1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! Parking and unparking timely fibers.

use std::rc::Rc;
use std::cell::RefCell;
use std::thread::Thread;
use std::collections::BinaryHeap;
use std::time::{Duration, Instant};
use std::cmp::Reverse;
use crossbeam_channel::{Sender, Receiver};

/// Methods required to act as a timely scheduler.
///
/// The core methods are the activation of "paths", sequences of integers, and
/// the enumeration of active paths by prefix. A scheduler may delay the report
/// of a path indefinitely, but it should report at least one extension for the
/// empty path `&[]` or risk parking the worker thread without a certain unpark.
///
/// There is no known harm to "spurious wake-ups" where a not-active path is
/// returned through `extensions()`.
pub trait Scheduler {
    /// Mark a path as immediately scheduleable.
    fn activate(&mut self, path: &[usize]);
    /// Populates `dest` with next identifiers on active extensions of `path`.
    ///
    /// This method is where a scheduler is allowed to exercise some discretion,
    /// in that it does not need to present *all* extensions, but it can instead
    /// present only those that the runtime should schedule.
    fn extensions(&mut self, path: &[usize], dest: &mut Vec<usize>);
}

// Trait objects can be schedulers too.
impl Scheduler for Box<dyn Scheduler> {
    fn activate(&mut self, path: &[usize]) { (**self).activate(path) }
    fn extensions(&mut self, path: &[usize], dest: &mut Vec<usize>) { (**self).extensions(path, dest) }
}

/// Allocation-free activation tracker.
#[derive(Debug)]
pub struct Activations {
    clean: usize,
    /// `(offset, length)`
    bounds: Vec<(usize, usize)>,
    slices: Vec<usize>,
    buffer: Vec<usize>,

    // Inter-thread activations.
    tx: Sender<Vec<usize>>,
    rx: Receiver<Vec<usize>>,

    // Delayed activations.
    timer: Instant,
    queue: BinaryHeap<Reverse<(Duration, Vec<usize>)>>,
}

impl Activations {

    /// Creates a new activation tracker.
    pub fn new(timer: Instant) -> Self {
        let (tx, rx) = crossbeam_channel::unbounded();
        Self {
            clean: 0,
            bounds: Vec::new(),
            slices: Vec::new(),
            buffer: Vec::new(),
            tx,
            rx,
            timer,
            queue: BinaryHeap::new(),
        }
    }

    /// Activates the task addressed by `path`.
    pub fn activate(&mut self, path: &[usize]) {
        self.bounds.push((self.slices.len(), path.len()));
        self.slices.extend(path);
    }

    /// Schedules a future activation for the task addressed by `path`.
    pub fn activate_after(&mut self, path: &[usize], delay: Duration) {
        // TODO: We could have a minimum delay and immediately schedule anything less than that delay.
        if delay == Duration::new(0, 0) {
            self.activate(path);
        }
        else {
            let moment = self.timer.elapsed() + delay;
            self.queue.push(Reverse((moment, path.to_vec())));
        }
    }

    /// Discards the current active set and presents the next active set.
    pub fn advance(&mut self) {

        // Drain inter-thread activations.
        while let Ok(path) = self.rx.try_recv() {
            self.activate(&path[..])
        }

        // Drain timer-based activations.
        let now = self.timer.elapsed();
        while self.queue.peek().map(|Reverse((t,_))| t <= &now) == Some(true) {
            let Reverse((_time, path)) = self.queue.pop().unwrap();
            self.activate(&path[..]);
        }

        self.bounds.drain(.. self.clean);

        {   // Scoped, to allow borrow to drop.
            let slices = &self.slices[..];
            self.bounds.sort_by_key(|x| &slices[x.0 .. (x.0 + x.1)]);
            self.bounds.dedup_by_key(|x| &slices[x.0 .. (x.0 + x.1)]);
        }

        // Compact the slices.
        self.buffer.clear();
        for (offset, length) in self.bounds.iter_mut() {
            self.buffer.extend(&self.slices[*offset .. (*offset + *length)]);
            *offset = self.buffer.len() - *length;
        }
        ::std::mem::swap(&mut self.buffer, &mut self.slices);

        self.clean = self.bounds.len();
    }

    /// Maps a function across activated paths.
    pub fn map_active(&self, logic: impl Fn(&[usize])) {
        for (offset, length) in self.bounds.iter() {
            logic(&self.slices[*offset .. (*offset + *length)]);
        }
    }

    /// Sets as active any symbols that follow `path`.
    pub fn for_extensions(&self, path: &[usize], mut action: impl FnMut(usize)) {

        let position =
        self.bounds[..self.clean]
            .binary_search_by_key(&path, |x| &self.slices[x.0 .. (x.0 + x.1)]);
        let position = match position {
            Ok(x) => x,
            Err(x) => x,
        };

        let mut previous = None;
        self.bounds
            .iter()
            .cloned()
            .skip(position)
            .map(|(offset, length)| &self.slices[offset .. (offset + length)])
            .take_while(|x| x.starts_with(path))
            .for_each(|x| {
                // push non-empty, non-duplicate extensions.
                if let Some(extension) = x.get(path.len()) {
                    if previous != Some(*extension) {
                        action(*extension);
                        previous = Some(*extension);
                    }
                }
            });
    }

    /// Constructs a thread-safe `SyncActivations` handle to this activator.
    pub fn sync(&self) -> SyncActivations {
        SyncActivations {
            tx: self.tx.clone(),
            thread: std::thread::current(),
        }
    }

    /// Time until next scheduled event.
    ///
    /// This method should be used before putting a worker thread to sleep, as it
    /// indicates the amount of time before the thread should be unparked for the
    /// next scheduled activation.
    pub fn empty_for(&self) -> Option<Duration> {
        if !self.bounds.is_empty() {
            Some(Duration::new(0,0))
        }
        else {
            self.queue.peek().map(|Reverse((t,_a))| {
                let elapsed = self.timer.elapsed();
                if t < &elapsed { Duration::new(0,0) }
                else { *t - elapsed }
            })
        }
    }
}

/// A thread-safe handle to an `Activations`.
#[derive(Clone, Debug)]
pub struct SyncActivations {
    tx: Sender<Vec<usize>>,
    thread: Thread,
}

impl SyncActivations {
    /// Unparks the task addressed by `path` and unparks the associated worker
    /// thread.
    pub fn activate(&self, path: Vec<usize>) -> Result<(), SyncActivationError> {
        self.activate_batch(std::iter::once(path))
    }

    /// Unparks the tasks addressed by `paths` and unparks the associated worker
    /// thread.
    ///
    /// This method can be more efficient than calling `activate` repeatedly, as
    /// it only unparks the worker thread after sending all of the activations.
    pub fn activate_batch<I>(&self, paths: I) -> Result<(), SyncActivationError>
    where
        I: IntoIterator<Item = Vec<usize>>
    {
        for path in paths.into_iter() {
            self.tx.send(path).map_err(|_| SyncActivationError)?;
        }
        self.thread.unpark();
        Ok(())
    }
}

/// A capability to activate a specific path.
#[derive(Clone, Debug)]
pub struct Activator {
    path: Rc<[usize]>,
    queue: Rc<RefCell<Activations>>,
}

impl Activator {
    /// Creates a new activation handle
    pub fn new(path: Rc<[usize]>, queue: Rc<RefCell<Activations>>) -> Self {
        Self {
            path,
            queue,
        }
    }
    /// Activates the associated path.
    pub fn activate(&self) {
        self.queue
            .borrow_mut()
            .activate(&self.path[..]);
    }

    /// Activates the associated path after a specified duration.
    pub fn activate_after(&self, delay: Duration) {
        if delay == Duration::new(0, 0) {
            self.activate();
        }
        else {
            self.queue
                .borrow_mut()
                .activate_after(&self.path[..], delay);
        }
    }
}

/// A thread-safe version of `Activator`.
#[derive(Clone, Debug)]
pub struct SyncActivator {
    path: Vec<usize>,
    queue: SyncActivations,
}

impl SyncActivator {
    /// Creates a new thread-safe activation handle.
    pub fn new(path: Vec<usize>, queue: SyncActivations) -> Self {
        Self {
            path,
            queue,
        }
    }

    /// Activates the associated path and unparks the associated worker thread.
    pub fn activate(&self) -> Result<(), SyncActivationError> {
        self.queue.activate(self.path.clone())
    }
}

/// The error returned when activation fails across thread boundaries because
/// the receiving end has hung up.
#[derive(Clone, Copy, Debug)]
pub struct SyncActivationError;

impl std::fmt::Display for SyncActivationError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.write_str("sync activation error in timely")
    }
}

impl std::error::Error for SyncActivationError {}

/// A wrapper that unparks on drop.
#[derive(Clone, Debug)]
pub struct ActivateOnDrop<T>  {
    wrapped: T,
    address: Rc<[usize]>,
    activator: Rc<RefCell<Activations>>,
}

use std::ops::{Deref, DerefMut};

impl<T> ActivateOnDrop<T> {
    /// Wraps an element so that it is unparked on drop.
    pub fn new(wrapped: T, address: Rc<[usize]>, activator: Rc<RefCell<Activations>>) -> Self {
        Self { wrapped, address, activator }
    }
}

impl<T> Deref for ActivateOnDrop<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        &self.wrapped
    }
}

impl<T> DerefMut for ActivateOnDrop<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.wrapped
    }
}

impl<T> Drop for ActivateOnDrop<T> {
    fn drop(&mut self) {
        self.activator.borrow_mut().activate(&self.address[..]);
    }
}