mz_transform/canonicalization.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Transformations that bring relation expressions to their canonical form.
//!
//! This is achieved by:
//! 1. Bringing enclosed scalar expressions to a canonical form,
//! 2. Converting / peeling off part of the enclosing relation expression into
//! another relation expression that can represent the same concept.
mod flatmap_to_map;
mod projection_extraction;
mod topk_elision;
pub use flatmap_to_map::FlatMapToMap;
pub use projection_extraction::ProjectionExtraction;
pub use topk_elision::TopKElision;
use mz_expr::MirRelationExpr;
use crate::analysis::{DerivedBuilder, RelationType};
use crate::TransformCtx;
/// A transform that visits each AST node and reduces scalar expressions.
#[derive(Debug)]
pub struct ReduceScalars;
impl crate::Transform for ReduceScalars {
fn name(&self) -> &'static str {
"ReduceScalars"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "reduce_scalars")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
ctx: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let mut builder = DerivedBuilder::new(ctx.features);
builder.require(RelationType);
let derived = builder.visit(&*relation);
// Descend the AST, reducing scalar expressions.
let mut todo = vec![(&mut *relation, derived.as_view())];
while let Some((expr, view)) = todo.pop() {
match expr {
MirRelationExpr::Constant { .. }
| MirRelationExpr::Get { .. }
| MirRelationExpr::Let { .. }
| MirRelationExpr::LetRec { .. }
| MirRelationExpr::Project { .. }
| MirRelationExpr::Union { .. }
| MirRelationExpr::Threshold { .. }
| MirRelationExpr::Negate { .. } => {
// No expressions to reduce
}
MirRelationExpr::ArrangeBy { .. } => {
// Has expressions, but we aren't brave enough to reduce these yet.
}
MirRelationExpr::Filter { predicates, .. } => {
let input_type = view
.last_child()
.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap();
for predicate in predicates.iter_mut() {
predicate.reduce(input_type);
}
predicates.retain(|p| !p.is_literal_true());
}
MirRelationExpr::FlatMap { exprs, .. } => {
let input_type = view
.last_child()
.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap();
for expr in exprs.iter_mut() {
expr.reduce(input_type);
}
}
MirRelationExpr::Map { scalars, .. } => {
// Use the output type, to incorporate the types of `scalars` as they land.
let output_type = view
.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap();
let input_arity = output_type.len() - scalars.len();
for (index, scalar) in scalars.iter_mut().enumerate() {
scalar.reduce(&output_type[..input_arity + index]);
}
}
MirRelationExpr::Join { equivalences, .. } => {
let mut children: Vec<_> = view.children_rev().collect::<Vec<_>>();
children.reverse();
let input_types = children
.iter()
.flat_map(|c| {
c.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap()
.iter()
.cloned()
})
.collect::<Vec<_>>();
for class in equivalences.iter_mut() {
for expr in class.iter_mut() {
expr.reduce(&input_types[..]);
}
class.sort();
class.dedup();
}
equivalences.retain(|e| e.len() > 1);
equivalences.sort();
equivalences.dedup();
}
MirRelationExpr::Reduce {
group_key,
aggregates,
..
} => {
let input_type = view
.last_child()
.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap();
for key in group_key.iter_mut() {
key.reduce(input_type);
}
for aggregate in aggregates.iter_mut() {
aggregate.expr.reduce(input_type);
}
}
MirRelationExpr::TopK { limit, .. } => {
let input_type = view
.last_child()
.value::<RelationType>()
.expect("RelationType required")
.as_ref()
.unwrap();
if let Some(limit) = limit {
limit.reduce(input_type);
}
}
}
todo.extend(expr.children_mut().rev().zip(view.children_rev()))
}
mz_repr::explain::trace_plan(&*relation);
Ok(())
}
}