differential_dataflow/operators/join.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
//! Match pairs of records based on a key.
//!
//! The various `join` implementations require that the units of each collection can be multiplied, and that
//! the multiplication distributes over addition. That is, we will repeatedly evaluate (a + b) * c as (a * c)
//! + (b * c), and if this is not equal to the former term, little is known about the actual output.
use std::cmp::Ordering;
use timely::Container;
use timely::container::{ContainerBuilder, PushInto};
use timely::order::PartialOrder;
use timely::progress::Timestamp;
use timely::dataflow::{Scope, StreamCore};
use timely::dataflow::operators::generic::{Operator, OutputHandleCore};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::pushers::buffer::Session;
use timely::dataflow::channels::pushers::Counter;
use timely::dataflow::operators::Capability;
use timely::dataflow::channels::pushers::tee::Tee;
use crate::hashable::Hashable;
use crate::{Data, ExchangeData, Collection};
use crate::difference::{Semigroup, Abelian, Multiply};
use crate::lattice::Lattice;
use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf};
use crate::trace::{BatchReader, Cursor};
use crate::operators::ValueHistory;
use crate::trace::TraceReader;
/// Join implementations for `(key,val)` data.
pub trait Join<G: Scope, K: Data, V: Data, R: Semigroup> {
/// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and yields pairs `(key, (val1, val2))`.
///
/// The [`join_map`](Join::join_map) method may be more convenient for non-trivial processing pipelines.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::Join;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
/// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
/// let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;
///
/// x.join(&y)
/// .assert_eq(&z);
/// });
/// ```
fn join<V2, R2>(&self, other: &Collection<G, (K,V2), R2>) -> Collection<G, (K,(V,V2)), <R as Multiply<R2>>::Output>
where
K: ExchangeData,
V2: ExchangeData,
R2: ExchangeData+Semigroup,
R: Multiply<R2>,
<R as Multiply<R2>>::Output: Semigroup+'static
{
self.join_map(other, |k,v,v2| (k.clone(),(v.clone(),v2.clone())))
}
/// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::Join;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
/// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
/// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
///
/// x.join_map(&y, |_key, &a, &b| (a,b))
/// .assert_eq(&z);
/// });
/// ```
fn join_map<V2, R2, D, L>(&self, other: &Collection<G, (K,V2), R2>, logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
where K: ExchangeData, V2: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static, D: Data, L: FnMut(&K, &V, &V2)->D+'static;
/// Matches pairs `(key, val)` and `key` based on `key`, producing the former with frequencies multiplied.
///
/// When the second collection contains frequencies that are either zero or one this is the more traditional
/// relational semijoin. When the second collection may contain multiplicities, this operation may scale up
/// the counts of the records in the first input.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::Join;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
/// let y = scope.new_collection_from(vec![0, 2]).1;
/// let z = scope.new_collection_from(vec![(0, 1)]).1;
///
/// x.semijoin(&y)
/// .assert_eq(&z);
/// });
/// ```
fn semijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static;
/// Subtracts the semijoin with `other` from `self`.
///
/// In the case that `other` has multiplicities zero or one this results
/// in a relational antijoin, in which we discard input records whose key
/// is present in `other`. If the multiplicities could be other than zero
/// or one, the semantic interpretation of this operator is less clear.
///
/// In almost all cases, you should ensure that `other` has multiplicities
/// that are zero or one, perhaps by using the `distinct` operator.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::Join;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
/// let y = scope.new_collection_from(vec![0, 2]).1;
/// let z = scope.new_collection_from(vec![(1, 3)]).1;
///
/// x.antijoin(&y)
/// .assert_eq(&z);
/// });
/// ```
fn antijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output = R>, R: Abelian+'static;
}
impl<G, K, V, R> Join<G, K, V, R> for Collection<G, (K, V), R>
where
G: Scope,
K: ExchangeData+Hashable,
V: ExchangeData,
R: ExchangeData+Semigroup,
G::Timestamp: Lattice+Ord,
{
fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static, L: FnMut(&K, &V, &V2)->D+'static {
let arranged1 = self.arrange_by_key();
let arranged2 = other.arrange_by_key();
arranged1.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
}
fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static {
let arranged1 = self.arrange_by_key();
let arranged2 = other.arrange_by_self();
arranged1.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
}
fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
where R: Multiply<R2, Output=R>, R: Abelian+'static {
self.concat(&self.semijoin(other).negate())
}
}
impl<G, K, V, Tr> Join<G, K, V, Tr::Diff> for Arranged<G, Tr>
where
G: Scope<Timestamp=Tr::Time>,
Tr: for<'a> TraceReader<Key<'a> = &'a K, Val<'a> = &'a V>+Clone+'static,
K: ExchangeData+Hashable,
V: Data + 'static,
{
fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <Tr::Diff as Multiply<R2>>::Output>
where
Tr::Diff: Multiply<R2>,
<Tr::Diff as Multiply<R2>>::Output: Semigroup+'static,
L: for<'a> FnMut(Tr::Key<'a>, Tr::Val<'a>, &V2)->D+'static,
{
let arranged2 = other.arrange_by_key();
self.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
}
fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <Tr::Diff as Multiply<R2>>::Output>
where Tr::Diff: Multiply<R2>, <Tr::Diff as Multiply<R2>>::Output: Semigroup+'static {
let arranged2 = other.arrange_by_self();
self.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
}
fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), Tr::Diff>
where Tr::Diff: Multiply<R2, Output=Tr::Diff>, Tr::Diff: Abelian+'static {
self.as_collection(|k,v| (k.clone(), v.clone()))
.concat(&self.semijoin(other).negate())
}
}
/// Matches the elements of two arranged traces.
///
/// This method is used by the various `join` implementations, but it can also be used
/// directly in the event that one has a handle to an `Arranged<G,T>`, perhaps because
/// the arrangement is available for re-use, or from the output of a `reduce` operator.
pub trait JoinCore<G: Scope, K: 'static + ?Sized, V: 'static + ?Sized, R: Semigroup> where G::Timestamp: Lattice+Ord {
/// Joins two arranged collections with the same key type.
///
/// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
/// which produces something implementing `IntoIterator`, where the output collection will have an entry for
/// every value returned by the iterator.
///
/// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
/// contains the implementations for collections.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::arrange::ArrangeByKey;
/// use differential_dataflow::operators::join::JoinCore;
/// use differential_dataflow::trace::Trace;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
/// .arrange_by_key();
/// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
/// .arrange_by_key();
///
/// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
///
/// x.join_core(&y, |_key, &a, &b| Some((a, b)))
/// .assert_eq(&z);
/// });
/// ```
fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
where
Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
R: Multiply<Tr2::Diff>,
<R as Multiply<Tr2::Diff>>::Output: Semigroup+'static,
I: IntoIterator,
I::Item: Data,
L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
;
/// An unsafe variant of `join_core` where the `result` closure takes additional arguments for `time` and
/// `diff` as input and returns an iterator over `(data, time, diff)` triplets. This allows for more
/// flexibility, but is more error-prone.
///
/// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
/// which produces something implementing `IntoIterator`, where the output collection will have an entry
/// for every value returned by the iterator.
///
/// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
/// contains the implementations for collections.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::arrange::ArrangeByKey;
/// use differential_dataflow::operators::join::JoinCore;
/// use differential_dataflow::trace::Trace;
///
/// ::timely::example(|scope| {
///
/// let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
/// .arrange_by_key();
/// let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
/// .arrange_by_key();
///
/// let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b'), (3, 'b'), (3, 'b')]).1;
///
/// // Returned values have weight `a`
/// x.join_core_internal_unsafe(&y, |_key, &a, &b, &t, &r1, &r2| Some(((a, b), t.clone(), a)))
/// .assert_eq(&z);
/// });
/// ```
fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
where
Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
D: Data,
ROut: Semigroup+'static,
I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
L: for<'a> FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
;
}
impl<G, K, V, R> JoinCore<G, K, V, R> for Collection<G, (K, V), R>
where
G: Scope,
K: ExchangeData+Hashable,
V: ExchangeData,
R: ExchangeData+Semigroup,
G::Timestamp: Lattice+Ord,
{
fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
where
Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
R: Multiply<Tr2::Diff>,
<R as Multiply<Tr2::Diff>>::Output: Semigroup+'static,
I: IntoIterator,
I::Item: Data,
L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
{
self.arrange_by_key()
.join_core(stream2, result)
}
fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
where
Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
L: FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
D: Data,
ROut: Semigroup+'static,
{
self.arrange_by_key().join_core_internal_unsafe(stream2, result)
}
}
/// The session passed to join closures.
pub type JoinSession<'a, T, CB, C> = Session<'a, T, EffortBuilder<CB>, Counter<T, C, Tee<T, C>>>;
/// A container builder that tracks the length of outputs to estimate the effort of join closures.
#[derive(Default, Debug)]
pub struct EffortBuilder<CB>(pub std::cell::Cell<usize>, pub CB);
impl<CB: ContainerBuilder> ContainerBuilder for EffortBuilder<CB> {
type Container = CB::Container;
#[inline]
fn extract(&mut self) -> Option<&mut Self::Container> {
let extracted = self.1.extract();
self.0.replace(self.0.take() + extracted.as_ref().map_or(0, |e| e.len()));
extracted
}
#[inline]
fn finish(&mut self) -> Option<&mut Self::Container> {
let finished = self.1.finish();
self.0.replace(self.0.take() + finished.as_ref().map_or(0, |e| e.len()));
finished
}
}
impl<CB: PushInto<D>, D> PushInto<D> for EffortBuilder<CB> {
#[inline]
fn push_into(&mut self, item: D) {
self.1.push_into(item);
}
}
/// An equijoin of two traces, sharing a common key type.
///
/// This method exists to provide join functionality without opinions on the specific input types, keys and values,
/// that should be presented. The two traces here can have arbitrary key and value types, which can be unsized and
/// even potentially unrelated to the input collection data. Importantly, the key and value types could be generic
/// associated types (GATs) of the traces, and we would seemingly struggle to frame these types as trait arguments.
///
/// The implementation produces a caller-specified container. Implementations can use [`AsCollection`] to wrap the
/// output stream in a collection.
///
/// The "correctness" of this method depends heavily on the behavior of the supplied `result` function.
///
/// [`AsCollection`]: crate::collection::AsCollection
pub fn join_traces<G, T1, T2, L, CB>(arranged1: &Arranged<G,T1>, arranged2: &Arranged<G,T2>, mut result: L) -> StreamCore<G, CB::Container>
where
G: Scope<Timestamp=T1::Time>,
T1: TraceReader+Clone+'static,
T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>, Time=T1::Time>+Clone+'static,
L: FnMut(T1::Key<'_>,T1::Val<'_>,T2::Val<'_>,&G::Timestamp,&T1::Diff,&T2::Diff,&mut JoinSession<T1::Time, CB, CB::Container>)+'static,
CB: ContainerBuilder + 'static,
{
// Rename traces for symmetry from here on out.
let mut trace1 = arranged1.trace.clone();
let mut trace2 = arranged2.trace.clone();
arranged1.stream.binary_frontier(&arranged2.stream, Pipeline, Pipeline, "Join", move |capability, info| {
// Acquire an activator to reschedule the operator when it has unfinished work.
use timely::scheduling::Activator;
let activations = arranged1.stream.scope().activations().clone();
let activator = Activator::new(info.address, activations);
// Our initial invariants are that for each trace, physical compaction is less or equal the trace's upper bound.
// These invariants ensure that we can reference observed batch frontiers from `_start_upper` onward, as long as
// we maintain our physical compaction capabilities appropriately. These assertions are tested as we load up the
// initial work for the two traces, and before the operator is constructed.
// Acknowledged frontier for each input.
// These two are used exclusively to track batch boundaries on which we may want/need to call `cursor_through`.
// They will drive our physical compaction of each trace, and we want to maintain at all times that each is beyond
// the physical compaction frontier of their corresponding trace.
// Should we ever *drop* a trace, these are 1. much harder to maintain correctly, but 2. no longer used.
use timely::progress::frontier::Antichain;
let mut acknowledged1 = Antichain::from_elem(<G::Timestamp>::minimum());
let mut acknowledged2 = Antichain::from_elem(<G::Timestamp>::minimum());
// deferred work of batches from each input.
let mut todo1 = std::collections::VecDeque::new();
let mut todo2 = std::collections::VecDeque::new();
// We'll unload the initial batches here, to put ourselves in a less non-deterministic state to start.
trace1.map_batches(|batch1| {
acknowledged1.clone_from(batch1.upper());
// No `todo1` work here, because we haven't accepted anything into `batches2` yet.
// It is effectively "empty", because we choose to drain `trace1` before `trace2`.
// Once we start streaming batches in, we will need to respond to new batches from
// `input1` with logic that would have otherwise been here. Check out the next loop
// for the structure.
});
// At this point, `ack1` should exactly equal `trace1.read_upper()`, as they are both determined by
// iterating through batches and capturing the upper bound. This is a great moment to assert that
// `trace1`'s physical compaction frontier is before the frontier of completed times in `trace1`.
// TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
assert!(PartialOrder::less_equal(&trace1.get_physical_compaction(), &acknowledged1.borrow()));
// We capture batch2 cursors first and establish work second to avoid taking a `RefCell` lock
// on both traces at the same time, as they could be the same trace and this would panic.
let mut batch2_cursors = Vec::new();
trace2.map_batches(|batch2| {
acknowledged2.clone_from(batch2.upper());
batch2_cursors.push((batch2.cursor(), batch2.clone()));
});
// At this point, `ack2` should exactly equal `trace2.read_upper()`, as they are both determined by
// iterating through batches and capturing the upper bound. This is a great moment to assert that
// `trace2`'s physical compaction frontier is before the frontier of completed times in `trace2`.
// TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
assert!(PartialOrder::less_equal(&trace2.get_physical_compaction(), &acknowledged2.borrow()));
// Load up deferred work using trace2 cursors and batches captured just above.
for (batch2_cursor, batch2) in batch2_cursors.into_iter() {
// It is safe to ask for `ack1` because we have confirmed it to be in advance of `distinguish_since`.
let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
// We could downgrade the capability here, but doing so is a bit complicated mathematically.
// TODO: downgrade the capability by searching out the one time in `batch2.lower()` and not
// in `batch2.upper()`. Only necessary for non-empty batches, as empty batches may not have
// that property.
todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
}
// Droppable handles to shared trace data structures.
let mut trace1_option = Some(trace1);
let mut trace2_option = Some(trace2);
// Swappable buffers for input extraction.
let mut input1_buffer = Vec::new();
let mut input2_buffer = Vec::new();
move |input1, input2, output| {
// 1. Consuming input.
//
// The join computation repeatedly accepts batches of updates from each of its inputs.
//
// For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
// updates from its other input. It is important to track which updates have been accepted, because
// we use a shared trace and there may be updates present that are in advance of this accepted bound.
//
// Batches are accepted: 1. in bulk at start-up (above), 2. as we observe them in the input stream,
// and 3. if the trace can confirm a region of empty space directly following our accepted bound.
// This last case is a consequence of our inability to transmit empty batches, as they may be formed
// in the absence of timely dataflow capabilities.
// Drain input 1, prepare work.
input1.for_each(|capability, data| {
// This test *should* always pass, as we only drop a trace in response to the other input emptying.
if let Some(ref mut trace2) = trace2_option {
let capability = capability.retain();
data.swap(&mut input1_buffer);
for batch1 in input1_buffer.drain(..) {
// Ignore any pre-loaded data.
if PartialOrder::less_equal(&acknowledged1, batch1.lower()) {
if !batch1.is_empty() {
// It is safe to ask for `ack2` as we validated that it was at least `get_physical_compaction()`
// at start-up, and have held back physical compaction ever since.
let (trace2_cursor, trace2_storage) = trace2.cursor_through(acknowledged2.borrow()).unwrap();
let batch1_cursor = batch1.cursor();
todo1.push_back(Deferred::new(trace2_cursor, trace2_storage, batch1_cursor, batch1.clone(), capability.clone()));
}
// To update `acknowledged1` we might presume that `batch1.lower` should equal it, but we
// may have skipped over empty batches. Still, the batches are in-order, and we should be
// able to just assume the most recent `batch1.upper`
debug_assert!(PartialOrder::less_equal(&acknowledged1, batch1.upper()));
acknowledged1.clone_from(batch1.upper());
}
}
}
else { panic!("`trace2_option` dropped before `input1` emptied!"); }
});
// Drain input 2, prepare work.
input2.for_each(|capability, data| {
// This test *should* always pass, as we only drop a trace in response to the other input emptying.
if let Some(ref mut trace1) = trace1_option {
let capability = capability.retain();
data.swap(&mut input2_buffer);
for batch2 in input2_buffer.drain(..) {
// Ignore any pre-loaded data.
if PartialOrder::less_equal(&acknowledged2, batch2.lower()) {
if !batch2.is_empty() {
// It is safe to ask for `ack1` as we validated that it was at least `get_physical_compaction()`
// at start-up, and have held back physical compaction ever since.
let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
let batch2_cursor = batch2.cursor();
todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
}
// To update `acknowledged2` we might presume that `batch2.lower` should equal it, but we
// may have skipped over empty batches. Still, the batches are in-order, and we should be
// able to just assume the most recent `batch2.upper`
debug_assert!(PartialOrder::less_equal(&acknowledged2, batch2.upper()));
acknowledged2.clone_from(batch2.upper());
}
}
}
else { panic!("`trace1_option` dropped before `input2` emptied!"); }
});
// Advance acknowledged frontiers through any empty regions that we may not receive as batches.
if let Some(trace1) = trace1_option.as_mut() {
trace1.advance_upper(&mut acknowledged1);
}
if let Some(trace2) = trace2_option.as_mut() {
trace2.advance_upper(&mut acknowledged2);
}
// 2. Join computation.
//
// For each of the inputs, we do some amount of work (measured in terms of number
// of output records produced). This is meant to yield control to allow downstream
// operators to consume and reduce the output, but it it also means to provide some
// degree of responsiveness. There is a potential risk here that if we fall behind
// then the increasing queues hold back physical compaction of the underlying traces
// which results in unintentionally quadratic processing time (each batch of either
// input must scan all batches from the other input).
// Perform some amount of outstanding work.
let mut fuel = 1_000_000;
while !todo1.is_empty() && fuel > 0 {
todo1.front_mut().unwrap().work(
output,
|k,v2,v1,t,r2,r1,c| result(k,v1,v2,t,r1,r2,c),
&mut fuel
);
if !todo1.front().unwrap().work_remains() { todo1.pop_front(); }
}
// Perform some amount of outstanding work.
let mut fuel = 1_000_000;
while !todo2.is_empty() && fuel > 0 {
todo2.front_mut().unwrap().work(
output,
|k,v1,v2,t,r1,r2,c| result(k,v1,v2,t,r1,r2,c),
&mut fuel
);
if !todo2.front().unwrap().work_remains() { todo2.pop_front(); }
}
// Re-activate operator if work remains.
if !todo1.is_empty() || !todo2.is_empty() {
activator.activate();
}
// 3. Trace maintenance.
//
// Importantly, we use `input.frontier()` here rather than `acknowledged` to track
// the progress of an input, because should we ever drop one of the traces we will
// lose the ability to extract information from anything other than the input.
// For example, if we dropped `trace2` we would not be able to use `advance_upper`
// to keep `acknowledged2` up to date wrt empty batches, and would hold back logical
// compaction of `trace1`.
// Maintain `trace1`. Drop if `input2` is empty, or advance based on future needs.
if let Some(trace1) = trace1_option.as_mut() {
if input2.frontier().is_empty() { trace1_option = None; }
else {
// Allow `trace1` to compact logically up to the frontier we may yet receive,
// in the opposing input (`input2`). All `input2` times will be beyond this
// frontier, and joined times only need to be accurate when advanced to it.
trace1.set_logical_compaction(input2.frontier().frontier());
// Allow `trace1` to compact physically up to the upper bound of batches we
// have received in its input (`input1`). We will not require a cursor that
// is not beyond this bound.
trace1.set_physical_compaction(acknowledged1.borrow());
}
}
// Maintain `trace2`. Drop if `input1` is empty, or advance based on future needs.
if let Some(trace2) = trace2_option.as_mut() {
if input1.frontier().is_empty() { trace2_option = None;}
else {
// Allow `trace2` to compact logically up to the frontier we may yet receive,
// in the opposing input (`input1`). All `input1` times will be beyond this
// frontier, and joined times only need to be accurate when advanced to it.
trace2.set_logical_compaction(input1.frontier().frontier());
// Allow `trace2` to compact physically up to the upper bound of batches we
// have received in its input (`input2`). We will not require a cursor that
// is not beyond this bound.
trace2.set_physical_compaction(acknowledged2.borrow());
}
}
}
})
}
/// Deferred join computation.
///
/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
/// dataflow system a chance to run operators that can consume and aggregate the data.
struct Deferred<T, C1, C2>
where
T: Timestamp+Lattice+Ord,
C1: Cursor<Time=T>,
C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
{
trace: C1,
trace_storage: C1::Storage,
batch: C2,
batch_storage: C2::Storage,
capability: Capability<T>,
done: bool,
}
impl<T, C1, C2> Deferred<T, C1, C2>
where
C1: Cursor<Time=T>,
C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
T: Timestamp+Lattice+Ord,
{
fn new(trace: C1, trace_storage: C1::Storage, batch: C2, batch_storage: C2::Storage, capability: Capability<T>) -> Self {
Deferred {
trace,
trace_storage,
batch,
batch_storage,
capability,
done: false,
}
}
fn work_remains(&self) -> bool {
!self.done
}
/// Process keys until at least `fuel` output tuples produced, or the work is exhausted.
#[inline(never)]
fn work<L, CB: ContainerBuilder>(&mut self, output: &mut OutputHandleCore<T, EffortBuilder<CB>, Tee<T, CB::Container>>, mut logic: L, fuel: &mut usize)
where
L: for<'a> FnMut(C1::Key<'a>, C1::Val<'a>, C2::Val<'a>, &T, &C1::Diff, &C2::Diff, &mut JoinSession<T, CB, CB::Container>),
{
let meet = self.capability.time();
let mut effort = 0;
let mut session = output.session_with_builder(&self.capability);
let trace_storage = &self.trace_storage;
let batch_storage = &self.batch_storage;
let trace = &mut self.trace;
let batch = &mut self.batch;
let mut thinker = JoinThinker::new();
while batch.key_valid(batch_storage) && trace.key_valid(trace_storage) && effort < *fuel {
match trace.key(trace_storage).cmp(&batch.key(batch_storage)) {
Ordering::Less => trace.seek_key(trace_storage, batch.key(batch_storage)),
Ordering::Greater => batch.seek_key(batch_storage, trace.key(trace_storage)),
Ordering::Equal => {
use crate::trace::cursor::IntoOwned;
thinker.history1.edits.load(trace, trace_storage, |time| {
let mut time = time.into_owned();
time.join_assign(meet);
time
});
thinker.history2.edits.load(batch, batch_storage, |time| time.into_owned());
// populate `temp` with the results in the best way we know how.
thinker.think(|v1,v2,t,r1,r2| {
let key = batch.key(batch_storage);
logic(key, v1, v2, &t, r1, r2, &mut session);
});
// TODO: Effort isn't perfectly tracked as we might still have some data in the
// session at the moment it's dropped.
effort += session.builder().0.take();
batch.step_key(batch_storage);
trace.step_key(trace_storage);
thinker.history1.clear();
thinker.history2.clear();
}
}
}
self.done = !batch.key_valid(batch_storage) || !trace.key_valid(trace_storage);
if effort > *fuel { *fuel = 0; }
else { *fuel -= effort; }
}
}
struct JoinThinker<'a, C1, C2>
where
C1: Cursor,
C2: Cursor<Time = C1::Time>,
{
pub history1: ValueHistory<'a, C1>,
pub history2: ValueHistory<'a, C2>,
}
impl<'a, C1, C2> JoinThinker<'a, C1, C2>
where
C1: Cursor,
C2: Cursor<Time = C1::Time>,
{
fn new() -> Self {
JoinThinker {
history1: ValueHistory::new(),
history2: ValueHistory::new(),
}
}
fn think<F: FnMut(C1::Val<'a>,C2::Val<'a>,C1::Time,&C1::Diff,&C2::Diff)>(&mut self, mut results: F) {
// for reasonably sized edits, do the dead-simple thing.
if self.history1.edits.len() < 10 || self.history2.edits.len() < 10 {
self.history1.edits.map(|v1, t1, d1| {
self.history2.edits.map(|v2, t2, d2| {
results(v1, v2, t1.join(t2), d1, d2);
})
})
}
else {
let mut replay1 = self.history1.replay();
let mut replay2 = self.history2.replay();
// TODO: It seems like there is probably a good deal of redundant `advance_buffer_by`
// in here. If a time is ever repeated, for example, the call will be identical
// and accomplish nothing. If only a single record has been added, it may not
// be worth the time to collapse (advance, re-sort) the data when a linear scan
// is sufficient.
while !replay1.is_done() && !replay2.is_done() {
if replay1.time().unwrap().cmp(replay2.time().unwrap()) == ::std::cmp::Ordering::Less {
replay2.advance_buffer_by(replay1.meet().unwrap());
for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
let (val1, time1, diff1) = replay1.edit().unwrap();
results(val1, val2, time1.join(time2), diff1, diff2);
}
replay1.step();
}
else {
replay1.advance_buffer_by(replay2.meet().unwrap());
for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
let (val2, time2, diff2) = replay2.edit().unwrap();
results(val1, val2, time1.join(time2), diff1, diff2);
}
replay2.step();
}
}
while !replay1.is_done() {
replay2.advance_buffer_by(replay1.meet().unwrap());
for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
let (val1, time1, diff1) = replay1.edit().unwrap();
results(val1, val2, time1.join(time2), diff1, diff2);
}
replay1.step();
}
while !replay2.is_done() {
replay1.advance_buffer_by(replay2.meet().unwrap());
for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
let (val2, time2, diff2) = replay2.edit().unwrap();
results(val1, val2, time1.join(time2), diff1, diff2);
}
replay2.step();
}
}
}
}