1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`Index`] structures holding decoded [`ColumnIndex`] information
use crate::basic::Type;
use crate::data_type::private::ParquetValueType;
use crate::data_type::{AsBytes, ByteArray, FixedLenByteArray, Int96};
use crate::errors::ParquetError;
use crate::file::metadata::LevelHistogram;
use crate::format::{BoundaryOrder, ColumnIndex};
use std::fmt::Debug;
/// Typed statistics for one data page
///
/// See [`NativeIndex`] for more details
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct PageIndex<T> {
/// The minimum value, It is None when all values are null
pub min: Option<T>,
/// The maximum value, It is None when all values are null
pub max: Option<T>,
/// Null values in the page
pub null_count: Option<i64>,
/// Repetition level histogram for the page
///
/// `repetition_level_histogram[i]` is a count of how many values are at repetition level `i`.
/// For example, `repetition_level_histogram[0]` indicates how many rows the page contains.
pub repetition_level_histogram: Option<LevelHistogram>,
/// Definition level histogram for the page
///
/// `definition_level_histogram[i]` is a count of how many values are at definition level `i`.
/// For example, `definition_level_histogram[max_definition_level]` indicates how many
/// non-null values are present in the page.
pub definition_level_histogram: Option<LevelHistogram>,
}
impl<T> PageIndex<T> {
/// Returns the minimum value in the page
///
/// It is `None` when all values are null
pub fn min(&self) -> Option<&T> {
self.min.as_ref()
}
/// Returns the maximum value in the page
///
/// It is `None` when all values are null
pub fn max(&self) -> Option<&T> {
self.max.as_ref()
}
/// Returns the number of null values in the page
pub fn null_count(&self) -> Option<i64> {
self.null_count
}
/// Returns the repetition level histogram for the page
pub fn repetition_level_histogram(&self) -> Option<&LevelHistogram> {
self.repetition_level_histogram.as_ref()
}
/// Returns the definition level histogram for the page
pub fn definition_level_histogram(&self) -> Option<&LevelHistogram> {
self.definition_level_histogram.as_ref()
}
}
impl<T> PageIndex<T>
where
T: AsBytes,
{
/// Returns the minimum value in the page as bytes
///
/// It is `None` when all values are null
pub fn max_bytes(&self) -> Option<&[u8]> {
self.max.as_ref().map(|x| x.as_bytes())
}
/// Returns the maximum value in the page as bytes
///
/// It is `None` when all values are null
pub fn min_bytes(&self) -> Option<&[u8]> {
self.min.as_ref().map(|x| x.as_bytes())
}
}
#[derive(Debug, Clone, PartialEq)]
#[allow(non_camel_case_types)]
/// Statistics for data pages in a column chunk.
///
/// See [`NativeIndex`] for more information
pub enum Index {
/// Sometimes reading page index from parquet file
/// will only return pageLocations without min_max index,
/// `NONE` represents this lack of index information
NONE,
/// Boolean type index
BOOLEAN(NativeIndex<bool>),
/// 32-bit integer type index
INT32(NativeIndex<i32>),
/// 64-bit integer type index
INT64(NativeIndex<i64>),
/// 96-bit integer type (timestamp) index
INT96(NativeIndex<Int96>),
/// 32-bit floating point type index
FLOAT(NativeIndex<f32>),
/// 64-bit floating point type index
DOUBLE(NativeIndex<f64>),
/// Byte array type index
BYTE_ARRAY(NativeIndex<ByteArray>),
/// Fixed length byte array type index
FIXED_LEN_BYTE_ARRAY(NativeIndex<FixedLenByteArray>),
}
impl Index {
/// Return min/max elements inside ColumnIndex are ordered or not.
pub fn is_sorted(&self) -> bool {
// 0:UNORDERED, 1:ASCENDING ,2:DESCENDING,
if let Some(order) = self.get_boundary_order() {
order.0 > (BoundaryOrder::UNORDERED.0)
} else {
false
}
}
/// Get boundary_order of this page index.
pub fn get_boundary_order(&self) -> Option<BoundaryOrder> {
match self {
Index::NONE => None,
Index::BOOLEAN(index) => Some(index.boundary_order),
Index::INT32(index) => Some(index.boundary_order),
Index::INT64(index) => Some(index.boundary_order),
Index::INT96(index) => Some(index.boundary_order),
Index::FLOAT(index) => Some(index.boundary_order),
Index::DOUBLE(index) => Some(index.boundary_order),
Index::BYTE_ARRAY(index) => Some(index.boundary_order),
Index::FIXED_LEN_BYTE_ARRAY(index) => Some(index.boundary_order),
}
}
}
/// Strongly typed statistics for data pages in a column chunk.
///
/// This structure is a natively typed, in memory representation of the
/// [`ColumnIndex`] structure in a parquet file footer, as described in the
/// Parquet [PageIndex documentation]. The statistics stored in this structure
/// can be used by query engines to skip decoding pages while reading parquet
/// data.
///
/// # Differences with Row Group Level Statistics
///
/// One significant difference between `NativeIndex` and row group level
/// [`Statistics`] is that page level statistics may not store actual column
/// values as min and max (e.g. they may store truncated strings to save space)
///
/// [PageIndex documentation]: https://github.com/apache/parquet-format/blob/master/PageIndex.md
/// [`Statistics`]: crate::file::statistics::Statistics
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct NativeIndex<T: ParquetValueType> {
/// The actual column indexes, one item per page
pub indexes: Vec<PageIndex<T>>,
/// If the min/max elements are ordered, and if so in which
/// direction. See [source] for details.
///
/// [source]: https://github.com/apache/parquet-format/blob/bfc549b93e6927cb1fc425466e4084f76edc6d22/src/main/thrift/parquet.thrift#L959-L964
pub boundary_order: BoundaryOrder,
}
impl<T: ParquetValueType> NativeIndex<T> {
/// The physical data type of the column
pub const PHYSICAL_TYPE: Type = T::PHYSICAL_TYPE;
/// Creates a new [`NativeIndex`]
pub(crate) fn try_new(index: ColumnIndex) -> Result<Self, ParquetError> {
let len = index.min_values.len();
let null_counts = index
.null_counts
.map(|x| x.into_iter().map(Some).collect::<Vec<_>>())
.unwrap_or_else(|| vec![None; len]);
// histograms are a 1D array encoding a 2D num_pages X num_levels matrix.
let to_page_histograms = |opt_hist: Option<Vec<i64>>| {
if let Some(hist) = opt_hist {
// TODO: should we assert (hist.len() % len) == 0?
let num_levels = hist.len() / len;
let mut res = Vec::with_capacity(len);
for i in 0..len {
let page_idx = i * num_levels;
let page_hist = hist[page_idx..page_idx + num_levels].to_vec();
res.push(Some(LevelHistogram::from(page_hist)));
}
res
} else {
vec![None; len]
}
};
let rep_hists: Vec<Option<LevelHistogram>> =
to_page_histograms(index.repetition_level_histograms);
let def_hists: Vec<Option<LevelHistogram>> =
to_page_histograms(index.definition_level_histograms);
let indexes = index
.min_values
.iter()
.zip(index.max_values.iter())
.zip(index.null_pages.into_iter())
.zip(null_counts.into_iter())
.zip(rep_hists.into_iter())
.zip(def_hists.into_iter())
.map(
|(
((((min, max), is_null), null_count), repetition_level_histogram),
definition_level_histogram,
)| {
let (min, max) = if is_null {
(None, None)
} else {
(
Some(T::try_from_le_slice(min)?),
Some(T::try_from_le_slice(max)?),
)
};
Ok(PageIndex {
min,
max,
null_count,
repetition_level_histogram,
definition_level_histogram,
})
},
)
.collect::<Result<Vec<_>, ParquetError>>()?;
Ok(Self {
indexes,
boundary_order: index.boundary_order,
})
}
pub(crate) fn to_thrift(&self) -> ColumnIndex {
let min_values = self
.indexes
.iter()
.map(|x| x.min_bytes().unwrap_or(&[]).to_vec())
.collect::<Vec<_>>();
let max_values = self
.indexes
.iter()
.map(|x| x.max_bytes().unwrap_or(&[]).to_vec())
.collect::<Vec<_>>();
let null_counts = self
.indexes
.iter()
.map(|x| x.null_count())
.collect::<Option<Vec<_>>>();
// Concatenate page histograms into a single Option<Vec>
let repetition_level_histograms = self
.indexes
.iter()
.map(|x| x.repetition_level_histogram().map(|v| v.values()))
.collect::<Option<Vec<&[i64]>>>()
.map(|hists| hists.concat());
let definition_level_histograms = self
.indexes
.iter()
.map(|x| x.definition_level_histogram().map(|v| v.values()))
.collect::<Option<Vec<&[i64]>>>()
.map(|hists| hists.concat());
ColumnIndex::new(
self.indexes.iter().map(|x| x.min().is_none()).collect(),
min_values,
max_values,
self.boundary_order,
null_counts,
repetition_level_histograms,
definition_level_histograms,
)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_page_index_min_max_null() {
let page_index = PageIndex {
min: Some(-123),
max: Some(234),
null_count: Some(0),
repetition_level_histogram: Some(LevelHistogram::from(vec![1, 2])),
definition_level_histogram: Some(LevelHistogram::from(vec![1, 2, 3])),
};
assert_eq!(page_index.min().unwrap(), &-123);
assert_eq!(page_index.max().unwrap(), &234);
assert_eq!(page_index.min_bytes().unwrap(), (-123).as_bytes());
assert_eq!(page_index.max_bytes().unwrap(), 234.as_bytes());
assert_eq!(page_index.null_count().unwrap(), 0);
assert_eq!(
page_index.repetition_level_histogram().unwrap().values(),
&vec![1, 2]
);
assert_eq!(
page_index.definition_level_histogram().unwrap().values(),
&vec![1, 2, 3]
);
}
#[test]
fn test_page_index_min_max_null_none() {
let page_index: PageIndex<i32> = PageIndex {
min: None,
max: None,
null_count: None,
repetition_level_histogram: None,
definition_level_histogram: None,
};
assert_eq!(page_index.min(), None);
assert_eq!(page_index.max(), None);
assert_eq!(page_index.min_bytes(), None);
assert_eq!(page_index.max_bytes(), None);
assert_eq!(page_index.null_count(), None);
assert_eq!(page_index.repetition_level_histogram(), None);
assert_eq!(page_index.definition_level_histogram(), None);
}
#[test]
fn test_invalid_column_index() {
let column_index = ColumnIndex {
null_pages: vec![true, false],
min_values: vec![
vec![],
vec![], // this shouldn't be empty as null_pages[1] is false
],
max_values: vec![
vec![],
vec![], // this shouldn't be empty as null_pages[1] is false
],
null_counts: None,
repetition_level_histograms: None,
definition_level_histograms: None,
boundary_order: BoundaryOrder::UNORDERED,
};
let err = NativeIndex::<i32>::try_new(column_index).unwrap_err();
assert_eq!(
err.to_string(),
"Parquet error: error converting value, expected 4 bytes got 0"
);
}
}