier) = synthesize_frontiers(
                                prog.clone(),
                                part_time.clone(),
                                &mut part_number,
                            );
                            yield Either::Right((part_time, d, frontier, next_frontier))
                        } else {
                            i += 1;
                        }
                    }
                    yield Either::Left(prog)
                }
            }
        }
    });
    let shutdown_button = builder.build(move |caps| async move {
        // The output capability.
        let mut cap_set = CapabilitySet::from_elem(caps.into_element());

        // The frontier of our output. This matches the `CapabilitySet` above.
        let mut output_frontier = Antichain::from_elem(TimelyTimestamp::minimum());
        // The frontier of the `flow_control` input.
        let mut flow_control_frontier = Antichain::from_elem(TimelyTimestamp::minimum());

        // Parts we have emitted, but have not yet retired (based on the `flow_control` edge).
        let mut inflight_parts = Vec::new();
        // Parts we have not yet emitted, but do participate in the `input_frontier`.
        let mut pending_parts = std::collections::VecDeque::new();

        // Only one worker is responsible for distributing parts
        if worker_index != chosen_worker {
            trace!(
                "We are not the chosen worker ({}), exiting...",
                chosen_worker
            );
            return;
        }
        tokio::pin!(data_input);
        'emitting_parts: loop {
            // At the beginning of our main loop, we determine the total size of
            // inflight parts.
            let inflight_bytes: usize = inflight_parts.iter().map(|(_, size)| size).sum();

            // There are 2 main cases where we can continue to emit parts:
            // - The total emitted bytes is less than `flow_control_max_bytes`.
            // - The output frontier is not beyond the `flow_control_frontier`
            //
            // SUBTLE: in the latter case, we may arbitrarily go into the backpressure `else`
            // block, as we wait for progress tracking to keep the `flow_control` frontier
            // up-to-date. This is tested in unit-tests.
            if inflight_bytes < flow_control_max_bytes
                || !PartialOrder::less_equal(&flow_control_frontier, &output_frontier)
            {
                let (time, part, next_frontier) =
                    if let Some((time, part, next_frontier)) = pending_parts.pop_front() {
                        (time, part, next_frontier)
                    } else {
                        match data_input.next().await {
                            Some(Either::Right((time, part, frontier, next_frontier))) => {
                                // Downgrade the output frontier to this part's time. This is useful
                                // "close" timestamp's from previous parts, even if we don't yet
                                // emit this part. Note that this is safe because `data_input` ensures
                                // time-ordering.
                                output_frontier = frontier;
                                cap_set.downgrade(output_frontier.iter());

                                // If the most recent value's time is _beyond_ the
                                // `flow_control` frontier (which takes into account the `summary`), we
                                // have emitted an entire `summary` worth of data, and can store this
                                // value for later.
                                if inflight_bytes >= flow_control_max_bytes
                                    && !PartialOrder::less_than(
                                        &output_frontier,
                                        &flow_control_frontier,
                                    )
                                {
                                    pending_parts.push_back((time, part, next_frontier));
                                    continue 'emitting_parts;
                                }
                                (time, part, next_frontier)
                            }
                            Some(Either::Left(prog)) => {
                                output_frontier = prog;
                                cap_set.downgrade(output_frontier.iter());
                                continue 'emitting_parts;
                            }
                            None => {
                                if pending_parts.is_empty() {
                                    break 'emitting_parts;
                                } else {
                                    continue 'emitting_parts;
                                }
                            }
                        }
                    };

                let byte_size = part.byte_size();
                // Store the value with the _frontier_ the `flow_control_input` must reach
                // to retire it. Note that if this `results_in` is `None`, then we
                // are at `T::MAX`, and give up on flow_control entirely.
                //
                // SUBTLE: If we stop storing these parts, we will likely never check the
                // `flow_control_input` ever again. This won't pile up data as that input
                // only has frontier updates. There may be spurious activations from it though.
                //
                // Also note that we don't attempt to handle overflowing the `u64` part counter.
                if let Some(emission_ts) = flow_control.summary.results_in(&time) {
                    inflight_parts.push((emission_ts, byte_size));
                }

                // Emit the data at the given time, and update the frontier and capabilities
                // to just beyond the part.
                data_output.give(&cap_set.delayed(&time), part);

                if let Some(metrics) = &metrics {
                    metrics.emitted_bytes.inc_by(u64::cast_from(byte_size))
                }

                output_frontier = next_frontier;
                cap_set.downgrade(output_frontier.iter())
            } else {
                if let Some(metrics) = &metrics {
                    metrics
                        .last_backpressured_bytes
                        .set(u64::cast_from(inflight_bytes))
                }
                let parts_count = inflight_parts.len();
                // We've exhausted our budget, listen for updates to the flow_control
                // input's frontier until we free up new budget. If we don't interact with
                // with this side of the if statement, because the stream has no data, we
                // don't cause unbounded buffering in timely.
                let new_flow_control_frontier = match flow_control_input.next().await {
                    Some(Event::Progress(frontier)) => frontier,
                    Some(Event::Data(_, _)) => {
                        unreachable!("flow_control_input should not contain data")
                    }
                    None => Antichain::new(),
                };

                // Update the `flow_control_frontier` if its advanced.
                flow_control_frontier.clone_from(&new_flow_control_frontier);

                // Retire parts that are processed downstream.
                let retired_parts = inflight_parts
                    .drain_filter_swapping(|(ts, _size)| !flow_control_frontier.less_equal(ts));
                let (retired_size, retired_count): (usize, usize) = retired_parts
                    .fold((0, 0), |(accum_size, accum_count), (_ts, size)| {
                        (accum_size + size, accum_count + 1)
                    });
                trace!(
                    "returning {} parts with {} bytes, frontier: {:?}",
                    retired_count,
                    retired_size,
                    flow_control_frontier,
                );

                if let Some(metrics) = &metrics {
                    metrics.retired_bytes.inc_by(u64::cast_from(retired_size))
                }

                // Optionally emit some information for tests to examine.
                if let Some(probe) = probe.as_ref() {
                    let _ = probe.send((new_flow_control_frontier, parts_count, retired_count));
                }
            }
        }
    });
    (data_stream, shutdown_button.press_on_drop())
}

#[cfg(test)]
mod tests {
    use timely::container::CapacityContainerBuilder;
    use timely::dataflow::operators::{Enter, Probe};
    use tokio::sync::mpsc::unbounded_channel;
    use tokio::sync::oneshot;

    use super::*;

    #[mz_ore::test]
    fn test_backpressure_non_granular() {
        use Step::*;
        backpressure_runner(
            vec![(50, Part(101)), (50, Part(102)), (100, Part(1))],
            100,
            (1, Subtime(0)),
            vec![
                // Assert we backpressure only after we have emitted
                // the entire timestamp.
                AssertOutputFrontier((50, Subtime(2))),
                AssertBackpressured {
                    frontier: (1, Subtime(0)),
                    inflight_parts: 1,
                    retired_parts: 0,
                },
                AssertBackpressured {
                    frontier: (51, Subtime(0)),
                    inflight_parts: 1,
                    retired_parts: 0,
                },
                ProcessXParts(2),
                AssertBackpressured {
                    frontier: (101, Subtime(0)),
                    inflight_parts: 2,
                    retired_parts: 2,
                },
                // Assert we make later progress once processing
                // the parts.
                AssertOutputFrontier((100, Subtime(3))),
            ],
            true,
        );

        backpressure_runner(
            vec![
                (50, Part(10)),
                (50, Part(10)),
                (51, Part(100)),
                (52, Part(1000)),
            ],
            50,
            (1, Subtime(0)),
            vec![
                // Assert we backpressure only after we emitted enough bytes
                AssertOutputFrontier((51, Subtime(3))),
                AssertBackpressured {
                    frontier: (1, Subtime(0)),
                    inflight_parts: 3,
                    retired_parts: 0,
                },
                ProcessXParts(3),
                AssertBackpressured {
                    frontier: (52, Subtime(0)),
                    inflight_parts: 3,
                    retired_parts: 2,
                },
                AssertBackpressured {
                    frontier: (53, Subtime(0)),
                    inflight_parts: 1,
                    retired_parts: 1,
                },
                // Assert we make later progress once processing
                // the parts.
                AssertOutputFrontier((52, Subtime(4))),
            ],
            true,
        );

        backpressure_runner(
            vec![
                (50, Part(98)),
                (50, Part(1)),
                (51, Part(10)),
                (52, Part(100)),
                // Additional parts at the same timestamp
                (52, Part(10)),
                (52, Part(10)),
                (52, Part(10)),
                (52, Part(100)),
                // A later part with a later ts.
                (100, Part(100)),
            ],
            100,
            (1, Subtime(0)),
            vec![
                AssertOutputFrontier((51, Subtime(3))),
                // Assert we backpressure after we have emitted enough bytes.
                // We assert twice here because we get updates as
                // `flow_control` progresses from `(0, 0)`->`(0, 1)`-> a real frontier.
                AssertBackpressured {
                    frontier: (1, Subtime(0)),
                    inflight_parts: 3,
                    retired_parts: 0,
                },
                AssertBackpressured {
                    frontier: (51, Subtime(0)),
                    inflight_parts: 3,
                    retired_parts: 0,
                },
                ProcessXParts(1),
                // Our output frontier doesn't move, as the downstream frontier hasn't moved past
                // 50.
                AssertOutputFrontier((51, Subtime(3))),
                // After we process all of `50`, we can start emitting data at `52`, but only until
                // we exhaust out budget. We don't need to emit all of `52` because we have emitted
                // all of `51`.
                ProcessXParts(1),
                AssertOutputFrontier((52, Subtime(4))),
                AssertBackpressured {
                    frontier: (52, Subtime(0)),
                    inflight_parts: 3,
                    retired_parts: 2,
                },
                // After processing `50` and `51`, the minimum time is `52`, so we ensure that,
                // regardless of byte count, we emit the entire time (but do NOT emit the part at
                // time `100`.
                ProcessXParts(1),
                // Clear the previous `51` part, and start filling up `inflight_parts` with other
                // parts at `52`
                // This is an intermediate state.
                AssertBackpressured {
                    frontier: (53, Subtime(0)),
                    inflight_parts: 2,
                    retired_parts: 1,
                },
                // After we process all of `52`, we can continue to the next time.
                ProcessXParts(5),
                AssertBackpressured {
                    frontier: (101, Subtime(0)),
                    inflight_parts: 5,
                    retired_parts: 5,
                },
                AssertOutputFrontier((100, Subtime(9))),
            ],
            true,
        );
    }

    #[mz_ore::test]
    fn test_backpressure_granular() {
        use Step::*;
        backpressure_runner(
            vec![(50, Part(101)), (50, Part(101))],
            100,
            (0, Subtime(1)),
            vec![
                // Advance our frontier to outputting a single part.
                AssertOutputFrontier((50, Subtime(1))),
                // Receive backpressure updates until our frontier is up-to-date but
                // not beyond the parts (while considering the summary).
                AssertBackpressured {
                    frontier: (0, Subtime(1)),
                    inflight_parts: 1,
                    retired_parts: 0,
                },
                AssertBackpressured {
                    frontier: (50, Subtime(1)),
                    inflight_parts: 1,
                    retired_parts: 0,
                },
                // Process that part.
                ProcessXParts(1),
                // Assert that we clear the backpressure status
                AssertBackpressured {
                    frontier: (50, Subtime(2)),
                    inflight_parts: 1,
                    retired_parts: 1,
                },
                // Ensure we make progress to the next part.
                AssertOutputFrontier((50, Subtime(2))),
            ],
            false,
        );

        backpressure_runner(
            vec![
                (50, Part(10)),
                (50, Part(10)),
                (51, Part(35)),
                (52, Part(100)),
            ],
            50,
            (0, Subtime(1)),
            vec![
                // we can emit 3 parts before we hit the backpressure limit
                AssertOutputFrontier((51, Subtime(3))),
                AssertBackpressured {
                    frontier: (0, Subtime(1)),
                    inflight_parts: 3,
                    retired_parts: 0,
                },
                AssertBackpressured {
                    frontier: (50, Subtime(1)),
                    inflight_parts: 3,
                    retired_parts: 0,
                },
                // Retire the single part.
                ProcessXParts(1),
                AssertBackpressured {
                    frontier: (50, Subtime(2)),
                    inflight_parts: 3,
                    retired_parts: 1,
                },
                // Ensure we make progress, and then
                // can retire the next 2 parts.
                AssertOutputFrontier((52, Subtime(4))),
                ProcessXParts(2),
                AssertBackpressured {
                    frontier: (52, Subtime(4)),
                    inflight_parts: 3,
                    retired_parts: 2,
                },
            ],
            false,
        );
    }

    type Time = (u64, Subtime);
    #[derive(Clone, Debug)]
    struct Part(usize);
    impl Backpressureable for Part {
        fn byte_size(&self) -> usize {
            self.0
        }
    }

    /// Actions taken by `backpressure_runner`.
    enum Step {
        /// Assert that the output frontier of the `backpressure` operator has AT LEAST made it
        /// this far. This is a single time because we assume
        AssertOutputFrontier(Time),
        /// Assert that we have entered the backpressure flow in the `backpressure` operator. This
        /// allows us to assert what feedback frontier we got to, and how many inflight parts we
        /// retired.
        AssertBackpressured {
            frontier: Time,
            inflight_parts: usize,
            retired_parts: usize,
        },
        /// Process X parts in the downstream operator. This affects the feedback frontier.
        ProcessXParts(usize),
    }

    /// A function that runs the `steps` to ensure that `backpressure` works as expected.
    fn backpressure_runner(
        // The input data to the `backpressure` operator
        input: Vec<(u64, Part)>,
        // The maximum inflight bytes the `backpressure` operator allows through.
        max_inflight_bytes: usize,
        // The feedback summary used by the `backpressure` operator.
        summary: Time,
        // List of steps to run through.
        steps: Vec<Step>,
        // Whether or not to consume records in the non-granular scope. This is useful when the
        // `summary` is something like `(1, 0)`.
        non_granular_consumer: bool,
    ) {
        timely::execute::execute_directly(move |worker| {
            let (backpressure_probe, consumer_tx, mut backpressure_status_rx, finalizer_tx, _token) =
                // Set up the top-level non-granular scope.
                worker.dataflow::<u64, _, _>(|scope| {
                    let (non_granular_feedback_handle, non_granular_feedback) =
                        if non_granular_consumer {
                            let (h, f) = scope.feedback(Default::default());
                            (Some(h), Some(f))
                        } else {
                            (None, None)
                        };
                    let (
                        backpressure_probe,
                        consumer_tx,
                        backpressure_status_rx,
                        token,
                        backpressured,
                        finalizer_tx,
                    ) = scope.scoped::<(u64, Subtime), _, _>("hybrid", |scope| {
                        let (input, finalizer_tx) =
                            iterator_operator(scope.clone(), input.into_iter());

                        let (flow_control, granular_feedback_handle) = if non_granular_consumer {
                            (
                                FlowControl {
                                    progress_stream: non_granular_feedback.unwrap().enter(scope),
                                    max_inflight_bytes,
                                    summary,
                                    metrics: None
                                },
                                None,
                            )
                        } else {
                            let (granular_feedback_handle, granular_feedback) =
                                scope.feedback(Default::default());
                            (
                                FlowControl {
                                    progress_stream: granular_feedback,
                                    max_inflight_bytes,
                                    summary,
                                    metrics: None,
                                },
                                Some(granular_feedback_handle),
                            )
                        };

                        let (backpressure_status_tx, backpressure_status_rx) = unbounded_channel();

                        let (backpressured, token) = backpressure(
                            scope,
                            "test",
                            &input,
                            flow_control,
                            0,
                            Some(backpressure_status_tx),
                        );

                        // If we want to granularly consume the output, we setup the consumer here.
                        let tx = if !non_granular_consumer {
                            Some(consumer_operator(
                                scope.clone(),
                                &backpressured,
                                granular_feedback_handle.unwrap(),
                            ))
                        } else {
                            None
                        };

                        (
                            backpressured.probe(),
                            tx,
                            backpressure_status_rx,
                            token,
                            backpressured.leave(),
                            finalizer_tx,
                        )
                    });

                    // If we want to non-granularly consume the output, we setup the consumer here.
                    let consumer_tx = if non_granular_consumer {
                        consumer_operator(
                            scope.clone(),
                            &backpressured,
                            non_granular_feedback_handle.unwrap(),
                        )
                    } else {
                        consumer_tx.unwrap()
                    };

                    (
                        backpressure_probe,
                        consumer_tx,
                        backpressure_status_rx,
                        finalizer_tx,
                        token,
                    )
                });

            use Step::*;
            for step in steps {
                match step {
                    AssertOutputFrontier(time) => {
                        eprintln!("checking advance to {time:?}");
                        backpressure_probe.with_frontier(|front| {
                            eprintln!("current backpressure output frontier: {front:?}");
                        });
                        while backpressure_probe.less_than(&time) {
                            worker.step();
                            backpressure_probe.with_frontier(|front| {
                                eprintln!("current backpressure output frontier: {front:?}");
                            });
                            std::thread::sleep(std::time::Duration::from_millis(25));
                        }
                    }
                    ProcessXParts(parts) => {
                        eprintln!("processing {parts:?} parts");
                        for _ in 0..parts {
                            consumer_tx.send(()).unwrap();
                        }
                    }
                    AssertBackpressured {
                        frontier,
                        inflight_parts,
                        retired_parts,
                    } => {
                        let frontier = Antichain::from_elem(frontier);
                        eprintln!(
                            "asserting backpressured at {frontier:?}, with {inflight_parts:?} inflight parts \
                            and {retired_parts:?} retired"
                        );
                        let (new_frontier, new_count, new_retired_count) = loop {
                            if let Ok(val) = backpressure_status_rx.try_recv() {
                                break val;
                            }
                            worker.step();
                            std::thread::sleep(std::time::Duration::from_millis(25));
                        };
                        assert_eq!(
                            (frontier, inflight_parts, retired_parts),
                            (new_frontier, new_count, new_retired_count)
                        );
                    }
                }
            }
            // Send the input to the empty frontier.
            let _ = finalizer_tx.send(());
        });
    }

    /// An operator that emits `Part`'s at the specified timestamps. Does not
    /// drop its capability until it gets a signal from the `Sender` it returns.
    fn iterator_operator<
        G: Scope<Timestamp = (u64, Subtime)>,
        I: Iterator<Item = (u64, Part)> + 'static,
    >(
        scope: G,
        mut input: I,
    ) -> (Stream<G, Part>, oneshot::Sender<()>) {
        let (finalizer_tx, finalizer_rx) = oneshot::channel();
        let mut iterator = AsyncOperatorBuilder::new("iterator".to_string(), scope);
        let (output_handle, output) = iterator.new_output::<CapacityContainerBuilder<Vec<Part>>>();

        iterator.build(|mut caps| async move {
            let mut capability = Some(caps.pop().unwrap());
            let mut last = None;
            while let Some(element) = input.next() {
                let time = element.0.clone();
                let part = element.1;
                last = Some((time, Subtime(0)));
                output_handle.give(&capability.as_ref().unwrap().delayed(&last.unwrap()), part);
            }
            if let Some(last) = last {
                capability
                    .as_mut()
                    .unwrap()
                    .downgrade(&(last.0 + 1, last.1));
            }

            let _ = finalizer_rx.await;
            capability.take();
        });

        (output, finalizer_tx)
    }

    /// An operator that consumes its input ONLY when given a signal to do from
    /// the `UnboundedSender` it returns. Each `send` corresponds with 1 `Data` event
    /// being processed. Also connects the `feedback` handle to its output.
    fn consumer_operator<G: Scope, O: Backpressureable + std::fmt::Debug>(
        scope: G,
        input: &Stream<G, O>,
        feedback: timely::dataflow::operators::feedback::Handle<G, Vec<std::convert::Infallible>>,
    ) -> UnboundedSender<()> {
        let (tx, mut rx) = unbounded_channel::<()>();
        let mut consumer = AsyncOperatorBuilder::new("consumer".to_string(), scope);
        let (output_handle, output) =
            consumer.new_output::<CapacityContainerBuilder<Vec<std::convert::Infallible>>>();
        let mut input = consumer.new_input_for(input, Pipeline, &output_handle);

        consumer.build(|_caps| async move {
            while let Some(()) = rx.recv().await {
                // Consume exactly one messages (unless the input is exhausted).
                while let Some(Event::Progress(_)) = input.next().await {}
            }
        });
        output.connect_loop(feedback);

        tx
    }
}