1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Region-allocated data utilities.

use std::fmt::{Debug, Formatter};
use std::mem::ManuallyDrop;
use std::ops::{Deref, DerefMut};

/// A region allocator which holds items at stable memory locations.
///
/// Items once inserted will not be moved, and their locations in memory
/// can be relied on by others, until the region is cleared.
///
/// This type accepts owned data, rather than references, and does not
/// itself intend to implement `Region`. Rather, it is a useful building
/// block for other less-safe code that wants allocated data to remain at
/// fixed memory locations.
pub struct LgAllocRegion<T> {
    /// The active allocation into which we are writing.
    local: Region<T>,
    /// All previously active allocations.
    stash: Vec<Region<T>>,
    /// The maximum allocation size
    limit: usize,
}

// Manually implement `Default` as `T` may not implement it.
impl<T> Default for LgAllocRegion<T> {
    fn default() -> Self {
        Self {
            local: Default::default(),
            stash: Vec::new(),
            limit: usize::MAX,
        }
    }
}

impl<T> Debug for LgAllocRegion<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("LgAllocRegion")
            .field("limit", &self.limit)
            .finish_non_exhaustive()
    }
}

impl<T> LgAllocRegion<T> {
    /// Construct a [LgAllocRegion] with a allocation size limit.
    pub fn with_limit(limit: usize) -> Self {
        Self {
            local: Default::default(),
            stash: Default::default(),
            limit,
        }
    }

    /// Clears the contents without dropping any elements.
    #[inline]
    pub fn clear(&mut self) {
        unsafe {
            // Unsafety justified in that setting the length to zero exposes
            // no invalid data.
            self.local.clear();
            // Release allocations in `stash` without dropping their elements.
            self.stash.clear()
        }
    }
    /// Copies an iterator of items into the region.
    #[inline]
    pub fn copy_iter<I>(&mut self, items: I) -> &mut [T]
    where
        I: Iterator<Item = T> + std::iter::ExactSizeIterator,
    {
        self.reserve(items.len());
        let initial_len = self.local.len();
        self.local.extend(items);
        &mut self.local[initial_len..]
    }
    /// Copies a slice of cloneable items into the region.
    #[inline]
    pub fn copy_slice(&mut self, items: &[T]) -> &mut [T]
    where
        T: Clone,
    {
        self.reserve(items.len());
        let initial_len = self.local.len();
        self.local.extend_from_slice(items);
        &mut self.local[initial_len..]
    }

    /// Ensures that there is space in `self.local` to copy at least `count` items.
    #[inline(always)]
    pub fn reserve(&mut self, count: usize) {
        // Check if `item` fits into `self.local` without reallocation.
        // If not, stash `self.local` and increase the allocation.
        if count > self.local.capacity() - self.local.len() {
            // Increase allocated capacity in powers of two.
            // We could choose a different rule here if we wanted to be
            // more conservative with memory (e.g. page size allocations).
            let mut next_len = (self.local.capacity() + 1).next_power_of_two();
            next_len = std::cmp::min(next_len, self.limit);
            next_len = std::cmp::max(count, next_len);
            let new_local = Region::new_auto(next_len);
            if !self.local.is_empty() {
                self.stash.push(std::mem::take(&mut self.local));
            }
            self.local = new_local;
        }
    }

    /// Allocates a new `Self` that can accept `count` items without reallocation.
    pub fn with_capacity(count: usize) -> Self {
        let mut region = Self::default();
        region.reserve(count);
        region
    }

    /// The number of items current held in the region.
    pub fn len(&self) -> usize {
        self.local.len() + self.stash.iter().map(|r| r.len()).sum::<usize>()
    }

    /// Visit contained allocations to determine their size and capacity.
    #[inline]
    pub fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
        // Calculate heap size for local, stash, and stash entries
        let size_of_t = std::mem::size_of::<T>();
        callback(
            self.local.len() * size_of_t,
            self.local.capacity() * size_of_t,
        );
        callback(
            self.stash.len() * std::mem::size_of::<Vec<T>>(),
            self.stash.capacity() * std::mem::size_of::<Vec<T>>(),
        );
        for stash in &self.stash {
            callback(stash.len() * size_of_t, stash.capacity() * size_of_t);
        }
    }
}

/// An abstraction over different kinds of allocated regions.
///
/// # WARNING
///
/// The implementation does not drop its elements, but forgets them instead. Do not use where
/// this is not intended, i.e., outside `Copy` types or columnation regions.
///
/// NOTE: We plan to deprecate this type soon. Users should switch to different types or the raw
/// `lgalloc` API instead.
#[derive(Debug)]
pub enum Region<T> {
    /// A possibly empty heap-allocated region, represented as a vector.
    Heap(Vec<T>),
    /// A mmaped region, represented by a vector and its backing memory mapping.
    MMap(MMapRegion<T>),
}

/// Type encapsulating private data for memory-mapped regions.
pub struct MMapRegion<T> {
    /// Vector-representation of the underlying memory. Must not be dropped.
    inner: ManuallyDrop<Vec<T>>,
    /// Opaque handle to lgalloc.
    handle: Option<lgalloc::Handle>,
}

impl<T> MMapRegion<T> {
    /// Clear the contents of this region without dropping elements.
    unsafe fn clear(&mut self) {
        self.inner.set_len(0);
    }
}

impl<T: Debug> Debug for MMapRegion<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("MMapRegion")
            .field("inner", &self.inner)
            .finish_non_exhaustive()
    }
}

impl<T> Deref for MMapRegion<T> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<T> Default for Region<T> {
    #[inline]
    fn default() -> Self {
        Self::new_empty()
    }
}

impl<T> Region<T> {
    /// Create a new empty region.
    #[inline]
    #[must_use]
    pub fn new_empty() -> Region<T> {
        Region::Heap(Vec::new())
    }

    /// Create a new heap-allocated region of a specific capacity.
    #[inline]
    #[must_use]
    pub fn new_heap(capacity: usize) -> Region<T> {
        Region::Heap(Vec::with_capacity(capacity))
    }

    /// Create a new file-based mapped region of a specific capacity. The capacity of the
    /// returned region can be larger than requested to accommodate page sizes.
    ///
    /// # Errors
    ///
    /// Returns an error if the memory allocation fails.
    #[inline(always)]
    pub fn new_mmap(capacity: usize) -> Result<Region<T>, lgalloc::AllocError> {
        lgalloc::allocate(capacity).map(|(ptr, capacity, handle)| {
            // SAFETY: `ptr` points to suitable memory.
            // It is UB to call `from_raw_parts` with a pointer not allocated from the global
            // allocator, but we accept this here because we promise never to reallocate the vector.
            let inner =
                ManuallyDrop::new(unsafe { Vec::from_raw_parts(ptr.as_ptr(), 0, capacity) });
            let handle = Some(handle);
            Region::MMap(MMapRegion { inner, handle })
        })
    }

    /// Create a region depending on the capacity.
    ///
    /// The capacity of the returned region must be at least as large as the requested capacity,
    /// but can be larger if the implementation requires it.
    ///
    /// Returns a [`Region::MMap`] if possible, and falls back to [`Region::Heap`] otherwise.
    #[must_use]
    pub fn new_auto(capacity: usize) -> Region<T> {
        match Region::new_mmap(capacity) {
            Ok(r) => return r,
            Err(lgalloc::AllocError::Disabled) | Err(lgalloc::AllocError::InvalidSizeClass(_)) => {}
            Err(e) => {
                eprintln!("lgalloc error: {e}, falling back to heap");
            }
        }
        // Fall-through
        Region::new_heap(capacity)
    }

    /// Clears the contents of the region, without dropping its elements.
    ///
    /// # Safety
    ///
    /// Discards all contends. Elements are not dropped.
    #[inline]
    pub unsafe fn clear(&mut self) {
        match self {
            Region::Heap(vec) => vec.set_len(0),
            Region::MMap(inner) => inner.clear(),
        }
    }

    /// Returns the capacity of the underlying allocation.
    #[inline]
    #[must_use]
    pub fn capacity(&self) -> usize {
        match self {
            Region::Heap(vec) => vec.capacity(),
            Region::MMap(inner) => inner.inner.capacity(),
        }
    }

    /// Returns the number of elements in the allocation.
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        match self {
            Region::Heap(vec) => vec.len(),
            Region::MMap(inner) => inner.len(),
        }
    }

    /// Returns true if the region does not contain any elements.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        match self {
            Region::Heap(vec) => vec.is_empty(),
            Region::MMap(inner) => inner.is_empty(),
        }
    }

    /// Dereference to the contained vector
    #[inline]
    #[must_use]
    pub fn as_vec(&self) -> &Vec<T> {
        match self {
            Region::Heap(vec) => vec,
            Region::MMap(inner) => &inner.inner,
        }
    }

    /// Extend the underlying region from the iterator.
    ///
    /// Care must be taken to not re-allocate the inner vector representation.
    #[inline]
    pub fn extend<I: IntoIterator<Item = T> + ExactSizeIterator>(&mut self, iter: I) {
        assert!(self.capacity() - self.len() >= iter.len());
        // SAFETY: We just asserted that we have sufficient capacity.
        unsafe { self.as_mut_vec().extend(iter) };
    }

    /// Obtain a mutable reference to the inner vector representation.
    ///
    /// Unsafe because the caller has to make sure that the vector will not reallocate.
    /// Otherwise, the vector representation could try to reallocate the underlying memory
    /// using the global allocator, which would cause problems because the memory might not
    /// have originated from it. This is undefined behavior.
    #[inline]
    unsafe fn as_mut_vec(&mut self) -> &mut Vec<T> {
        match self {
            Region::Heap(vec) => vec,
            Region::MMap(inner) => &mut inner.inner,
        }
    }
}

impl<T: Clone> Region<T> {
    /// Extend the region from a slice.
    ///
    /// Panics if the region does not have sufficient capacity.
    #[inline]
    pub fn extend_from_slice(&mut self, slice: &[T]) {
        assert!(self.capacity() - self.len() >= slice.len());
        // SAFETY: We just asserted that we have enough capacity.
        unsafe { self.as_mut_vec() }.extend_from_slice(slice);
    }
}

impl<T> Deref for Region<T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_vec()
    }
}

impl<T> DerefMut for Region<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY: We're dereferencing to `&mut [T]`, which does not allow reallocating the
        // underlying allocation, which makes it safe.
        unsafe { self.as_mut_vec().as_mut_slice() }
    }
}

impl<T> Drop for Region<T> {
    #[inline]
    fn drop(&mut self) {
        match self {
            Region::Heap(vec) => {
                // SAFETY: Don't drop the elements, drop the vec, in line with the documentation
                // of the `Region` type.
                unsafe { vec.set_len(0) }
            }
            Region::MMap(_) => {}
        }
    }
}

impl<T> Drop for MMapRegion<T> {
    fn drop(&mut self) {
        // Similar to dropping Region: Drop the allocation, don't drop the `inner` vector.
        lgalloc::deallocate(self.handle.take().unwrap());
    }
}