mz_transform/dataflow.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Whole-dataflow optimization
//!
//! A dataflow may contain multiple views, each of which may only be
//! optimized locally. However, information like demand and predicate
//! pushdown can be applied across views once we understand the context
//! in which the views will be executed.
use std::collections::{BTreeMap, BTreeSet};
use itertools::Itertools;
use mz_compute_types::dataflows::{BuildDesc, DataflowDesc, DataflowDescription, IndexImport};
use mz_expr::{
AccessStrategy, CollectionPlan, Id, JoinImplementation, LocalId, MapFilterProject,
MirRelationExpr, MirScalarExpr, RECURSION_LIMIT,
};
use mz_ore::stack::{CheckedRecursion, RecursionGuard, RecursionLimitError};
use mz_ore::{assert_none, soft_assert_eq_or_log, soft_assert_or_log, soft_panic_or_log};
use mz_repr::explain::{DeltaJoinIndexUsageType, IndexUsageType, UsedIndexes};
use mz_repr::GlobalId;
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use crate::monotonic::MonotonicFlag;
use crate::notice::RawOptimizerNotice;
use crate::{IndexOracle, Optimizer, TransformCtx, TransformError};
/// Optimizes the implementation of each dataflow.
///
/// Inlines views, performs a full optimization pass including physical
/// planning using the supplied indexes, propagates filtering and projection
/// information to dataflow sources and lifts monotonicity information.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment ="global")
)]
pub fn optimize_dataflow(
dataflow: &mut DataflowDesc,
transform_ctx: &mut TransformCtx,
fast_path_optimizer: bool,
) -> Result<(), TransformError> {
// Inline views that are used in only one other view.
inline_views(dataflow)?;
if fast_path_optimizer {
optimize_dataflow_relations(
dataflow,
&Optimizer::fast_path_optimizer(transform_ctx),
transform_ctx,
)?;
} else {
// Logical optimization pass after view inlining
optimize_dataflow_relations(
dataflow,
#[allow(deprecated)]
&Optimizer::logical_optimizer(transform_ctx),
transform_ctx,
)?;
optimize_dataflow_filters(dataflow)?;
// TODO: when the linear operator contract ensures that propagated
// predicates are always applied, projections and filters can be removed
// from where they come from. Once projections and filters can be removed,
// TODO: it would be useful for demand to be optimized after filters
// that way demand only includes the columns that are still necessary after
// the filters are applied.
optimize_dataflow_demand(dataflow)?;
// A smaller logical optimization pass after projections and filters are
// pushed down across views.
optimize_dataflow_relations(
dataflow,
&Optimizer::logical_cleanup_pass(transform_ctx, false),
transform_ctx,
)?;
// Physical optimization pass
optimize_dataflow_relations(
dataflow,
&Optimizer::physical_optimizer(transform_ctx),
transform_ctx,
)?;
optimize_dataflow_monotonic(dataflow, transform_ctx)?;
}
prune_and_annotate_dataflow_index_imports(
dataflow,
transform_ctx.indexes,
transform_ctx.df_meta,
)?;
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Inline views used in one other view, and in no exported objects.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "inline_views")
)]
fn inline_views(dataflow: &mut DataflowDesc) -> Result<(), TransformError> {
// We cannot inline anything whose `BuildDesc::id` appears in either the
// `index_exports` or `sink_exports` of `dataflow`, because we lose our
// ability to name it.
// A view can / should be in-lined in another view if it is only used by
// one subsequent view. If there are two distinct views that have not
// themselves been merged, then too bad and it doesn't get inlined.
// Starting from the *last* object to build, walk backwards and inline
// any view that is neither referenced by a `index_exports` nor
// `sink_exports` nor more than two remaining objects to build.
for index in (0..dataflow.objects_to_build.len()).rev() {
// Capture the name used by others to reference this view.
let global_id = dataflow.objects_to_build[index].id;
// Determine if any exports directly reference this view.
let mut occurs_in_export = false;
for (_gid, sink_desc) in dataflow.sink_exports.iter() {
if sink_desc.from == global_id {
occurs_in_export = true;
}
}
for (_, (index_desc, _)) in dataflow.index_exports.iter() {
if index_desc.on_id == global_id {
occurs_in_export = true;
}
}
// Count the number of subsequent views that reference this view.
let mut occurrences_in_later_views = Vec::new();
for other in (index + 1)..dataflow.objects_to_build.len() {
if dataflow.objects_to_build[other]
.plan
.depends_on()
.contains(&global_id)
{
occurrences_in_later_views.push(other);
}
}
// Inline if the view is referenced in one view and no exports.
if !occurs_in_export && occurrences_in_later_views.len() == 1 {
let other = occurrences_in_later_views[0];
// We can remove this view and insert it in the later view,
// but are not able to relocate the later view `other`.
// When splicing in the `index` view, we need to create disjoint
// identifiers for the Let's `body` and `value`, as well as a new
// identifier for the binding itself. Following `NormalizeLets`, we
// go with the binding first, then the value, then the body.
let mut id_gen = crate::IdGen::default();
let new_local = LocalId::new(id_gen.allocate_id());
// Use the same `id_gen` to assign new identifiers to `index`.
crate::normalize_lets::renumber_bindings(
dataflow.objects_to_build[index].plan.as_inner_mut(),
&mut id_gen,
)?;
// Assign new identifiers to the other relation.
crate::normalize_lets::renumber_bindings(
dataflow.objects_to_build[other].plan.as_inner_mut(),
&mut id_gen,
)?;
// Install the `new_local` name wherever `global_id` was used.
dataflow.objects_to_build[other]
.plan
.as_inner_mut()
.visit_pre_mut(|expr| {
if let MirRelationExpr::Get { id, .. } = expr {
if id == &Id::Global(global_id) {
*id = Id::Local(new_local);
}
}
});
// With identifiers rewritten, we can replace `other` with
// a `MirRelationExpr::Let` binding, whose value is `index` and
// whose body is `other`.
let body = dataflow.objects_to_build[other]
.plan
.as_inner_mut()
.take_dangerous();
let value = dataflow.objects_to_build[index]
.plan
.as_inner_mut()
.take_dangerous();
*dataflow.objects_to_build[other].plan.as_inner_mut() = MirRelationExpr::Let {
id: new_local,
value: Box::new(value),
body: Box::new(body),
};
dataflow.objects_to_build.remove(index);
}
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Performs either the logical or the physical optimization pass on the
/// dataflow using the supplied set of indexes.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = optimizer.name)
)]
fn optimize_dataflow_relations(
dataflow: &mut DataflowDesc,
optimizer: &Optimizer,
ctx: &mut TransformCtx,
) -> Result<(), TransformError> {
// Re-optimize each dataflow
for object in dataflow.objects_to_build.iter_mut() {
// Re-run all optimizations on the composite views.
ctx.set_global_id(object.id);
optimizer.transform(object.plan.as_inner_mut(), ctx)?;
ctx.reset_global_id();
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Pushes demand information from published outputs to dataflow inputs,
/// projecting away unnecessary columns.
///
/// Dataflows that exist for the sake of generating plan explanations do not
/// have published outputs. In this case, we push demand information from views
/// not depended on by other views to dataflow inputs.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment ="demand")
)]
fn optimize_dataflow_demand(dataflow: &mut DataflowDesc) -> Result<(), TransformError> {
// Maps id -> union of known columns demanded from the source/view with the
// corresponding id.
let mut demand = BTreeMap::new();
if dataflow.index_exports.is_empty() && dataflow.sink_exports.is_empty() {
// In the absence of any exports, just demand all columns from views
// that are not depended on by another view, which is currently the last
// object in `objects_to_build`.
// A DataflowDesc without exports is currently created in the context of
// EXPLAIN outputs. This ensures that the output has all the columns of
// the original explainee.
if let Some(build_desc) = dataflow.objects_to_build.iter_mut().rev().next() {
demand
.entry(Id::Global(build_desc.id))
.or_insert_with(BTreeSet::new)
.extend(0..build_desc.plan.as_inner_mut().arity());
}
} else {
// Demand all columns of inputs to sinks.
for (_id, sink) in dataflow.sink_exports.iter() {
let input_id = sink.from;
demand
.entry(Id::Global(input_id))
.or_insert_with(BTreeSet::new)
.extend(0..dataflow.arity_of(&input_id));
}
// Demand all columns of inputs to exported indexes.
for (_id, (desc, _typ)) in dataflow.index_exports.iter() {
let input_id = desc.on_id;
demand
.entry(Id::Global(input_id))
.or_insert_with(BTreeSet::new)
.extend(0..dataflow.arity_of(&input_id));
}
}
optimize_dataflow_demand_inner(
dataflow
.objects_to_build
.iter_mut()
.rev()
.map(|build_desc| (Id::Global(build_desc.id), build_desc.plan.as_inner_mut())),
&mut demand,
)?;
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Pushes demand through views in `view_sequence` in order, removing
/// columns not demanded.
///
/// This method is made public for the sake of testing.
/// TODO: make this private once we allow multiple exports per dataflow.
pub fn optimize_dataflow_demand_inner<'a, I>(
view_sequence: I,
demand: &mut BTreeMap<Id, BTreeSet<usize>>,
) -> Result<(), TransformError>
where
I: Iterator<Item = (Id, &'a mut MirRelationExpr)>,
{
// Maps id -> The projection that was pushed down on the view with the
// corresponding id.
let mut applied_projection = BTreeMap::new();
// Collect the mutable references to views after pushing projection down
// in order to run cleanup actions on them in a second loop.
let mut view_refs = Vec::new();
let projection_pushdown = crate::movement::ProjectionPushdown::default();
for (id, view) in view_sequence {
if let Some(columns) = demand.get(&id) {
let projection_pushed_down = columns.iter().map(|c| *c).collect();
// Push down the projection consisting of the entries of `columns`
// in increasing order.
projection_pushdown.action(view, &projection_pushed_down, demand)?;
let new_type = view.typ();
applied_projection.insert(id, (projection_pushed_down, new_type));
}
view_refs.push(view);
}
for view in view_refs {
// Update `Get` nodes to reflect any columns that have been projected away.
projection_pushdown.update_projection_around_get(view, &applied_projection);
}
Ok(())
}
/// Pushes predicate to dataflow inputs.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment ="filters")
)]
fn optimize_dataflow_filters(dataflow: &mut DataflowDesc) -> Result<(), TransformError> {
// Contains id -> predicates map, describing those predicates that
// can (but need not) be applied to the collection named by `id`.
let mut predicates = BTreeMap::<Id, BTreeSet<mz_expr::MirScalarExpr>>::new();
// Propagate predicate information from outputs to inputs.
optimize_dataflow_filters_inner(
dataflow
.objects_to_build
.iter_mut()
.rev()
.map(|build_desc| (Id::Global(build_desc.id), build_desc.plan.as_inner_mut())),
&mut predicates,
)?;
// Push predicate information into the SourceDesc.
for (source_id, (source, _monotonic)) in dataflow.source_imports.iter_mut() {
if let Some(list) = predicates.remove(&Id::Global(*source_id)) {
if !list.is_empty() {
// Canonicalize the order of predicates, for stable plans.
let mut list = list.into_iter().collect::<Vec<_>>();
list.sort();
// Install no-op predicate information if none exists.
if source.arguments.operators.is_none() {
source.arguments.operators = Some(MapFilterProject::new(source.typ.arity()));
}
// Add any predicates that can be pushed to the source.
if let Some(operator) = source.arguments.operators.take() {
source.arguments.operators = Some(operator.filter(list));
source.arguments.operators.as_mut().map(|x| x.optimize());
}
}
}
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Pushes filters down through views in `view_sequence` in order.
///
/// This method is made public for the sake of testing.
/// TODO: make this private once we allow multiple exports per dataflow.
pub fn optimize_dataflow_filters_inner<'a, I>(
view_iter: I,
predicates: &mut BTreeMap<Id, BTreeSet<mz_expr::MirScalarExpr>>,
) -> Result<(), TransformError>
where
I: Iterator<Item = (Id, &'a mut MirRelationExpr)>,
{
let transform = crate::predicate_pushdown::PredicatePushdown::default();
for (id, view) in view_iter {
if let Some(list) = predicates.get(&id).clone() {
if !list.is_empty() {
*view = view.take_dangerous().filter(list.iter().cloned());
}
}
transform.action(view, predicates)?;
}
Ok(())
}
/// Propagates information about monotonic inputs through operators,
/// using [`mz_repr::optimize::OptimizerFeatures`] from `ctx` for [`crate::analysis::Analysis`].
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment ="monotonic")
)]
pub fn optimize_dataflow_monotonic(
dataflow: &mut DataflowDesc,
ctx: &mut TransformCtx,
) -> Result<(), TransformError> {
let mut monotonic_ids = BTreeSet::new();
for (source_id, (_source, is_monotonic)) in dataflow.source_imports.iter() {
if *is_monotonic {
monotonic_ids.insert(source_id.clone());
}
}
for (
_index_id,
IndexImport {
desc: index_desc,
monotonic,
..
},
) in dataflow.index_imports.iter()
{
if *monotonic {
monotonic_ids.insert(index_desc.on_id.clone());
}
}
let monotonic_flag = MonotonicFlag::default();
for build_desc in dataflow.objects_to_build.iter_mut() {
monotonic_flag.transform(build_desc.plan.as_inner_mut(), ctx, &monotonic_ids)?;
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Restricts the indexes imported by `dataflow` to only the ones it needs.
/// It also adds to the `DataflowMetainfo` how each index will be used.
/// It also annotates global `Get`s with whether they will be reads from Persist or an index, plus
/// their index usage types.
///
/// The input `dataflow` should import all indexes belonging to all views/sources/tables it
/// references.
///
/// The input plans should be normalized with `NormalizeLets`! Otherwise, we might find dangling
/// `ArrangeBy`s at the top of unused Let bindings.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "index_imports")
)]
fn prune_and_annotate_dataflow_index_imports(
dataflow: &mut DataflowDesc,
indexes: &dyn IndexOracle,
dataflow_metainfo: &mut DataflowMetainfo,
) -> Result<(), TransformError> {
// Preparation.
// Let's save the unique keys of the sources. This will inform which indexes to choose for full
// scans. (We can't get this info from `source_imports`, because `source_imports` only has those
// sources that are not getting an indexed read.)
let mut source_keys = BTreeMap::new();
for build_desc in dataflow.objects_to_build.iter() {
build_desc
.plan
.as_inner()
.visit_pre(|expr: &MirRelationExpr| match expr {
MirRelationExpr::Get {
id: Id::Global(global_id),
typ,
..
} => {
source_keys.entry(*global_id).or_insert(
typ.keys
.iter()
.map(|key| {
key.iter()
// Convert the Vec<usize> key to Vec<MirScalarExpr>, so that
// later we can more easily compare index keys to these keys.
.map(|col_idx| MirScalarExpr::Column(*col_idx))
.collect()
})
.collect(),
);
}
_ => {}
});
}
// This will be a mapping of
// (ids used by exports and objects to build) ->
// (arrangement keys and usage types on that id that have been requested)
let mut index_reqs_by_id = BTreeMap::new();
// Go through the MIR plans of `objects_to_build` and collect which arrangements are requested
// for which we also have an available index.
for build_desc in dataflow.objects_to_build.iter_mut() {
CollectIndexRequests::new(&source_keys, indexes, &mut index_reqs_by_id)
.collect_index_reqs(build_desc.plan.as_inner_mut())?;
}
// Collect index usages by `sink_exports`.
// A sink export sometimes wants to directly use an imported index. I know of one case where
// this happens: The dataflow for a SUBSCRIBE on an indexed view won't have any
// `objects_to_build`, but will want to directly read from the index and write to a sink.
for (_sink_id, sink_desc) in dataflow.sink_exports.iter() {
// First, let's see if there exists an index on the id that the sink wants. If not, there is
// nothing we can do here.
if let Some((idx_id, arbitrary_idx_key)) = indexes.indexes_on(sink_desc.from).next() {
// If yes, then we'll add a request of _some_ index: If we already collected an index
// request on this id, then use that, otherwise use the above arbitrarily picked index.
let requested_idxs = index_reqs_by_id
.entry(sink_desc.from)
.or_insert_with(Vec::new);
if let Some((already_req_idx_id, already_req_key, _)) = requested_idxs.get(0) {
requested_idxs.push((
*already_req_idx_id,
already_req_key.clone(),
IndexUsageType::SinkExport,
));
} else {
requested_idxs.push((
idx_id,
arbitrary_idx_key.to_owned(),
IndexUsageType::SinkExport,
));
}
}
}
// Collect index usages by `index_exports`.
for (_id, (index_desc, _)) in dataflow.index_exports.iter() {
// First, let's see if there exists an index on the id that the exported index is on. If
// not, there is nothing we can do here.
if let Some((idx_id, arbitrary_index_key)) = indexes.indexes_on(index_desc.on_id).next() {
// If yes, then we'll add an index request of some index: If we already collected an
// index request on this id, then use that, otherwise use the above arbitrarily picked
// index.
let requested_idxs = index_reqs_by_id
.entry(index_desc.on_id)
.or_insert_with(Vec::new);
if let Some((already_req_idx_id, already_req_key, _)) = requested_idxs.get(0) {
requested_idxs.push((
*already_req_idx_id,
already_req_key.clone(),
IndexUsageType::IndexExport,
));
} else {
// This is surprising: Actually, an index creation dataflow always has a plan in
// `objects_to_build` that will have a Get of the object that the index is on (see
// `DataflowDescription::export_index`). Therefore, we should have already requested
// an index usage when seeing that Get in `CollectIndexRequests`.
soft_panic_or_log!("We are seeing an index export on an id that's not mentioned in `objects_to_build`");
requested_idxs.push((
idx_id,
arbitrary_index_key.to_owned(),
IndexUsageType::IndexExport,
));
}
}
}
// By now, `index_reqs_by_id` has all ids that we think might benefit from having an index on.
// Moreover, for each of these ids, if any index exists on it, then we should have already
// picked one. If not, then we have a bug somewhere. In that case, do a soft panic, and add an
// Unknown usage, picking an arbitrary index.
for (id, index_reqs) in index_reqs_by_id.iter_mut() {
if index_reqs.is_empty() {
// Try to pick an arbitrary index to be fully scanned.
if let Some((idx_id, key)) = indexes.indexes_on(*id).next() {
soft_panic_or_log!(
"prune_and_annotate_dataflow_index_imports didn't find any index for an id, even though one exists
id: {}, key: {:?}",
id,
key
);
index_reqs.push((idx_id, key.to_owned(), IndexUsageType::Unknown));
}
}
}
// Adjust FullScans to not introduce a new index dependency if there is also some non-FullScan
// request on the same id.
// `full_scan_changes` saves the changes that we do: Each (Get id, index id) entry indicates
// that if a Get has that id, then any full scan index accesses on it should be changed to use
// the indicated index id.
let mut full_scan_changes = BTreeMap::new();
for (get_id, index_reqs) in index_reqs_by_id.iter_mut() {
// Let's choose a non-FullScan access (if exists).
if let Some((picked_idx, picked_idx_key)) = choose_index(
&source_keys,
get_id,
&index_reqs
.iter()
.filter_map(|(idx_id, key, usage_type)| match usage_type {
IndexUsageType::FullScan => None,
_ => Some((*idx_id, key.clone())),
})
.collect_vec(),
) {
// Found a non-FullScan access. Modify all FullScans to use the same index as that one.
for (idx_id, key, usage_type) in index_reqs {
match usage_type {
IndexUsageType::FullScan => {
full_scan_changes.insert(get_id, picked_idx);
*idx_id = picked_idx;
key.clone_from(&picked_idx_key);
}
_ => {}
}
}
}
}
// Apply the above full scan changes to also the Gets.
for build_desc in dataflow.objects_to_build.iter_mut() {
build_desc
.plan
.as_inner_mut()
.visit_pre_mut(|expr: &mut MirRelationExpr| {
match expr {
MirRelationExpr::Get {
id: Id::Global(global_id),
typ: _,
access_strategy: persist_or_index,
} => {
if let Some(new_idx_id) = full_scan_changes.get(global_id) {
match persist_or_index {
AccessStrategy::UnknownOrLocal => {
// Should have been already filled by `collect_index_reqs`.
unreachable!()
}
AccessStrategy::Persist => {
// We already know that it's an indexed access.
unreachable!()
}
AccessStrategy::SameDataflow => {
// We have not added such annotations yet.
unreachable!()
}
AccessStrategy::Index(accesses) => {
for (idx_id, usage_type) in accesses {
if matches!(usage_type, IndexUsageType::FullScan) {
*idx_id = *new_idx_id;
}
}
}
}
}
}
_ => {}
}
});
}
// Annotate index imports by their usage types
dataflow_metainfo.index_usage_types = BTreeMap::new();
for (
index_id,
IndexImport {
desc: index_desc,
typ: _,
monotonic: _,
},
) in dataflow.index_imports.iter_mut()
{
// A sanity check that we are not importing an index that we are also exporting.
assert!(!dataflow
.index_exports
.iter()
.map(|(exported_index_id, _)| exported_index_id)
.any(|exported_index_id| exported_index_id == index_id));
let mut new_usage_types = Vec::new();
// Let's see whether something has requested an index on this object that this imported
// index is on.
if let Some(index_reqs) = index_reqs_by_id.get(&index_desc.on_id) {
for (req_idx_id, req_key, req_usage_type) in index_reqs {
if req_idx_id == index_id {
soft_assert_eq_or_log!(*req_key, index_desc.key);
new_usage_types.push(req_usage_type.clone());
}
}
}
if !new_usage_types.is_empty() {
dataflow_metainfo
.index_usage_types
.insert(*index_id, new_usage_types);
}
}
// Prune index imports to only those that are used
dataflow
.index_imports
.retain(|id, _index_import| dataflow_metainfo.index_usage_types.contains_key(id));
// Determine AccessStrategy::SameDataflow accesses. These were classified as
// AccessStrategy::Persist inside collect_index_reqs, so now we check these, and if the id is of
// a collection that we are building ourselves, then we adjust the access strategy.
let mut objects_to_build_ids = BTreeSet::new();
for BuildDesc { id, plan: _ } in dataflow.objects_to_build.iter() {
objects_to_build_ids.insert(id.clone());
}
for build_desc in dataflow.objects_to_build.iter_mut() {
build_desc
.plan
.as_inner_mut()
.visit_pre_mut(|expr: &mut MirRelationExpr| match expr {
MirRelationExpr::Get {
id: Id::Global(global_id),
typ: _,
access_strategy,
} => match access_strategy {
AccessStrategy::Persist => {
if objects_to_build_ids.contains(global_id) {
*access_strategy = AccessStrategy::SameDataflow;
}
}
_ => {}
},
_ => {}
});
}
// A sanity check that all Get annotations indicate indexes that are present in `index_imports`.
for build_desc in dataflow.objects_to_build.iter() {
build_desc
.plan
.as_inner()
.visit_pre(|expr: &MirRelationExpr| match expr {
MirRelationExpr::Get {
id: Id::Global(_),
typ: _,
access_strategy: AccessStrategy::Index(accesses),
} => {
for (idx_id, _) in accesses {
soft_assert_or_log!(
dataflow.index_imports.contains_key(idx_id),
"Dangling Get index annotation"
);
}
}
_ => {}
});
}
mz_repr::explain::trace_plan(dataflow);
Ok(())
}
/// Pick an index from a given Vec of index keys.
///
/// Currently, we pick as follows:
/// - If there is an index on a unique key, then we pick that. (It might be better distributed, and
/// is less likely to get dropped than other indexes.)
/// - Otherwise, we pick an arbitrary index.
///
/// TODO: There are various edge cases where a better choice would be possible:
/// - Some indexes might be less skewed than others. (Although, picking a unique key tries to
/// capture this already.)
/// - Some indexes might have an error, while others don't.
/// <https://github.com/MaterializeInc/database-issues/issues/4455>
/// - Some indexes might have more extra data in their keys (because of being on more complicated
/// expressions than just column references), which won't be used in a full scan.
fn choose_index(
source_keys: &BTreeMap<GlobalId, BTreeSet<Vec<MirScalarExpr>>>,
id: &GlobalId,
indexes: &Vec<(GlobalId, Vec<MirScalarExpr>)>,
) -> Option<(GlobalId, Vec<MirScalarExpr>)> {
match source_keys.get(id) {
None => indexes.iter().next().cloned(), // pick an arbitrary index
Some(coll_keys) => match indexes
.iter()
.find(|(_idx_id, key)| coll_keys.contains(&*key))
{
Some((idx_id, key)) => Some((*idx_id, key.clone())),
None => indexes.iter().next().cloned(), // pick an arbitrary index
},
}
}
#[derive(Debug)]
struct CollectIndexRequests<'a> {
/// We were told about these unique keys on sources.
source_keys: &'a BTreeMap<GlobalId, BTreeSet<Vec<MirScalarExpr>>>,
/// We were told about these indexes being available.
indexes_available: &'a dyn IndexOracle,
/// We'll be collecting index requests here.
index_reqs_by_id:
&'a mut BTreeMap<GlobalId, Vec<(GlobalId, Vec<MirScalarExpr>, IndexUsageType)>>,
/// As we recurse down a MirRelationExpr, we'll need to keep track of the context of the
/// current node (see docs on `IndexUsageContext` about what context we keep).
/// Moreover, we need to propagate this context from cte uses to cte definitions.
/// `context_across_lets` will keep track of the contexts that reached each use of a LocalId
/// added together.
context_across_lets: BTreeMap<LocalId, Vec<IndexUsageContext>>,
recursion_guard: RecursionGuard,
}
impl<'a> CheckedRecursion for CollectIndexRequests<'a> {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl<'a> CollectIndexRequests<'a> {
fn new(
source_keys: &'a BTreeMap<GlobalId, BTreeSet<Vec<MirScalarExpr>>>,
indexes_available: &'a dyn IndexOracle,
index_reqs_by_id: &'a mut BTreeMap<
GlobalId,
Vec<(GlobalId, Vec<MirScalarExpr>, IndexUsageType)>,
>,
) -> CollectIndexRequests<'a> {
CollectIndexRequests {
source_keys,
indexes_available,
index_reqs_by_id,
context_across_lets: BTreeMap::new(),
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
pub fn collect_index_reqs(
&mut self,
expr: &mut MirRelationExpr,
) -> Result<(), RecursionLimitError> {
assert!(self.context_across_lets.is_empty());
self.collect_index_reqs_inner(
expr,
&IndexUsageContext::from_usage_type(IndexUsageType::PlanRootNoArrangement),
)?;
assert!(self.context_across_lets.is_empty());
// Sanity check that we don't have any `DeltaJoinIndexUsageType::Unknown` remaining.
for (_id, index_reqs) in self.index_reqs_by_id.iter() {
for (_, _, index_usage_type) in index_reqs {
soft_assert_or_log!(
!matches!(
index_usage_type,
IndexUsageType::DeltaJoin(DeltaJoinIndexUsageType::Unknown)
),
"Delta join Unknown index usage remained"
);
}
}
Ok(())
}
fn collect_index_reqs_inner(
&mut self,
expr: &mut MirRelationExpr,
contexts: &Vec<IndexUsageContext>,
) -> Result<(), RecursionLimitError> {
self.checked_recur_mut(|this| {
// If an index exists on `on_id`, this function picks an index to be fully scanned.
let pick_index_for_full_scan = |on_id: &GlobalId| {
// Note that the choice we make here might be modified later at the
// "Adjust FullScans to not introduce a new index dependency".
choose_index(
this.source_keys,
on_id,
&this.indexes_available.indexes_on(*on_id).map(
|(idx_id, key)| (idx_id, key.iter().cloned().collect_vec())
).collect_vec()
)
};
// See comment on `IndexUsageContext`.
Ok(match expr {
MirRelationExpr::Join {
inputs,
implementation,
..
} => {
match implementation {
JoinImplementation::Differential(..) => {
for input in inputs {
this.collect_index_reqs_inner(
input,
&IndexUsageContext::from_usage_type(
IndexUsageType::DifferentialJoin,
),
)?;
}
}
JoinImplementation::DeltaQuery(..) => {
// For Delta joins, the first input is special, see
// https://github.com/MaterializeInc/database-issues/issues/2115
this.collect_index_reqs_inner(
&mut inputs[0],
&IndexUsageContext::from_usage_type(IndexUsageType::DeltaJoin(DeltaJoinIndexUsageType::Unknown)),
)?;
for input in &mut inputs[1..] {
this.collect_index_reqs_inner(
input,
&IndexUsageContext::from_usage_type(IndexUsageType::DeltaJoin(
DeltaJoinIndexUsageType::Lookup,
)),
)?;
}
}
JoinImplementation::IndexedFilter(_coll_id, idx_id, ..) => {
for input in inputs {
this.collect_index_reqs_inner(
input,
&IndexUsageContext::from_usage_type(IndexUsageType::Lookup(*idx_id)),
)?;
}
}
JoinImplementation::Unimplemented => {
soft_panic_or_log!(
"CollectIndexRequests encountered an Unimplemented join"
);
}
}
}
MirRelationExpr::ArrangeBy { input, keys } => {
this.collect_index_reqs_inner(input, &IndexUsageContext::add_keys(contexts, keys))?;
}
MirRelationExpr::Get {
id: Id::Global(global_id),
access_strategy: persist_or_index,
..
} => {
this.index_reqs_by_id
.entry(*global_id)
.or_insert_with(Vec::new);
// If the context is empty, it means we didn't see an operator that would
// specifically want to use an index for this Get. However, let's still try to
// find an index for a full scan.
let mut try_full_scan = contexts.is_empty();
let mut index_accesses = Vec::new();
for context in contexts {
match &context.requested_keys {
None => {
// We have some index usage context, but didn't see an `ArrangeBy`.
try_full_scan = true;
match context.usage_type {
IndexUsageType::FullScan | IndexUsageType::SinkExport | IndexUsageType::IndexExport => {
// Not possible, because these don't go through
// IndexUsageContext at all.
unreachable!()
},
// You can find more info on why the following join cases
// shouldn't happen in comments of the Join lowering to LIR.
IndexUsageType::Lookup(_) => soft_panic_or_log!("CollectIndexRequests encountered an IndexedFilter join without an ArrangeBy"),
IndexUsageType::DifferentialJoin => soft_panic_or_log!("CollectIndexRequests encountered a Differential join without an ArrangeBy"),
IndexUsageType::DeltaJoin(_) => soft_panic_or_log!("CollectIndexRequests encountered a Delta join without an ArrangeBy"),
IndexUsageType::PlanRootNoArrangement => {
// This is ok: the entire plan is a `Get`, with not even an
// `ArrangeBy`. Note that if an index exists, the usage will
// be saved as `FullScan` (NOT as `PlanRootNoArrangement`),
// because we are going into the `try_full_scan` if.
},
IndexUsageType::FastPathLimit => {
// These are created much later, not even inside
// `prune_and_annotate_dataflow_index_imports`.
unreachable!()
}
IndexUsageType::DanglingArrangeBy => {
// Not possible, because we create `DanglingArrangeBy`
// only when we see an `ArrangeBy`.
unreachable!()
},
IndexUsageType::Unknown => {
// These are added only after `CollectIndexRequests` has run.
unreachable!()
}
}
}
Some(requested_keys) => {
for requested_key in requested_keys {
match this
.indexes_available
.indexes_on(*global_id)
.find(|(available_idx_id, available_key)| {
match context.usage_type {
IndexUsageType::Lookup(req_idx_id) => {
// `LiteralConstraints` already picked an index
// by id. Let's use that one.
assert!(!(available_idx_id == &req_idx_id && available_key != &requested_key));
available_idx_id == &req_idx_id
},
_ => available_key == &requested_key,
}
})
{
Some((idx_id, key)) => {
this.index_reqs_by_id
.get_mut(global_id)
.unwrap()
.push((idx_id, key.to_owned(), context.usage_type.clone()));
index_accesses.push((idx_id, context.usage_type.clone()));
},
None => {
// If there is a key requested for which we don't have an
// index, then we might still be able to do a full scan of a
// differently keyed index.
try_full_scan = true;
}
}
}
if requested_keys.is_empty() {
// It's a bit weird if an MIR ArrangeBy is not requesting any
// key, but let's try a full scan in that case anyhow.
try_full_scan = true;
}
}
}
}
if try_full_scan {
// Keep in mind that when having 2 contexts coming from 2 uses of a Let,
// this code can't distinguish between the case when there is 1 ArrangeBy at the
// top of the Let, or when the 2 uses each have an `ArrangeBy`. In both cases,
// we'll add only 1 full scan, which would be wrong in the latter case. However,
// the latter case can't currently happen until we do
// https://github.com/MaterializeInc/database-issues/issues/6363
// Also note that currently we are deduplicating index usage types when
// printing index usages in EXPLAIN.
if let Some((idx_id, key)) = pick_index_for_full_scan(global_id) {
this.index_reqs_by_id
.get_mut(global_id)
.unwrap()
.push((idx_id, key.to_owned(), IndexUsageType::FullScan));
index_accesses.push((idx_id, IndexUsageType::FullScan));
}
}
if index_accesses.is_empty() {
*persist_or_index = AccessStrategy::Persist;
} else {
*persist_or_index = AccessStrategy::Index(index_accesses);
}
}
MirRelationExpr::Get {
id: Id::Local(local_id),
..
} => {
// Add the current context to the vector of contexts of `local_id`.
// (The unwrap is safe, because the Let and LetRec cases start with inserting an
// empty entry.)
this.context_across_lets
.get_mut(local_id)
.unwrap()
.extend(contexts.iter().cloned());
// No recursive call here, because Get has no inputs.
}
MirRelationExpr::Let { id, value, body } => {
let shadowed_context = this.context_across_lets.insert(id.clone(), Vec::new());
// No shadowing in MIR
assert_none!(shadowed_context);
// We go backwards: Recurse on the body and then the value.
this.collect_index_reqs_inner(body, contexts)?;
// The above call filled in the entry for `id` in `context_across_lets` (if it
// was referenced). Anyhow, at least an empty entry should exist, because we started
// above with inserting it.
this.collect_index_reqs_inner(
value,
&this.context_across_lets[id].clone(),
)?;
// Clean up the id from the saved contexts.
this.context_across_lets.remove(id);
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
for id in ids.iter() {
let shadowed_context = this.context_across_lets.insert(id.clone(), Vec::new());
assert_none!(shadowed_context); // No shadowing in MIR
}
// We go backwards: Recurse on the body first.
this.collect_index_reqs_inner(body, contexts)?;
// Reset the contexts of the ids (of the current LetRec), because an arrangement
// from a value can't be used in the body.
for id in ids.iter() {
*this.context_across_lets.get_mut(id).unwrap() = Vec::new();
}
// Recurse on the values in reverse order.
// Note that we do only one pass, i.e., we won't see context through a Get that
// refers to the previous iteration. But this is ok, because we can't reuse
// arrangements across iterations anyway.
for (id, value) in ids.iter().zip(values.iter_mut()).rev() {
this.collect_index_reqs_inner(
value,
&this.context_across_lets[id].clone(),
)?;
}
// Clean up the ids from the saved contexts.
for id in ids {
this.context_across_lets.remove(id);
}
}
_ => {
// Nothing interesting at this node, recurse with the empty context (regardless of
// what context we got from above).
let empty_context = Vec::new();
for child in expr.children_mut() {
this.collect_index_reqs_inner(child, &empty_context)?;
}
}
})
})
}
}
/// This struct will save info about parent nodes as we are descending down a `MirRelationExpr`.
/// We always start with filling in `usage_type` when we see an operation that uses an arrangement,
/// and then we fill in `requested_keys` when we see an `ArrangeBy`. So, the pattern that we are
/// looking for is
/// ```text
/// <operation that uses an index>
/// ArrangeBy <requested_keys>
/// Get <global_id>
/// ```
/// When we reach a `Get` to a global id, we access this context struct to see if the rest of the
/// pattern is present above the `Get`.
///
/// Note that we usually put this struct in a Vec, because we track context across local let
/// bindings, which means that a node can have multiple parents.
#[derive(Debug, Clone)]
struct IndexUsageContext {
usage_type: IndexUsageType,
requested_keys: Option<BTreeSet<Vec<MirScalarExpr>>>,
}
impl IndexUsageContext {
pub fn from_usage_type(usage_type: IndexUsageType) -> Vec<Self> {
vec![IndexUsageContext {
usage_type,
requested_keys: None,
}]
}
// Add the keys of an ArrangeBy into the contexts.
// Soft_panics if haven't already seen something that indicates what the index will be used for.
pub fn add_keys(
old_contexts: &Vec<IndexUsageContext>,
keys_to_add: &Vec<Vec<MirScalarExpr>>,
) -> Vec<IndexUsageContext> {
let old_contexts = if old_contexts.is_empty() {
// No join above us, and we are not at the root. Why does this ArrangeBy even exist?
soft_panic_or_log!("CollectIndexRequests encountered a dangling ArrangeBy");
// Anyhow, let's create a context with a `DanglingArrangeBy` index usage, so that we
// have a place to note down the requested keys below.
IndexUsageContext::from_usage_type(IndexUsageType::DanglingArrangeBy)
} else {
old_contexts.clone()
};
old_contexts
.into_iter()
.flat_map(|old_context| {
if !matches!(
old_context.usage_type,
IndexUsageType::DeltaJoin(DeltaJoinIndexUsageType::Unknown)
) {
// If it's not an unknown delta join usage, then we simply note down the new
// keys into `requested_keys`.
let mut context = old_context.clone();
if context.requested_keys.is_none() {
context.requested_keys = Some(BTreeSet::new());
}
context
.requested_keys
.as_mut()
.unwrap()
.extend(keys_to_add.iter().cloned());
Some(context).into_iter().chain(None)
} else {
// If it's an unknown delta join usage, then we need to figure out whether this
// is a full scan or a lookup.
//
// `source_key` in `DeltaPathPlan` determines which arrangement we are going to
// scan when starting the rendering of a delta path. This is the one for which
// we want a `DeltaJoinIndexUsageType::FirstInputFullScan`.
//
// However, `DeltaPathPlan` is an LIR concept, and here we need to figure out
// the `source_key` based on the MIR plan. We do this by doing the same as
// `DeltaJoinPlan::create_from`: choose the smallest key (by `Ord`).
let source_key = keys_to_add
.iter()
.min()
.expect("ArrangeBy below a delta join has at least one key");
let full_scan_context = IndexUsageContext {
requested_keys: Some(BTreeSet::from([source_key.clone()])),
usage_type: IndexUsageType::DeltaJoin(
DeltaJoinIndexUsageType::FirstInputFullScan,
),
};
let lookup_keys = keys_to_add
.into_iter()
.filter(|key| *key != source_key)
.cloned()
.collect_vec();
if lookup_keys.is_empty() {
Some(full_scan_context).into_iter().chain(None)
} else {
let lookup_context = IndexUsageContext {
requested_keys: Some(lookup_keys.into_iter().collect()),
usage_type: IndexUsageType::DeltaJoin(DeltaJoinIndexUsageType::Lookup),
};
Some(full_scan_context)
.into_iter()
.chain(Some(lookup_context))
}
}
})
.collect()
}
}
/// Extra information about the dataflow. This is not going to be shipped, but has to be processed
/// in other ways, e.g., showing notices to the user, or saving meta-information to the catalog.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize, Arbitrary)]
pub struct DataflowMetainfo<Notice = RawOptimizerNotice> {
/// Notices that the optimizer wants to show to users.
/// For pushing a new element, use [`Self::push_optimizer_notice_dedup`].
pub optimizer_notices: Vec<Notice>,
/// What kind of operation (full scan, lookup, ...) will access each index. Computed by
/// `prune_and_annotate_dataflow_index_imports`.
pub index_usage_types: BTreeMap<GlobalId, Vec<IndexUsageType>>,
}
impl Default for DataflowMetainfo {
fn default() -> Self {
DataflowMetainfo {
optimizer_notices: Vec::new(),
index_usage_types: BTreeMap::new(),
}
}
}
impl<Notice> DataflowMetainfo<Notice> {
/// Create a [`UsedIndexes`] instance by resolving each `id` in the
/// `index_ids` iterator against an entry expected to exist in the
/// [`DataflowMetainfo::index_usage_types`].
pub fn used_indexes<T>(&self, df_desc: &DataflowDescription<T>) -> UsedIndexes {
UsedIndexes::new(
df_desc
.index_imports
.iter()
.map(|(id, _)| {
let entry = self.index_usage_types.get(id).cloned();
// If an entry does not exist, mark the usage type for this
// index as `Unknown`.
//
// This should never happen if this method is called after
// running `prune_and_annotate_dataflow_index_imports` on
// the dataflow (this happens at the end of the
// `optimize_dataflow` call).
let index_usage_type = entry.unwrap_or(vec![IndexUsageType::Unknown]);
(*id, index_usage_type)
})
.collect(),
)
}
}
impl DataflowMetainfo<RawOptimizerNotice> {
/// Pushes a [`RawOptimizerNotice`] into [`Self::optimizer_notices`], but
/// only if the exact same notice is not already present.
pub fn push_optimizer_notice_dedup<T>(&mut self, notice: T)
where
T: Into<RawOptimizerNotice>,
{
let notice = notice.into();
if !self.optimizer_notices.contains(¬ice) {
self.optimizer_notices.push(notice);
}
}
}