1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Retry utilities.
//!
//! This module provides an API for retrying fallible asynchronous operations
//! until they succeed or until some criteria for giving up has been reached,
//! using exponential backoff between retries.
//!
//! # Examples
//!
//! Retry a contrived fallible operation until it succeeds:
//!
//! ```
//! use std::time::Duration;
//! use mz_ore::retry::Retry;
//!
//! let res = Retry::default().retry(|state| {
//! if state.i == 3 {
//! Ok(())
//! } else {
//! Err("contrived failure")
//! }
//! });
//! assert_eq!(res, Ok(()));
//! ```
//!
//! Limit the number of retries such that success is never observed:
//!
//! ```
//! use std::time::Duration;
//! use mz_ore::retry::Retry;
//!
//! let res = Retry::default().max_tries(2).retry(|state| {
//! if state.i == 3 {
//! Ok(())
//! } else {
//! Err("contrived failure")
//! }
//! });
//! assert_eq!(res, Err("contrived failure"));
//! ```
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::{cmp, thread};
use futures::{ready, Stream, StreamExt};
use pin_project::pin_project;
use tokio::io::{AsyncRead, ReadBuf};
use tokio::time::error::Elapsed;
use tokio::time::{self, Duration, Instant, Sleep};
/// The state of a retry operation constructed with [`Retry`].
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct RetryState {
/// The retry counter, starting from zero on the first try.
pub i: usize,
/// The duration that the retry operation will sleep for before the next
/// retry if this try fails.
///
/// If this is the last attempt, then this field will be `None`.
pub next_backoff: Option<Duration>,
}
/// The result of a retryable operation.
#[derive(Debug)]
pub enum RetryResult<T, E> {
/// The operation was successful and does not need to be retried.
Ok(T),
/// The operation was unsuccessful but can be retried.
RetryableErr(E),
/// The operation was unsuccessful but cannot be retried.
FatalErr(E),
}
impl<T, E> From<Result<T, E>> for RetryResult<T, E> {
fn from(res: Result<T, E>) -> RetryResult<T, E> {
match res {
Ok(t) => RetryResult::Ok(t),
Err(e) => RetryResult::RetryableErr(e),
}
}
}
/// Configures a retry operation.
///
/// See the [module documentation](self) for usage examples.
#[pin_project]
#[derive(Debug)]
pub struct Retry {
initial_backoff: Duration,
factor: f64,
clamp_backoff: Duration,
max_duration: Duration,
max_tries: usize,
}
impl Retry {
/// Sets the initial backoff for the retry operation.
///
/// The initial backoff is the amount of time to wait if the first try
/// fails.
pub fn initial_backoff(mut self, initial_backoff: Duration) -> Self {
self.initial_backoff = initial_backoff;
self
}
/// Clamps the maximum backoff for the retry operation.
///
/// The maximum backoff is the maximum amount of time to wait between tries.
pub fn clamp_backoff(mut self, clamp_backoff: Duration) -> Self {
self.clamp_backoff = clamp_backoff;
self
}
/// Sets the exponential backoff factor for the retry operation.
///
/// The time to wait is multiplied by this factor after each failed try. The
/// default factor is two.
pub fn factor(mut self, factor: f64) -> Self {
self.factor = factor;
self
}
/// Sets the maximum number of tries.
///
/// If the operation is still failing after `max_tries`, then
/// [`retry`](Retry::retry) will return the last error.
///
/// Calls to `max_tries` will override any previous calls to `max_tries`.
///
/// # Panics
///
/// Panics if `max_tries` is zero.
pub fn max_tries(mut self, max_tries: usize) -> Self {
if max_tries == 0 {
panic!("max tries must be greater than zero");
}
self.max_tries = max_tries;
self
}
/// Sets the maximum duration.
///
/// If the operation is still failing after the specified `duration`, then
/// the operation will be retried once more and [`retry`](Retry::retry) will
/// return the last error.
///
/// Calls to `max_duration` will override any previous calls to
/// `max_duration`.
pub fn max_duration(mut self, duration: Duration) -> Self {
self.max_duration = duration;
self
}
/// Retries the fallible operation `f` according to the configured policy.
///
/// The `retry` method invokes `f` repeatedly until it returns either
/// [`RetryResult::Ok`] or [`RetryResult::FatalErr`], or until the maximum
/// duration or tries have been reached, as configured via
/// [`max_duration`](Retry::max_duration) or
/// [`max_tries`](Retry::max_tries). If the last invocation of `f` returns
/// `RetryResult::Ok(t)`, then `retry` returns `Ok(t)`. If the last
/// invocation of `f` returns `RetryResult::RetriableErr(e)` or
/// `RetryResult::FatalErr(e)`, then `retry` returns `Err(e)`.
///
/// As a convenience, `f` can return any type that is convertible to a
/// `RetryResult`. The conversion from [`Result`] to `RetryResult` converts
/// `Err(e)` to `RetryResult::RetryableErr(e)`, that is, it considers all
/// errors retryable.
///
/// After the first failure, `retry` sleeps for the initial backoff
/// configured via [`initial_backoff`](Retry::initial_backoff). After each
/// successive failure, `retry` sleeps for twice the last backoff. If the
/// backoff would ever exceed the maximum backoff configured viq
/// [`Retry::clamp_backoff`], then the backoff is clamped to the specified
/// maximum.
///
/// The operation does not attempt to forcibly time out `f`, even if there
/// is a maximum duration. If there is the possibility of `f` blocking
/// forever, consider adding a timeout internally.
pub fn retry<F, R, T, E>(self, mut f: F) -> Result<T, E>
where
F: FnMut(RetryState) -> R,
R: Into<RetryResult<T, E>>,
{
let start = Instant::now();
let mut i = 0;
let mut next_backoff = Some(cmp::min(self.initial_backoff, self.clamp_backoff));
loop {
let elapsed = start.elapsed();
if elapsed > self.max_duration || i + 1 >= self.max_tries {
next_backoff = None;
} else if elapsed + next_backoff.unwrap() > self.max_duration {
next_backoff = Some(self.max_duration - elapsed);
}
let state = RetryState { i, next_backoff };
match f(state).into() {
RetryResult::Ok(t) => return Ok(t),
RetryResult::FatalErr(e) => return Err(e),
RetryResult::RetryableErr(e) => match &mut next_backoff {
None => return Err(e),
Some(next_backoff) => {
thread::sleep(*next_backoff);
*next_backoff =
cmp::min(next_backoff.mul_f64(self.factor), self.clamp_backoff);
}
},
}
i += 1;
}
}
/// Like [`Retry::retry`] but for asynchronous operations.
pub async fn retry_async<F, U, R, T, E>(self, mut f: F) -> Result<T, E>
where
F: FnMut(RetryState) -> U,
U: Future<Output = R>,
R: Into<RetryResult<T, E>>,
{
let stream = self.into_retry_stream();
tokio::pin!(stream);
let mut err = None;
while let Some(state) = stream.next().await {
match f(state).await.into() {
RetryResult::Ok(v) => return Ok(v),
RetryResult::FatalErr(e) => return Err(e),
RetryResult::RetryableErr(e) => err = Some(e),
}
}
Err(err.expect("retry produces at least one element"))
}
/// Like [`Retry::retry_async`] but the operation will be canceled if the
/// maximum duration is reached.
///
/// Specifically, if the maximum duration is reached, the operation `f` will
/// be forcibly canceled by dropping it. Canceling `f` can be surprising if
/// the operation is not programmed to expect the possibility of not
/// resuming from an `await` point; if you wish to always run `f` to
/// completion, use [`Retry::retry_async`] instead.
///
/// If `f` is forcibly canceled, the error returned will be the error
/// returned by the prior invocation of `f`. If there is no prior invocation
/// of `f`, then an `Elapsed` error is returned. The idea is that if `f`
/// fails three times in a row with a useful error message, and then the
/// fourth attempt is canceled because the timeout is reached, the caller
/// would rather see the useful error message from the third attempt, rather
/// than the "deadline exceeded" message from the fourth attempt.
pub async fn retry_async_canceling<F, U, T, E>(self, mut f: F) -> Result<T, E>
where
F: FnMut(RetryState) -> U,
U: Future<Output = Result<T, E>>,
E: From<Elapsed> + std::fmt::Debug,
{
let start = Instant::now();
let max_duration = self.max_duration;
let stream = self.into_retry_stream();
tokio::pin!(stream);
let mut err = None;
while let Some(state) = stream.next().await {
let fut = time::timeout(max_duration.saturating_sub(start.elapsed()), f(state));
match fut.await {
Ok(Ok(t)) => return Ok(t),
Ok(Err(e)) => err = Some(e),
Err(e) => return Err(err.unwrap_or_else(|| e.into())),
}
}
Err(err.expect("retry produces at least one element"))
}
/// Like [`Retry::retry_async`] but can pass around user specified state.
pub async fn retry_async_with_state<F, S, U, R, T, E>(
self,
mut user_state: S,
mut f: F,
) -> (S, Result<T, E>)
where
F: FnMut(RetryState, S) -> U,
U: Future<Output = (S, R)>,
R: Into<RetryResult<T, E>>,
{
let stream = self.into_retry_stream();
tokio::pin!(stream);
let mut err = None;
while let Some(retry_state) = stream.next().await {
let (s, r) = f(retry_state, user_state).await;
match r.into() {
RetryResult::Ok(v) => return (s, Ok(v)),
RetryResult::FatalErr(e) => return (s, Err(e)),
RetryResult::RetryableErr(e) => {
err = Some(e);
user_state = s;
}
}
}
(
user_state,
Err(err.expect("retry produces at least one element")),
)
}
/// Convert into [`RetryStream`]
pub fn into_retry_stream(self) -> RetryStream {
RetryStream {
retry: self,
start: Instant::now(),
i: 0,
next_backoff: None,
sleep: time::sleep(Duration::default()),
}
}
}
impl Default for Retry {
/// Constructs a retry operation that will retry forever with backoff
/// defaults that are reasonable for a fallible network operation.
fn default() -> Self {
Retry {
initial_backoff: Duration::from_millis(125),
factor: 2.0,
clamp_backoff: Duration::MAX,
max_tries: usize::MAX,
max_duration: Duration::MAX,
}
}
}
/// Opaque type representing the stream of retries that continues to back off.
#[pin_project]
#[derive(Debug)]
pub struct RetryStream {
retry: Retry,
start: Instant,
i: usize,
next_backoff: Option<Duration>,
#[pin]
sleep: Sleep,
}
impl RetryStream {
fn reset(self: Pin<&mut Self>) {
let this = self.project();
*this.start = Instant::now();
*this.i = 0;
*this.next_backoff = None;
}
}
impl Stream for RetryStream {
type Item = RetryState;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
let retry = this.retry;
match this.next_backoff {
None if *this.i == 0 => {
*this.next_backoff = Some(cmp::min(retry.initial_backoff, retry.clamp_backoff));
}
None => return Poll::Ready(None),
Some(next_backoff) => {
ready!(this.sleep.as_mut().poll(cx));
*next_backoff = cmp::min(next_backoff.mul_f64(retry.factor), retry.clamp_backoff);
}
}
let elapsed = this.start.elapsed();
if elapsed > retry.max_duration || *this.i + 1 >= retry.max_tries {
*this.next_backoff = None;
} else if elapsed + this.next_backoff.unwrap() > retry.max_duration {
*this.next_backoff = Some(retry.max_duration - elapsed);
}
let state = RetryState {
i: *this.i,
next_backoff: *this.next_backoff,
};
if let Some(d) = *this.next_backoff {
this.sleep.reset(Instant::now() + d);
}
*this.i += 1;
Poll::Ready(Some(state))
}
}
/// Wrapper of a `Reader` factory that will automatically retry and resume reading an underlying
/// resource in the events of errors according to a retry schedule.
#[pin_project]
#[derive(Debug)]
pub struct RetryReader<F, U, R> {
factory: F,
offset: usize,
error: Option<std::io::Error>,
#[pin]
retry: RetryStream,
#[pin]
state: RetryReaderState<U, R>,
}
#[pin_project(project = RetryReaderStateProj)]
#[derive(Debug)]
enum RetryReaderState<U, R> {
Waiting,
Creating(#[pin] U),
Reading(#[pin] R),
}
impl<F, U, R> RetryReader<F, U, R>
where
F: FnMut(RetryState, usize) -> U,
U: Future<Output = Result<R, std::io::Error>>,
R: AsyncRead,
{
/// Uses the provided `Reader` factory to construct a `RetryReader` with the default `Retry`
/// settings.
///
/// The factory will be called once at the beginning and subsequently every time a retry
/// attempt is made. The factory will be called with a single `usize` argument representing the
/// offset at which the returned `Reader` should resume reading from.
pub fn new(factory: F) -> Self {
Self::with_retry(factory, Retry::default())
}
/// Uses the provided `Reader` factory to construct a `RetryReader` with the passed `Retry`
/// settings. See the documentation of [RetryReader::new] for more details.
pub fn with_retry(factory: F, retry: Retry) -> Self {
Self {
factory,
offset: 0,
error: None,
retry: retry.into_retry_stream(),
state: RetryReaderState::Waiting,
}
}
}
impl<F, U, R> AsyncRead for RetryReader<F, U, R>
where
F: FnMut(RetryState, usize) -> U,
U: Future<Output = Result<R, std::io::Error>>,
R: AsyncRead,
{
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<(), std::io::Error>> {
loop {
let mut this = self.as_mut().project();
use RetryReaderState::*;
match this.state.as_mut().project() {
RetryReaderStateProj::Waiting => match ready!(this.retry.as_mut().poll_next(cx)) {
None => {
return Poll::Ready(Err(this
.error
.take()
.expect("retry produces at least one element")))
}
Some(state) => {
this.state
.set(Creating((*this.factory)(state, *this.offset)));
}
},
RetryReaderStateProj::Creating(reader_fut) => match ready!(reader_fut.poll(cx)) {
Ok(reader) => {
this.state.set(Reading(reader));
}
Err(err) => {
*this.error = Some(err);
this.state.set(Waiting);
}
},
RetryReaderStateProj::Reading(reader) => {
let filled_end = buf.filled().len();
match ready!(reader.poll_read(cx, buf)) {
Ok(()) => {
if let Some(_) = this.error.take() {
this.retry.reset();
}
*this.offset += buf.filled().len() - filled_end;
return Poll::Ready(Ok(()));
}
Err(err) => {
*this.error = Some(err);
this.state.set(Waiting);
}
}
}
}
}
}
}
#[cfg(test)]
mod tests {
use anyhow::{anyhow, bail};
use super::*;
#[crate::test]
fn test_retry_success() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.retry(|state| {
states.push(state);
if state.i == 2 {
Ok(())
} else {
Err::<(), _>("injected")
}
});
assert_eq!(res, Ok(()));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
RetryState {
i: 2,
next_backoff: Some(Duration::from_millis(4))
},
]
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_success() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.retry_async(|state| {
states.push(state);
async move {
if state.i == 2 {
Ok(())
} else {
Err::<(), _>("injected")
}
}
})
.await;
assert_eq!(res, Ok(()));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
RetryState {
i: 2,
next_backoff: Some(Duration::from_millis(4))
},
]
);
}
#[crate::test(tokio::test)]
async fn test_retry_fatal() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.retry(|state| {
states.push(state);
if state.i == 0 {
RetryResult::RetryableErr::<(), _>("retry me")
} else {
RetryResult::FatalErr("injected")
}
});
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
]
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_fatal() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.retry_async(|state| {
states.push(state);
async move {
if state.i == 0 {
RetryResult::RetryableErr::<(), _>("retry me")
} else {
RetryResult::FatalErr("injected")
}
}
})
.await;
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
]
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_fail_max_tries() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.max_tries(3)
.retry(|state| {
states.push(state);
Err::<(), _>("injected")
});
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
RetryState {
i: 2,
next_backoff: None
},
]
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_fail_max_tries() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.max_tries(3)
.retry_async(|state| {
states.push(state);
async { Err::<(), _>("injected") }
})
.await;
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(2))
},
RetryState {
i: 2,
next_backoff: None
},
]
);
}
#[crate::test]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
fn test_retry_fail_max_duration() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(10))
.max_duration(Duration::from_millis(20))
.retry(|state| {
states.push(state);
Err::<(), _>("injected")
});
assert_eq!(res, Err("injected"));
// The first try should indicate a next backoff of exactly 10ms.
assert_eq!(
states[0],
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(10))
},
);
// The next try should indicate a next backoff of between 0 and 10ms. The
// exact value depends on how long it took for the first try itself to
// execute.
assert_eq!(states[1].i, 1);
let backoff = states[1].next_backoff.unwrap();
assert!(backoff > Duration::from_millis(0) && backoff < Duration::from_millis(10));
// The final try should indicate that the operation is complete with
// a next backoff of None.
assert_eq!(
states[2],
RetryState {
i: 2,
next_backoff: None,
},
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
#[ignore] // TODO: Reenable when database-issues#7441 is fixed
async fn test_retry_async_fail_max_duration() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(5))
.max_duration(Duration::from_millis(10))
.retry_async(|state| {
states.push(state);
async { Err::<(), _>("injected") }
})
.await;
assert_eq!(res, Err("injected"));
// The first try should indicate a next backoff of exactly 5ms.
assert_eq!(
states[0],
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(5))
},
);
// The next try should indicate a next backoff of between 0 (None) and 5ms. The
// exact value depends on how long it took for the first try itself to
// execute.
assert_eq!(states[1].i, 1);
assert!(match states[1].next_backoff {
None => true,
Some(backoff) =>
backoff > Duration::from_millis(0) && backoff < Duration::from_millis(5),
});
// The final try should indicate that the operation is complete with
// a next backoff of None.
assert_eq!(
states[2],
RetryState {
i: 2,
next_backoff: None,
},
);
}
#[crate::test]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
fn test_retry_fail_clamp_backoff() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.clamp_backoff(Duration::from_millis(1))
.max_tries(4)
.retry(|state| {
states.push(state);
Err::<(), _>("injected")
});
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 2,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 3,
next_backoff: None
},
]
);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_fail_clamp_backoff() {
let mut states = vec![];
let res = Retry::default()
.initial_backoff(Duration::from_millis(1))
.clamp_backoff(Duration::from_millis(1))
.max_tries(4)
.retry_async(|state| {
states.push(state);
async { Err::<(), _>("injected") }
})
.await;
assert_eq!(res, Err("injected"));
assert_eq!(
states,
&[
RetryState {
i: 0,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 1,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 2,
next_backoff: Some(Duration::from_millis(1))
},
RetryState {
i: 3,
next_backoff: None
},
]
);
}
/// Test that canceling retry operations surface the last error when the
/// underlying future is not explicitly timed out.
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_canceling_uncanceled_failure() {
let res = Retry::default()
.max_duration(Duration::from_millis(100))
.retry_async_canceling(|_| async move { Err::<(), _>(anyhow!("injected")) })
.await;
assert_eq!(res.unwrap_err().to_string(), "injected");
}
/// Test that canceling retry operations surface the last error when the
/// underlying future *is* not explicitly timed out.
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_canceling_canceled_failure() {
let res = Retry::default()
.max_duration(Duration::from_millis(100))
.retry_async_canceling(|state| async move {
if state.i == 0 {
bail!("injected")
} else {
time::sleep(Duration::MAX).await;
Ok(())
}
})
.await;
assert_eq!(res.unwrap_err().to_string(), "injected");
}
/// Test that the "deadline has elapsed" error is surfaced when there is
/// no other error to surface.
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_canceling_canceled_first_failure() {
let res = Retry::default()
.max_duration(Duration::from_millis(100))
.retry_async_canceling(|_| async move {
time::sleep(Duration::MAX).await;
Ok::<_, anyhow::Error>(())
})
.await;
assert_eq!(res.unwrap_err().to_string(), "deadline has elapsed");
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_reader() {
use tokio::io::AsyncReadExt;
/// Reader that errors out after the first read
struct FlakyReader {
offset: usize,
should_error: bool,
}
impl AsyncRead for FlakyReader {
fn poll_read(
mut self: Pin<&mut Self>,
_: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<Result<(), std::io::Error>> {
if self.should_error {
Poll::Ready(Err(std::io::ErrorKind::ConnectionReset.into()))
} else if self.offset < 256 {
buf.put_slice(&[b'A']);
self.should_error = true;
Poll::Ready(Ok(()))
} else {
Poll::Ready(Ok(()))
}
}
}
let reader = RetryReader::new(|_state, offset| async move {
Ok(FlakyReader {
offset,
should_error: false,
})
});
tokio::pin!(reader);
let mut data = Vec::new();
reader.read_to_end(&mut data).await.unwrap();
assert_eq!(data, vec![b'A'; 256]);
}
#[crate::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: cannot write to event
async fn test_retry_async_state() {
struct S {
i: i64,
}
impl S {
#[allow(clippy::unused_async)]
async fn try_inc(&mut self) -> Result<i64, ()> {
self.i += 1;
if self.i > 10 {
Ok(self.i)
} else {
Err(())
}
}
}
let s = S { i: 0 };
let (_new_s, res) = Retry::default()
.max_tries(10)
.clamp_backoff(Duration::from_nanos(0))
.retry_async_with_state(s, |_, mut s| async {
let res = s.try_inc().await;
(s, res)
})
.await;
assert_eq!(res, Err(()));
let s = S { i: 0 };
let (_new_s, res) = Retry::default()
.max_tries(11)
.clamp_backoff(Duration::from_nanos(0))
.retry_async_with_state(s, |_, mut s| async {
let res = s.try_inc().await;
(s, res)
})
.await;
assert_eq!(res, Ok(11));
}
}