differential_dataflow/operators/
join.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
//! Match pairs of records based on a key.
//!
//! The various `join` implementations require that the units of each collection can be multiplied, and that
//! the multiplication distributes over addition. That is, we will repeatedly evaluate (a + b) * c as (a * c)
//! + (b * c), and if this is not equal to the former term, little is known about the actual output.
use std::cmp::Ordering;
use timely::Container;

use timely::container::{ContainerBuilder, PushInto};
use timely::order::PartialOrder;
use timely::progress::Timestamp;
use timely::dataflow::{Scope, StreamCore};
use timely::dataflow::operators::generic::{Operator, OutputHandleCore};
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::channels::pushers::buffer::Session;
use timely::dataflow::channels::pushers::Counter;
use timely::dataflow::operators::Capability;
use timely::dataflow::channels::pushers::tee::Tee;

use crate::hashable::Hashable;
use crate::{Data, ExchangeData, Collection};
use crate::difference::{Semigroup, Abelian, Multiply};
use crate::lattice::Lattice;
use crate::operators::arrange::{Arranged, ArrangeByKey, ArrangeBySelf};
use crate::trace::{BatchReader, Cursor};
use crate::operators::ValueHistory;

use crate::trace::TraceReader;

/// Join implementations for `(key,val)` data.
pub trait Join<G: Scope, K: Data, V: Data, R: Semigroup> {

    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and yields pairs `(key, (val1, val2))`.
    ///
    /// The [`join_map`](Join::join_map) method may be more convenient for non-trivial processing pipelines.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    ///     let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;
    ///
    ///     x.join(&y)
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn join<V2, R2>(&self, other: &Collection<G, (K,V2), R2>) -> Collection<G, (K,(V,V2)), <R as Multiply<R2>>::Output>
    where
        K: ExchangeData,
        V2: ExchangeData,
        R2: ExchangeData+Semigroup,
        R: Multiply<R2>,
        <R as Multiply<R2>>::Output: Semigroup+'static
    {
        self.join_map(other, |k,v,v2| (k.clone(),(v.clone(),v2.clone())))
    }

    /// Matches pairs `(key,val1)` and `(key,val2)` based on `key` and then applies a function.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
    ///
    ///     x.join_map(&y, |_key, &a, &b| (a,b))
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn join_map<V2, R2, D, L>(&self, other: &Collection<G, (K,V2), R2>, logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
    where K: ExchangeData, V2: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static, D: Data, L: FnMut(&K, &V, &V2)->D+'static;

    /// Matches pairs `(key, val)` and `key` based on `key`, producing the former with frequencies multiplied.
    ///
    /// When the second collection contains frequencies that are either zero or one this is the more traditional
    /// relational semijoin. When the second collection may contain multiplicities, this operation may scale up
    /// the counts of the records in the first input.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///     let y = scope.new_collection_from(vec![0, 2]).1;
    ///     let z = scope.new_collection_from(vec![(0, 1)]).1;
    ///
    ///     x.semijoin(&y)
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn semijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
    where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static;

    /// Subtracts the semijoin with `other` from `self`.
    ///
    /// In the case that `other` has multiplicities zero or one this results
    /// in a relational antijoin, in which we discard input records whose key
    /// is present in `other`. If the multiplicities could be other than zero
    /// or one, the semantic interpretation of this operator is less clear.
    ///
    /// In almost all cases, you should ensure that `other` has multiplicities
    /// that are zero or one, perhaps by using the `distinct` operator.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::Join;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    ///     let y = scope.new_collection_from(vec![0, 2]).1;
    ///     let z = scope.new_collection_from(vec![(1, 3)]).1;
    ///
    ///     x.antijoin(&y)
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn antijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
    where K: ExchangeData, R2: ExchangeData+Semigroup, R: Multiply<R2, Output = R>, R: Abelian+'static;
}

impl<G, K, V, R> Join<G, K, V, R> for Collection<G, (K, V), R>
where
    G: Scope,
    K: ExchangeData+Hashable,
    V: ExchangeData,
    R: ExchangeData+Semigroup,
    G::Timestamp: Lattice+Ord,
{
    fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <R as Multiply<R2>>::Output>
    where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static, L: FnMut(&K, &V, &V2)->D+'static {
        let arranged1 = self.arrange_by_key();
        let arranged2 = other.arrange_by_key();
        arranged1.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
    }

    fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
    where R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup+'static {
        let arranged1 = self.arrange_by_key();
        let arranged2 = other.arrange_by_self();
        arranged1.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
    }

    fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
    where R: Multiply<R2, Output=R>, R: Abelian+'static {
        self.concat(&self.semijoin(other).negate())
    }
}

impl<G, K, V, Tr> Join<G, K, V, Tr::Diff> for Arranged<G, Tr>
where
    G: Scope<Timestamp=Tr::Time>,
    Tr: for<'a> TraceReader<Key<'a> = &'a K, Val<'a> = &'a V>+Clone+'static,
    K: ExchangeData+Hashable,
    V: Data + 'static,
{
    fn join_map<V2: ExchangeData, R2: ExchangeData+Semigroup, D: Data, L>(&self, other: &Collection<G, (K, V2), R2>, mut logic: L) -> Collection<G, D, <Tr::Diff as Multiply<R2>>::Output>
    where 
        Tr::Diff: Multiply<R2>,
        <Tr::Diff as Multiply<R2>>::Output: Semigroup+'static,
        L: for<'a> FnMut(Tr::Key<'a>, Tr::Val<'a>, &V2)->D+'static,
    {
        let arranged2 = other.arrange_by_key();
        self.join_core(&arranged2, move |k,v1,v2| Some(logic(k,v1,v2)))
    }

    fn semijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), <Tr::Diff as Multiply<R2>>::Output>
    where Tr::Diff: Multiply<R2>, <Tr::Diff as Multiply<R2>>::Output: Semigroup+'static {
        let arranged2 = other.arrange_by_self();
        self.join_core(&arranged2, |k,v,_| Some((k.clone(), v.clone())))
    }

    fn antijoin<R2: ExchangeData+Semigroup>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), Tr::Diff>
    where Tr::Diff: Multiply<R2, Output=Tr::Diff>, Tr::Diff: Abelian+'static {
        self.as_collection(|k,v| (k.clone(), v.clone()))
            .concat(&self.semijoin(other).negate())
    }
}

/// Matches the elements of two arranged traces.
///
/// This method is used by the various `join` implementations, but it can also be used
/// directly in the event that one has a handle to an `Arranged<G,T>`, perhaps because
/// the arrangement is available for re-use, or from the output of a `reduce` operator.
pub trait JoinCore<G: Scope, K: 'static + ?Sized, V: 'static + ?Sized, R: Semigroup> where G::Timestamp: Lattice+Ord {

    /// Joins two arranged collections with the same key type.
    ///
    /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
    /// which produces something implementing `IntoIterator`, where the output collection will have an entry for
    /// every value returned by the iterator.
    ///
    /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
    /// contains the implementations for collections.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::arrange::ArrangeByKey;
    /// use differential_dataflow::operators::join::JoinCore;
    /// use differential_dataflow::trace::Trace;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
    ///                  .arrange_by_key();
    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
    ///                  .arrange_by_key();
    ///
    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;
    ///
    ///     x.join_core(&y, |_key, &a, &b| Some((a, b)))
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
    where
        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
        R: Multiply<Tr2::Diff>,
        <R as Multiply<Tr2::Diff>>::Output: Semigroup+'static,
        I: IntoIterator,
        I::Item: Data,
        L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
        ;

    /// An unsafe variant of `join_core` where the `result` closure takes additional arguments for `time` and
    /// `diff` as input and returns an iterator over `(data, time, diff)` triplets. This allows for more
    /// flexibility, but is more error-prone.
    ///
    /// Each matching pair of records `(key, val1)` and `(key, val2)` are subjected to the `result` function,
    /// which produces something implementing `IntoIterator`, where the output collection will have an entry
    /// for every value returned by the iterator.
    ///
    /// This trait is implemented for arrangements (`Arranged<G, T>`) rather than collections. The `Join` trait
    /// contains the implementations for collections.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    /// use differential_dataflow::operators::arrange::ArrangeByKey;
    /// use differential_dataflow::operators::join::JoinCore;
    /// use differential_dataflow::trace::Trace;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let x = scope.new_collection_from(vec![(0u32, 1), (1, 3)]).1
    ///                  .arrange_by_key();
    ///     let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1
    ///                  .arrange_by_key();
    ///
    ///     let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b'), (3, 'b'), (3, 'b')]).1;
    ///
    ///     // Returned values have weight `a`
    ///     x.join_core_internal_unsafe(&y, |_key, &a, &b, &t, &r1, &r2| Some(((a, b), t.clone(), a)))
    ///      .assert_eq(&z);
    /// });
    /// ```
    fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
    where
        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
        D: Data,
        ROut: Semigroup+'static,
        I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
        L: for<'a> FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
        ;
}


impl<G, K, V, R> JoinCore<G, K, V, R> for Collection<G, (K, V), R>
where
    G: Scope,
    K: ExchangeData+Hashable,
    V: ExchangeData,
    R: ExchangeData+Semigroup,
    G::Timestamp: Lattice+Ord,
{
    fn join_core<Tr2,I,L> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,I::Item,<R as Multiply<Tr2::Diff>>::Output>
    where
        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
        R: Multiply<Tr2::Diff>,
        <R as Multiply<Tr2::Diff>>::Output: Semigroup+'static,
        I: IntoIterator,
        I::Item: Data,
        L: FnMut(&K,&V,Tr2::Val<'_>)->I+'static,
    {
        self.arrange_by_key()
            .join_core(stream2, result)
    }

    fn join_core_internal_unsafe<Tr2,I,L,D,ROut> (&self, stream2: &Arranged<G,Tr2>, result: L) -> Collection<G,D,ROut>
    where
        Tr2: for<'a> TraceReader<Key<'a>=&'a K, Time=G::Timestamp>+Clone+'static,
        I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
        L: FnMut(&K,&V,Tr2::Val<'_>,&G::Timestamp,&R,&Tr2::Diff)->I+'static,
        D: Data,
        ROut: Semigroup+'static,
    {
        self.arrange_by_key().join_core_internal_unsafe(stream2, result)
    }
}

/// The session passed to join closures.
pub type JoinSession<'a, T, CB, C> = Session<'a, T, EffortBuilder<CB>, Counter<T, C, Tee<T, C>>>;

/// A container builder that tracks the length of outputs to estimate the effort of join closures.
#[derive(Default, Debug)]
pub struct EffortBuilder<CB>(pub std::cell::Cell<usize>, pub CB);

impl<CB: ContainerBuilder> ContainerBuilder for EffortBuilder<CB> {
    type Container = CB::Container;

    #[inline]
    fn extract(&mut self) -> Option<&mut Self::Container> {
        let extracted = self.1.extract();
        self.0.replace(self.0.take() + extracted.as_ref().map_or(0, |e| e.len()));
        extracted
    }

    #[inline]
    fn finish(&mut self) -> Option<&mut Self::Container> {
        let finished = self.1.finish();
        self.0.replace(self.0.take() + finished.as_ref().map_or(0, |e| e.len()));
        finished
    }
}

impl<CB: PushInto<D>, D> PushInto<D> for EffortBuilder<CB> {
    #[inline]
    fn push_into(&mut self, item: D) {
        self.1.push_into(item);
    }
}

/// An equijoin of two traces, sharing a common key type.
///
/// This method exists to provide join functionality without opinions on the specific input types, keys and values,
/// that should be presented. The two traces here can have arbitrary key and value types, which can be unsized and
/// even potentially unrelated to the input collection data. Importantly, the key and value types could be generic
/// associated types (GATs) of the traces, and we would seemingly struggle to frame these types as trait arguments.
///
/// The implementation produces a caller-specified container. Implementations can use [`AsCollection`] to wrap the
/// output stream in a collection.
///
/// The "correctness" of this method depends heavily on the behavior of the supplied `result` function.
///
/// [`AsCollection`]: crate::collection::AsCollection
pub fn join_traces<G, T1, T2, L, CB>(arranged1: &Arranged<G,T1>, arranged2: &Arranged<G,T2>, mut result: L) -> StreamCore<G, CB::Container>
where
    G: Scope<Timestamp=T1::Time>,
    T1: TraceReader+Clone+'static,
    T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>, Time=T1::Time>+Clone+'static,
    L: FnMut(T1::Key<'_>,T1::Val<'_>,T2::Val<'_>,&G::Timestamp,&T1::Diff,&T2::Diff,&mut JoinSession<T1::Time, CB, CB::Container>)+'static,
    CB: ContainerBuilder + 'static,
{
    // Rename traces for symmetry from here on out.
    let mut trace1 = arranged1.trace.clone();
    let mut trace2 = arranged2.trace.clone();

    arranged1.stream.binary_frontier(&arranged2.stream, Pipeline, Pipeline, "Join", move |capability, info| {

        // Acquire an activator to reschedule the operator when it has unfinished work.
        use timely::scheduling::Activator;
        let activations = arranged1.stream.scope().activations().clone();
        let activator = Activator::new(info.address, activations);

        // Our initial invariants are that for each trace, physical compaction is less or equal the trace's upper bound.
        // These invariants ensure that we can reference observed batch frontiers from `_start_upper` onward, as long as
        // we maintain our physical compaction capabilities appropriately. These assertions are tested as we load up the
        // initial work for the two traces, and before the operator is constructed.

        // Acknowledged frontier for each input.
        // These two are used exclusively to track batch boundaries on which we may want/need to call `cursor_through`.
        // They will drive our physical compaction of each trace, and we want to maintain at all times that each is beyond
        // the physical compaction frontier of their corresponding trace.
        // Should we ever *drop* a trace, these are 1. much harder to maintain correctly, but 2. no longer used.
        use timely::progress::frontier::Antichain;
        let mut acknowledged1 = Antichain::from_elem(<G::Timestamp>::minimum());
        let mut acknowledged2 = Antichain::from_elem(<G::Timestamp>::minimum());

        // deferred work of batches from each input.
        let mut todo1 = std::collections::VecDeque::new();
        let mut todo2 = std::collections::VecDeque::new();

        // We'll unload the initial batches here, to put ourselves in a less non-deterministic state to start.
        trace1.map_batches(|batch1| {
            acknowledged1.clone_from(batch1.upper());
            // No `todo1` work here, because we haven't accepted anything into `batches2` yet.
            // It is effectively "empty", because we choose to drain `trace1` before `trace2`.
            // Once we start streaming batches in, we will need to respond to new batches from
            // `input1` with logic that would have otherwise been here. Check out the next loop
            // for the structure.
        });
        // At this point, `ack1` should exactly equal `trace1.read_upper()`, as they are both determined by
        // iterating through batches and capturing the upper bound. This is a great moment to assert that
        // `trace1`'s physical compaction frontier is before the frontier of completed times in `trace1`.
        // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
        assert!(PartialOrder::less_equal(&trace1.get_physical_compaction(), &acknowledged1.borrow()));

        // We capture batch2 cursors first and establish work second to avoid taking a `RefCell` lock
        // on both traces at the same time, as they could be the same trace and this would panic.
        let mut batch2_cursors = Vec::new();
        trace2.map_batches(|batch2| {
            acknowledged2.clone_from(batch2.upper());
            batch2_cursors.push((batch2.cursor(), batch2.clone()));
        });
        // At this point, `ack2` should exactly equal `trace2.read_upper()`, as they are both determined by
        // iterating through batches and capturing the upper bound. This is a great moment to assert that
        // `trace2`'s physical compaction frontier is before the frontier of completed times in `trace2`.
        // TODO: in the case that this does not hold, instead "upgrade" the physical compaction frontier.
        assert!(PartialOrder::less_equal(&trace2.get_physical_compaction(), &acknowledged2.borrow()));

        // Load up deferred work using trace2 cursors and batches captured just above.
        for (batch2_cursor, batch2) in batch2_cursors.into_iter() {
            // It is safe to ask for `ack1` because we have confirmed it to be in advance of `distinguish_since`.
            let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
            // We could downgrade the capability here, but doing so is a bit complicated mathematically.
            // TODO: downgrade the capability by searching out the one time in `batch2.lower()` and not
            // in `batch2.upper()`. Only necessary for non-empty batches, as empty batches may not have
            // that property.
            todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
        }

        // Droppable handles to shared trace data structures.
        let mut trace1_option = Some(trace1);
        let mut trace2_option = Some(trace2);

        // Swappable buffers for input extraction.
        let mut input1_buffer = Vec::new();
        let mut input2_buffer = Vec::new();

        move |input1, input2, output| {

            // 1. Consuming input.
            //
            // The join computation repeatedly accepts batches of updates from each of its inputs.
            //
            // For each accepted batch, it prepares a work-item to join the batch against previously "accepted"
            // updates from its other input. It is important to track which updates have been accepted, because
            // we use a shared trace and there may be updates present that are in advance of this accepted bound.
            //
            // Batches are accepted: 1. in bulk at start-up (above), 2. as we observe them in the input stream,
            // and 3. if the trace can confirm a region of empty space directly following our accepted bound.
            // This last case is a consequence of our inability to transmit empty batches, as they may be formed
            // in the absence of timely dataflow capabilities.

            // Drain input 1, prepare work.
            input1.for_each(|capability, data| {
                // This test *should* always pass, as we only drop a trace in response to the other input emptying.
                if let Some(ref mut trace2) = trace2_option {
                    let capability = capability.retain();
                    data.swap(&mut input1_buffer);
                    for batch1 in input1_buffer.drain(..) {
                        // Ignore any pre-loaded data.
                        if PartialOrder::less_equal(&acknowledged1, batch1.lower()) {
                            if !batch1.is_empty() {
                                // It is safe to ask for `ack2` as we validated that it was at least `get_physical_compaction()`
                                // at start-up, and have held back physical compaction ever since.
                                let (trace2_cursor, trace2_storage) = trace2.cursor_through(acknowledged2.borrow()).unwrap();
                                let batch1_cursor = batch1.cursor();
                                todo1.push_back(Deferred::new(trace2_cursor, trace2_storage, batch1_cursor, batch1.clone(), capability.clone()));
                            }

                            // To update `acknowledged1` we might presume that `batch1.lower` should equal it, but we
                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
                            // able to just assume the most recent `batch1.upper`
                            debug_assert!(PartialOrder::less_equal(&acknowledged1, batch1.upper()));
                            acknowledged1.clone_from(batch1.upper());
                        }
                    }
                }
                else { panic!("`trace2_option` dropped before `input1` emptied!"); }
            });

            // Drain input 2, prepare work.
            input2.for_each(|capability, data| {
                // This test *should* always pass, as we only drop a trace in response to the other input emptying.
                if let Some(ref mut trace1) = trace1_option {
                    let capability = capability.retain();
                    data.swap(&mut input2_buffer);
                    for batch2 in input2_buffer.drain(..) {
                        // Ignore any pre-loaded data.
                        if PartialOrder::less_equal(&acknowledged2, batch2.lower()) {
                            if !batch2.is_empty() {
                                // It is safe to ask for `ack1` as we validated that it was at least `get_physical_compaction()`
                                // at start-up, and have held back physical compaction ever since.
                                let (trace1_cursor, trace1_storage) = trace1.cursor_through(acknowledged1.borrow()).unwrap();
                                let batch2_cursor = batch2.cursor();
                                todo2.push_back(Deferred::new(trace1_cursor, trace1_storage, batch2_cursor, batch2.clone(), capability.clone()));
                            }

                            // To update `acknowledged2` we might presume that `batch2.lower` should equal it, but we
                            // may have skipped over empty batches. Still, the batches are in-order, and we should be
                            // able to just assume the most recent `batch2.upper`
                            debug_assert!(PartialOrder::less_equal(&acknowledged2, batch2.upper()));
                            acknowledged2.clone_from(batch2.upper());
                        }
                    }
                }
                else { panic!("`trace1_option` dropped before `input2` emptied!"); }
            });

            // Advance acknowledged frontiers through any empty regions that we may not receive as batches.
            if let Some(trace1) = trace1_option.as_mut() {
                trace1.advance_upper(&mut acknowledged1);
            }
            if let Some(trace2) = trace2_option.as_mut() {
                trace2.advance_upper(&mut acknowledged2);
            }

            // 2. Join computation.
            //
            // For each of the inputs, we do some amount of work (measured in terms of number
            // of output records produced). This is meant to yield control to allow downstream
            // operators to consume and reduce the output, but it it also means to provide some
            // degree of responsiveness. There is a potential risk here that if we fall behind
            // then the increasing queues hold back physical compaction of the underlying traces
            // which results in unintentionally quadratic processing time (each batch of either
            // input must scan all batches from the other input).

            // Perform some amount of outstanding work.
            let mut fuel = 1_000_000;
            while !todo1.is_empty() && fuel > 0 {
                todo1.front_mut().unwrap().work(
                    output,
                    |k,v2,v1,t,r2,r1,c| result(k,v1,v2,t,r1,r2,c),
                    &mut fuel
                );
                if !todo1.front().unwrap().work_remains() { todo1.pop_front(); }
            }

            // Perform some amount of outstanding work.
            let mut fuel = 1_000_000;
            while !todo2.is_empty() && fuel > 0 {
                todo2.front_mut().unwrap().work(
                    output,
                    |k,v1,v2,t,r1,r2,c| result(k,v1,v2,t,r1,r2,c),
                    &mut fuel
                );
                if !todo2.front().unwrap().work_remains() { todo2.pop_front(); }
            }

            // Re-activate operator if work remains.
            if !todo1.is_empty() || !todo2.is_empty() {
                activator.activate();
            }

            // 3. Trace maintenance.
            //
            // Importantly, we use `input.frontier()` here rather than `acknowledged` to track
            // the progress of an input, because should we ever drop one of the traces we will
            // lose the ability to extract information from anything other than the input.
            // For example, if we dropped `trace2` we would not be able to use `advance_upper`
            // to keep `acknowledged2` up to date wrt empty batches, and would hold back logical
            // compaction of `trace1`.

            // Maintain `trace1`. Drop if `input2` is empty, or advance based on future needs.
            if let Some(trace1) = trace1_option.as_mut() {
                if input2.frontier().is_empty() { trace1_option = None; }
                else {
                    // Allow `trace1` to compact logically up to the frontier we may yet receive,
                    // in the opposing input (`input2`). All `input2` times will be beyond this
                    // frontier, and joined times only need to be accurate when advanced to it.
                    trace1.set_logical_compaction(input2.frontier().frontier());
                    // Allow `trace1` to compact physically up to the upper bound of batches we
                    // have received in its input (`input1`). We will not require a cursor that
                    // is not beyond this bound.
                    trace1.set_physical_compaction(acknowledged1.borrow());
                }
            }

            // Maintain `trace2`. Drop if `input1` is empty, or advance based on future needs.
            if let Some(trace2) = trace2_option.as_mut() {
                if input1.frontier().is_empty() { trace2_option = None;}
                else {
                    // Allow `trace2` to compact logically up to the frontier we may yet receive,
                    // in the opposing input (`input1`). All `input1` times will be beyond this
                    // frontier, and joined times only need to be accurate when advanced to it.
                    trace2.set_logical_compaction(input1.frontier().frontier());
                    // Allow `trace2` to compact physically up to the upper bound of batches we
                    // have received in its input (`input2`). We will not require a cursor that
                    // is not beyond this bound.
                    trace2.set_physical_compaction(acknowledged2.borrow());
                }
            }
        }
    })
}


/// Deferred join computation.
///
/// The structure wraps cursors which allow us to play out join computation at whatever rate we like.
/// This allows us to avoid producing and buffering massive amounts of data, without giving the timely
/// dataflow system a chance to run operators that can consume and aggregate the data.
struct Deferred<T, C1, C2>
where
    T: Timestamp+Lattice+Ord,
    C1: Cursor<Time=T>,
    C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
{
    trace: C1,
    trace_storage: C1::Storage,
    batch: C2,
    batch_storage: C2::Storage,
    capability: Capability<T>,
    done: bool,
}

impl<T, C1, C2> Deferred<T, C1, C2>
where
    C1: Cursor<Time=T>,
    C2: for<'a> Cursor<Key<'a>=C1::Key<'a>, Time=T>,
    T: Timestamp+Lattice+Ord,
{
    fn new(trace: C1, trace_storage: C1::Storage, batch: C2, batch_storage: C2::Storage, capability: Capability<T>) -> Self {
        Deferred {
            trace,
            trace_storage,
            batch,
            batch_storage,
            capability,
            done: false,
        }
    }

    fn work_remains(&self) -> bool {
        !self.done
    }

    /// Process keys until at least `fuel` output tuples produced, or the work is exhausted.
    #[inline(never)]
    fn work<L, CB: ContainerBuilder>(&mut self, output: &mut OutputHandleCore<T, EffortBuilder<CB>, Tee<T, CB::Container>>, mut logic: L, fuel: &mut usize)
    where
        L: for<'a> FnMut(C1::Key<'a>, C1::Val<'a>, C2::Val<'a>, &T, &C1::Diff, &C2::Diff, &mut JoinSession<T, CB, CB::Container>),
    {

        let meet = self.capability.time();

        let mut effort = 0;
        let mut session = output.session_with_builder(&self.capability);

        let trace_storage = &self.trace_storage;
        let batch_storage = &self.batch_storage;

        let trace = &mut self.trace;
        let batch = &mut self.batch;

        let mut thinker = JoinThinker::new();

        while batch.key_valid(batch_storage) && trace.key_valid(trace_storage) && effort < *fuel {

            match trace.key(trace_storage).cmp(&batch.key(batch_storage)) {
                Ordering::Less => trace.seek_key(trace_storage, batch.key(batch_storage)),
                Ordering::Greater => batch.seek_key(batch_storage, trace.key(trace_storage)),
                Ordering::Equal => {

                    use crate::trace::cursor::IntoOwned;
                    
                    thinker.history1.edits.load(trace, trace_storage, |time| {
                        let mut time = time.into_owned();
                        time.join_assign(meet);
                        time
                    });
                    thinker.history2.edits.load(batch, batch_storage, |time| time.into_owned());

                    // populate `temp` with the results in the best way we know how.
                    thinker.think(|v1,v2,t,r1,r2| {
                        let key = batch.key(batch_storage);
                        logic(key, v1, v2, &t, r1, r2, &mut session);
                    });

                    // TODO: Effort isn't perfectly tracked as we might still have some data in the
                    // session at the moment it's dropped.
                    effort += session.builder().0.take();
                    batch.step_key(batch_storage);
                    trace.step_key(trace_storage);

                    thinker.history1.clear();
                    thinker.history2.clear();
                }
            }
        }
        self.done = !batch.key_valid(batch_storage) || !trace.key_valid(trace_storage);

        if effort > *fuel { *fuel = 0; }
        else              { *fuel -= effort; }
    }
}

struct JoinThinker<'a, C1, C2>
where
    C1: Cursor,
    C2: Cursor<Time = C1::Time>,
{
    pub history1: ValueHistory<'a, C1>,
    pub history2: ValueHistory<'a, C2>,
}

impl<'a, C1, C2> JoinThinker<'a, C1, C2>
where
    C1: Cursor,
    C2: Cursor<Time = C1::Time>,
{
    fn new() -> Self {
        JoinThinker {
            history1: ValueHistory::new(),
            history2: ValueHistory::new(),
        }
    }

    fn think<F: FnMut(C1::Val<'a>,C2::Val<'a>,C1::Time,&C1::Diff,&C2::Diff)>(&mut self, mut results: F) {

        // for reasonably sized edits, do the dead-simple thing.
        if self.history1.edits.len() < 10 || self.history2.edits.len() < 10 {
            self.history1.edits.map(|v1, t1, d1| {
                self.history2.edits.map(|v2, t2, d2| {
                    results(v1, v2, t1.join(t2), d1, d2);
                })
            })
        }
        else {

            let mut replay1 = self.history1.replay();
            let mut replay2 = self.history2.replay();

            // TODO: It seems like there is probably a good deal of redundant `advance_buffer_by`
            //       in here. If a time is ever repeated, for example, the call will be identical
            //       and accomplish nothing. If only a single record has been added, it may not
            //       be worth the time to collapse (advance, re-sort) the data when a linear scan
            //       is sufficient.

            while !replay1.is_done() && !replay2.is_done() {

                if replay1.time().unwrap().cmp(replay2.time().unwrap()) == ::std::cmp::Ordering::Less {
                    replay2.advance_buffer_by(replay1.meet().unwrap());
                    for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
                        let (val1, time1, diff1) = replay1.edit().unwrap();
                        results(val1, val2, time1.join(time2), diff1, diff2);
                    }
                    replay1.step();
                }
                else {
                    replay1.advance_buffer_by(replay2.meet().unwrap());
                    for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
                        let (val2, time2, diff2) = replay2.edit().unwrap();
                        results(val1, val2, time1.join(time2), diff1, diff2);
                    }
                    replay2.step();
                }
            }

            while !replay1.is_done() {
                replay2.advance_buffer_by(replay1.meet().unwrap());
                for &((val2, ref time2), ref diff2) in replay2.buffer().iter() {
                    let (val1, time1, diff1) = replay1.edit().unwrap();
                    results(val1, val2, time1.join(time2), diff1, diff2);
                }
                replay1.step();
            }
            while !replay2.is_done() {
                replay1.advance_buffer_by(replay2.meet().unwrap());
                for &((val1, ref time1), ref diff1) in replay1.buffer().iter() {
                    let (val2, time2, diff2) = replay2.edit().unwrap();
                    results(val1, val2, time1.join(time2), diff1, diff2);
                }
                replay2.step();
            }
        }
    }
}