1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{Aad, Algorithm, KeyInner, Nonce, Tag, UnboundKey, TAG_LEN};
use crate::{constant_time, cpu, error, polyfill};
use core::ops::RangeFrom;

/// Immutable keys for use in situations where `OpeningKey`/`SealingKey` and
/// `NonceSequence` cannot reasonably be used.
///
/// Prefer to use `OpeningKey`/`SealingKey` and `NonceSequence` when practical.
#[derive(Clone)]
pub struct LessSafeKey {
    inner: KeyInner,
    algorithm: &'static Algorithm,
}

impl LessSafeKey {
    /// Constructs a `LessSafeKey`.
    #[inline]
    pub fn new(key: UnboundKey) -> Self {
        key.into_inner()
    }

    pub(super) fn new_(
        algorithm: &'static Algorithm,
        key_bytes: &[u8],
    ) -> Result<Self, error::Unspecified> {
        let cpu_features = cpu::features();
        Ok(Self {
            inner: (algorithm.init)(key_bytes, cpu_features)?,
            algorithm,
        })
    }

    /// Like [open_in_place](Self::open_in_place), except the authentication tag is
    /// passed separately.
    #[inline]
    pub fn open_in_place_separate_tag<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        tag: Tag,
        in_out: &'in_out mut [u8],
        ciphertext: RangeFrom<usize>,
    ) -> Result<&'in_out mut [u8], error::Unspecified>
    where
        A: AsRef<[u8]>,
    {
        let aad = Aad::from(aad.as_ref());
        open_within_(self, nonce, aad, tag, in_out, ciphertext)
    }

    /// Like [`super::OpeningKey::open_in_place()`], except it accepts an
    /// arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to open data.
    #[inline]
    pub fn open_in_place<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
    ) -> Result<&'in_out mut [u8], error::Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.open_within(nonce, aad, in_out, 0..)
    }

    /// Like [`super::OpeningKey::open_within()`], except it accepts an
    /// arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to open data.
    #[inline]
    pub fn open_within<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
        ciphertext_and_tag: RangeFrom<usize>,
    ) -> Result<&'in_out mut [u8], error::Unspecified>
    where
        A: AsRef<[u8]>,
    {
        let tag_offset = in_out
            .len()
            .checked_sub(TAG_LEN)
            .ok_or(error::Unspecified)?;

        // Split the tag off the end of `in_out`.
        let (in_out, received_tag) = in_out.split_at_mut(tag_offset);
        let received_tag = (*received_tag).try_into()?;
        let ciphertext = ciphertext_and_tag;

        self.open_in_place_separate_tag(nonce, aad, received_tag, in_out, ciphertext)
    }

    /// Like [`super::SealingKey::seal_in_place_append_tag()`], except it
    /// accepts an arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to seal data.
    #[inline]
    pub fn seal_in_place_append_tag<A, InOut>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut InOut,
    ) -> Result<(), error::Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.seal_in_place_separate_tag(nonce, aad, in_out.as_mut())
            .map(|tag| in_out.extend(tag.as_ref()))
    }

    /// Like `super::SealingKey::seal_in_place_separate_tag()`, except it
    /// accepts an arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to seal data.
    #[inline]
    pub fn seal_in_place_separate_tag<A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut [u8],
    ) -> Result<Tag, error::Unspecified>
    where
        A: AsRef<[u8]>,
    {
        seal_in_place_separate_tag_(self, nonce, Aad::from(aad.as_ref()), in_out)
    }

    /// The key's AEAD algorithm.
    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.algorithm
    }

    pub(super) fn fmt_debug(
        &self,
        type_name: &'static str,
        f: &mut core::fmt::Formatter,
    ) -> Result<(), core::fmt::Error> {
        f.debug_struct(type_name)
            .field("algorithm", &self.algorithm())
            .finish()
    }
}

fn open_within_<'in_out>(
    key: &LessSafeKey,
    nonce: Nonce,
    aad: Aad<&[u8]>,
    received_tag: Tag,
    in_out: &'in_out mut [u8],
    src: RangeFrom<usize>,
) -> Result<&'in_out mut [u8], error::Unspecified> {
    let ciphertext_len = in_out.get(src.clone()).ok_or(error::Unspecified)?.len();
    check_per_nonce_max_bytes(key.algorithm, ciphertext_len)?;

    let Tag(calculated_tag) = (key.algorithm.open)(&key.inner, nonce, aad, in_out, src);

    if constant_time::verify_slices_are_equal(calculated_tag.as_ref(), received_tag.as_ref())
        .is_err()
    {
        // Zero out the plaintext so that it isn't accidentally leaked or used
        // after verification fails. It would be safest if we could check the
        // tag before decrypting, but some `open` implementations interleave
        // authentication with decryption for performance.
        for b in &mut in_out[..ciphertext_len] {
            *b = 0;
        }
        return Err(error::Unspecified);
    }

    // `ciphertext_len` is also the plaintext length.
    Ok(&mut in_out[..ciphertext_len])
}

#[inline]
pub(super) fn seal_in_place_separate_tag_(
    key: &LessSafeKey,
    nonce: Nonce,
    aad: Aad<&[u8]>,
    in_out: &mut [u8],
) -> Result<Tag, error::Unspecified> {
    check_per_nonce_max_bytes(key.algorithm(), in_out.len())?;
    Ok((key.algorithm.seal)(&key.inner, nonce, aad, in_out))
}

fn check_per_nonce_max_bytes(alg: &Algorithm, in_out_len: usize) -> Result<(), error::Unspecified> {
    if polyfill::u64_from_usize(in_out_len) > alg.max_input_len {
        return Err(error::Unspecified);
    }
    Ok(())
}

impl core::fmt::Debug for LessSafeKey {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        self.fmt_debug("LessSafeKey", f)
    }
}