tokio_metrics/
task.rs

1use futures_util::task::{ArcWake, AtomicWaker};
2use pin_project_lite::pin_project;
3use std::future::Future;
4use std::pin::Pin;
5use std::sync::atomic::{AtomicU64, Ordering::SeqCst};
6use std::sync::Arc;
7use std::task::{Context, Poll};
8use tokio_stream::Stream;
9
10#[cfg(feature = "rt")]
11use tokio::time::{Duration, Instant};
12
13#[cfg(not(feature = "rt"))]
14use std::time::{Duration, Instant};
15
16/// Monitors key metrics of instrumented tasks.
17///
18/// ### Basic Usage
19/// A [`TaskMonitor`] tracks key [metrics][TaskMetrics] of async tasks that have been
20/// [instrumented][`TaskMonitor::instrument`] with the monitor.
21///
22/// In the below example, a [`TaskMonitor`] is [constructed][TaskMonitor::new] and used to
23/// [instrument][TaskMonitor::instrument] three worker tasks; meanwhile, a fourth task
24/// prints [metrics][TaskMetrics] in 500ms [intervals][TaskMonitor::intervals].
25/// ```
26/// use std::time::Duration;
27///
28/// #[tokio::main]
29/// async fn main() {
30///     // construct a metrics monitor
31///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
32///
33///     // print task metrics every 500ms
34///     {
35///         let metrics_monitor = metrics_monitor.clone();
36///         tokio::spawn(async move {
37///             for interval in metrics_monitor.intervals() {
38///                 // pretty-print the metric interval
39///                 println!("{:?}", interval);
40///                 // wait 500ms
41///                 tokio::time::sleep(Duration::from_millis(500)).await;
42///             }
43///         });
44///     }
45///
46///     // instrument some tasks and await them
47///     // note that the same TaskMonitor can be used for multiple tasks
48///     tokio::join![
49///         metrics_monitor.instrument(do_work()),
50///         metrics_monitor.instrument(do_work()),
51///         metrics_monitor.instrument(do_work())
52///     ];
53/// }
54///
55/// async fn do_work() {
56///     for _ in 0..25 {
57///         tokio::task::yield_now().await;
58///         tokio::time::sleep(Duration::from_millis(100)).await;
59///     }
60/// }
61/// ```
62///
63/// ### What should I instrument?
64/// In most cases, you should construct a *distinct* [`TaskMonitor`] for each kind of key task.
65///
66/// #### Instrumenting a web application
67/// For instance, a web service should have a distinct [`TaskMonitor`] for each endpoint. Within
68/// each endpoint, it's prudent to additionally instrument major sub-tasks, each with their own
69/// distinct [`TaskMonitor`]s. [*Why are my tasks slow?*](#why-are-my-tasks-slow) explores a
70/// debugging scenario for a web service that takes this approach to instrumentation. This
71/// approach is exemplified in the below example:
72/// ```no_run
73/// // The unabridged version of this snippet is in the examples directory of this crate.
74///
75/// #[tokio::main]
76/// async fn main() {
77///     // construct a TaskMonitor for root endpoint
78///     let monitor_root = tokio_metrics::TaskMonitor::new();
79///
80///     // construct TaskMonitors for create_users endpoint
81///     let monitor_create_user = CreateUserMonitors {
82///         // monitor for the entire endpoint
83///         route: tokio_metrics::TaskMonitor::new(),
84///         // monitor for database insertion subtask
85///         insert: tokio_metrics::TaskMonitor::new(),
86///     };
87///
88///     // build our application with two instrumented endpoints
89///     let app = axum::Router::new()
90///         // `GET /` goes to `root`
91///         .route("/", axum::routing::get({
92///             let monitor = monitor_root.clone();
93///             move || monitor.instrument(async { "Hello, World!" })
94///         }))
95///         // `POST /users` goes to `create_user`
96///         .route("/users", axum::routing::post({
97///             let monitors = monitor_create_user.clone();
98///             let route = monitors.route.clone();
99///             move |payload| {
100///                 route.instrument(create_user(payload, monitors))
101///             }
102///         }));
103///
104///     // print task metrics for each endpoint every 1s
105///     let metrics_frequency = std::time::Duration::from_secs(1);
106///     tokio::spawn(async move {
107///         let root_intervals = monitor_root.intervals();
108///         let create_user_route_intervals =
109///             monitor_create_user.route.intervals();
110///         let create_user_insert_intervals =
111///             monitor_create_user.insert.intervals();
112///         let create_user_intervals =
113///             create_user_route_intervals.zip(create_user_insert_intervals);
114///
115///         let intervals = root_intervals.zip(create_user_intervals);
116///         for (root_route, (create_user_route, create_user_insert)) in intervals {
117///             println!("root_route = {:#?}", root_route);
118///             println!("create_user_route = {:#?}", create_user_route);
119///             println!("create_user_insert = {:#?}", create_user_insert);
120///             tokio::time::sleep(metrics_frequency).await;
121///         }
122///     });
123///
124///     // run the server
125///     let addr = std::net::SocketAddr::from(([127, 0, 0, 1], 3000));
126///     axum::Server::bind(&addr)
127///         .serve(app.into_make_service())
128///         .await
129///         .unwrap();
130/// }
131///
132/// async fn create_user(
133///     axum::Json(payload): axum::Json<CreateUser>,
134///     monitors: CreateUserMonitors,
135/// ) -> impl axum::response::IntoResponse {
136///     let user = User { id: 1337, username: payload.username, };
137///     // instrument inserting the user into the db:
138///     let _ = monitors.insert.instrument(insert_user(user.clone())).await;
139///     (axum::http::StatusCode::CREATED, axum::Json(user))
140/// }
141///
142/// /* definitions of CreateUserMonitors, CreateUser and User omitted for brevity */
143///
144/// #
145/// # #[derive(Clone)]
146/// # struct CreateUserMonitors {
147/// #     // monitor for the entire endpoint
148/// #     route: tokio_metrics::TaskMonitor,
149/// #     // monitor for database insertion subtask
150/// #     insert: tokio_metrics::TaskMonitor,
151/// # }
152/// #
153/// # #[derive(serde::Deserialize)] struct CreateUser { username: String, }
154/// # #[derive(Clone, serde::Serialize)] struct User { id: u64, username: String, }
155/// #
156/// // insert the user into the database
157/// async fn insert_user(_: User) {
158///     /* implementation details elided */
159///     tokio::time::sleep(std::time::Duration::from_secs(1)).await;
160/// }
161/// ```
162///
163/// ### Why are my tasks slow?
164/// **Scenario:** You track key, high-level metrics about the customer response time. An alarm warns
165/// you that P90 latency for an endpoint exceeds your targets. What is causing the increase?
166///
167/// #### Identifying the high-level culprits
168/// A set of tasks will appear to execute more slowly if:
169/// - they are taking longer to poll (i.e., they consume too much CPU time)
170/// - they are waiting longer to be polled (e.g., they're waiting longer in tokio's scheduling
171///   queues)
172/// - they are waiting longer on external events to complete (e.g., asynchronous network requests)
173///
174/// The culprits, at a high level, may be some combination of these sources of latency. Fortunately,
175/// you have instrumented the key tasks of each of your endpoints with distinct [`TaskMonitor`]s.
176/// Using the monitors on the endpoint experiencing elevated latency, you begin by answering:
177/// - [*Are my tasks taking longer to poll?*](#are-my-tasks-taking-longer-to-poll)
178/// - [*Are my tasks spending more time waiting to be polled?*](#are-my-tasks-spending-more-time-waiting-to-be-polled)
179/// - [*Are my tasks spending more time waiting on external events to complete?*](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
180///
181/// ##### Are my tasks taking longer to poll?
182/// - **Did [`mean_poll_duration`][TaskMetrics::mean_poll_duration] increase?**   
183///   This metric reflects the mean poll duration. If it increased, it means that, on average,
184///   individual polls tended to take longer. However, this does not necessarily imply increased
185///   task latency: An increase in poll durations could be offset by fewer polls.
186/// - **Did [`slow_poll_ratio`][TaskMetrics::slow_poll_ratio] increase?**   
187///   This metric reflects the proportion of polls that were 'slow'. If it increased, it means that
188///   a greater proportion of polls performed excessive computation before yielding. This does not
189///   necessarily imply increased task latency: An increase in the proportion of slow polls could be
190///   offset by fewer or faster polls.
191/// - **Did [`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration] increase?**   
192///   This metric reflects the mean duration of slow polls. If it increased, it means that, on
193///   average, slow polls got slower. This does not necessarily imply increased task latency: An
194///   increase in average slow poll duration could be offset by fewer or faster polls.
195///
196/// If so, [*why are my tasks taking longer to poll?*](#why-are-my-tasks-taking-longer-to-poll)
197///
198/// ##### Are my tasks spending more time waiting to be polled?
199/// - **Did [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increase?**   
200///   This metric reflects the mean delay between the instant a task is first instrumented and the
201///   instant it is first polled. If it increases, it means that, on average, tasks spent longer
202///   waiting to be initially run.
203/// - **Did [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration] increase?**   
204///   This metric reflects the mean duration that tasks spent in the scheduled state. The
205///   'scheduled' state of a task is the duration between the instant a task is awoken and the
206///   instant it is subsequently polled. If this metric increases, it means that, on average, tasks
207///   spent longer in tokio's queues before being polled.
208/// - **Did [`long_delay_ratio`][TaskMetrics::long_delay_ratio] increase?**
209///   This metric reflects the proportion of scheduling delays which were 'long'. If it increased,
210///   it means that a greater proportion of tasks experienced excessive delays before they could
211///   execute after being woken. This does not necessarily indicate an increase in latency, as this
212///   could be offset by fewer or faster task polls.
213/// - **Did [`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration] increase?**
214///   This metric reflects the mean duration of long delays. If it increased, it means that, on
215///   average, long delays got even longer. This does not necessarily imply increased task latency:
216///   an increase in average long delay duration could be offset by fewer or faster polls or more
217///   short schedules.
218///
219/// If so, [*why are my tasks spending more time waiting to be polled?*](#why-are-my-tasks-spending-more-time-waiting-to-be-polled)
220///
221/// ##### Are my tasks spending more time waiting on external events to complete?
222/// - **Did [`mean_idle_duration`][TaskMetrics::mean_idle_duration] increase?**   
223///   This metric reflects the mean duration that tasks spent in the idle state. The idle state is
224///   the duration spanning the instant a task completes a poll, and the instant that it is next
225///   awoken. Tasks inhabit this state when they are waiting for task-external events to complete
226///   (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this metric increases,
227///   tasks, in aggregate, spent more time waiting for task-external events to complete.
228///
229/// If so, [*why are my tasks spending more time waiting on external events to complete?*](#why-are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
230///
231/// #### Digging deeper
232/// Having [established the high-level culprits](#identifying-the-high-level-culprits), you now
233/// search for further explanation...
234///
235/// ##### Why are my tasks taking longer to poll?
236/// You observed that [your tasks are taking longer to poll](#are-my-tasks-taking-longer-to-poll).
237/// The culprit is likely some combination of:
238/// - **Your tasks are accidentally blocking.** Common culprits include:
239///     1. Using the Rust standard library's [filesystem](https://doc.rust-lang.org/std/fs/) or
240///        [networking](https://doc.rust-lang.org/std/net/) APIs.
241///        These APIs are synchronous; use tokio's [filesystem](https://docs.rs/tokio/latest/tokio/fs/)
242///        and [networking](https://docs.rs/tokio/latest/tokio/net/) APIs, instead.
243///     3. Calling [`block_on`](https://docs.rs/tokio/latest/tokio/runtime/struct.Handle.html#method.block_on).
244///     4. Invoking `println!` or other synchronous logging routines.   
245///        Invocations of `println!` involve acquiring an exclusive lock on stdout, followed by a
246///        synchronous write to stdout.
247/// 2. **Your tasks are computationally expensive.** Common culprits include:
248///     1. TLS/cryptographic routines
249///     2. doing a lot of processing on bytes
250///     3. calling non-Tokio resources
251///
252/// ##### Why are my tasks spending more time waiting to be polled?
253/// You observed that [your tasks are spending more time waiting to be polled](#are-my-tasks-spending-more-time-waiting-to-be-polled)
254/// suggesting some combination of:
255/// - Your application is inflating the time elapsed between instrumentation and first poll.
256/// - Your tasks are being scheduled into tokio's global queue.
257/// - Other tasks are spending too long without yielding, thus backing up tokio's queues.
258///
259/// Start by asking: [*Is time-to-first-poll unusually high?*](#is-time-to-first-poll-unusually-high)
260///
261/// ##### Why are my tasks spending more time waiting on external events to complete?
262/// You observed that [your tasks are spending more time waiting waiting on external events to
263/// complete](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete). But what
264/// event? Fortunately, within the task experiencing increased idle times, you monitored several
265/// sub-tasks with distinct [`TaskMonitor`]s. For each of these sub-tasks, you [*you try to identify
266/// the performance culprits...*](#identifying-the-high-level-culprits)
267///
268/// #### Digging even deeper
269///
270/// ##### Is time-to-first-poll unusually high?
271/// Contrast these two metrics:
272/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**  
273///   This metric reflects the mean delay between the instant a task is first instrumented and the
274///   instant it is *first* polled.
275/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**  
276///   This metric reflects the mean delay between the instant when tasks were awoken and the
277///   instant they were subsequently polled.
278///
279/// If the former metric exceeds the latter (or increased unexpectedly more than the latter), then
280/// start by investigating [*if your application is artificially delaying the time-to-first-poll*](#is-my-application-delaying-the-time-to-first-poll).
281///
282/// Otherwise, investigate [*if other tasks are polling too long without yielding*](#are-other-tasks-polling-too-long-without-yielding).
283///
284/// ##### Is my application delaying the time-to-first-poll?
285/// You observed that [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increased, more
286/// than [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]. Your application may be
287/// needlessly inflating the time elapsed between instrumentation and first poll. Are you
288/// constructing (and instrumenting) tasks separately from awaiting or spawning them?
289///
290/// For instance, in the below example, the application induces 1 second delay between when `task`
291/// is instrumented and when it is awaited:
292/// ```rust
293/// #[tokio::main]
294/// async fn main() {
295///     use tokio::time::Duration;
296///     let monitor = tokio_metrics::TaskMonitor::new();
297///
298///     let task = monitor.instrument(async move {});
299///
300///     let one_sec = Duration::from_secs(1);
301///     tokio::time::sleep(one_sec).await;
302///
303///     let _ = tokio::spawn(task).await;
304///
305///     assert!(monitor.cumulative().total_first_poll_delay >= one_sec);
306/// }
307/// ```
308///
309/// Otherwise, [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] might be unusually high
310/// because [*your application is spawning key tasks into tokio's global queue...*](#is-my-application-spawning-more-tasks-into-tokio’s-global-queue)
311///
312/// ##### Is my application spawning more tasks into tokio's global queue?
313/// Tasks awoken from threads *not* managed by the tokio runtime are scheduled with a slower,
314/// global "injection" queue.
315///
316/// You may be notifying runtime tasks from off-runtime. For instance, Given the following:
317/// ```ignore
318/// #[tokio::main]
319/// async fn main() {
320///     for _ in 0..100 {
321///         let (tx, rx) = oneshot::channel();
322///         tokio::spawn(async move {
323///             tx.send(());
324///         })
325///         
326///         rx.await;
327///     }
328/// }
329/// ```
330/// One would expect this to run efficiently, however, the main task is run *off* the main runtime
331/// and the spawned tasks are *on* runtime, which means the snippet will run much slower than:
332/// ```ignore
333/// #[tokio::main]
334/// async fn main() {
335///     tokio::spawn(async {
336///         for _ in 0..100 {
337///             let (tx, rx) = oneshot::channel();
338///             tokio::spawn(async move {
339///                 tx.send(());
340///             })
341///
342///             rx.await;
343///         }
344///     }).await;
345/// }
346/// ```
347/// The slowdown is caused by a higher time between the `rx` task being notified (in `tx.send()`)
348/// and the task being polled.
349///
350/// ##### Are other tasks polling too long without yielding?
351/// You suspect that your tasks are slow because they're backed up in tokio's scheduling queues. For
352/// *each* of your application's [`TaskMonitor`]s you check to see [*if their associated tasks are
353/// taking longer to poll...*](#are-my-tasks-taking-longer-to-poll)
354///
355/// ### Limitations
356/// The [`TaskMetrics`] type uses [`u64`] to represent both event counters and durations (measured
357/// in nanoseconds). Consequently, event counters are accurate for ≤ [`u64::MAX`] events, and
358/// durations are accurate for ≤ [`u64::MAX`] nanoseconds.
359///
360/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::cumulative`] increase
361/// monotonically with each successive invocation of [`TaskMonitor::cumulative`]. Upon overflow,
362/// counters and durations wrap.
363///
364/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::intervals`] are
365/// calculated by computing the difference of metrics in successive invocations of
366/// [`TaskMonitor::cumulative`]. If, within a monitoring interval, an event occurs more than
367/// [`u64::MAX`] times, or a monitored duration exceeds [`u64::MAX`] nanoseconds, the metrics for
368/// that interval will overflow and not be accurate.
369///
370/// ##### Examples at the limits
371/// Consider the [`TaskMetrics::total_first_poll_delay`] metric. This metric accurately reflects
372/// delays between instrumentation and first-poll ≤ [`u64::MAX`] nanoseconds:
373/// ```
374/// use tokio::time::Duration;
375///
376/// #[tokio::main(flavor = "current_thread", start_paused = true)]
377/// async fn main() {
378///     let monitor = tokio_metrics::TaskMonitor::new();
379///     let mut interval = monitor.intervals();
380///     let mut next_interval = || interval.next().unwrap();
381///
382///     // construct and instrument a task, but do not `await` it
383///     let task = monitor.instrument(async {});
384///
385///     // this is the maximum duration representable by tokio_metrics
386///     let max_duration = Duration::from_nanos(u64::MAX);
387///
388///     // let's advance the clock by this amount and poll `task`
389///     let _ = tokio::time::advance(max_duration).await;
390///     task.await;
391///
392///     // durations ≤ `max_duration` are accurately reflected in this metric
393///     assert_eq!(next_interval().total_first_poll_delay, max_duration);
394///     assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
395/// }
396/// ```
397/// If the total delay between instrumentation and first poll exceeds [`u64::MAX`] nanoseconds,
398/// [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay] will overflow:
399/// ```
400/// # use tokio::time::Duration;
401/// #
402/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
403/// # async fn main() {
404/// #    let monitor = tokio_metrics::TaskMonitor::new();
405/// #
406///  // construct and instrument a task, but do not `await` it
407///  let task_a = monitor.instrument(async {});
408///  let task_b = monitor.instrument(async {});
409///
410///  // this is the maximum duration representable by tokio_metrics
411///  let max_duration = Duration::from_nanos(u64::MAX);
412///
413///  // let's advance the clock by 1.5x this amount and await `task`
414///  let _ = tokio::time::advance(3 * (max_duration / 2)).await;
415///  task_a.await;
416///  task_b.await;
417///
418///  // the `total_first_poll_delay` has overflowed
419///  assert!(monitor.cumulative().total_first_poll_delay < max_duration);
420/// # }
421/// ```
422/// If *many* tasks are spawned, it will take far less than a [`u64::MAX`]-nanosecond delay to bring
423/// this metric to the precipice of overflow:
424/// ```
425/// # use tokio::time::Duration;
426/// #
427/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
428/// # async fn main() {
429/// #     let monitor = tokio_metrics::TaskMonitor::new();
430/// #     let mut interval = monitor.intervals();
431/// #     let mut next_interval = || interval.next().unwrap();
432/// #
433/// // construct and instrument u16::MAX tasks, but do not `await` them
434/// let first_poll_count = u16::MAX as u64;
435/// let mut tasks = Vec::with_capacity(first_poll_count as usize);
436/// for _ in 0..first_poll_count { tasks.push(monitor.instrument(async {})); }
437///
438/// // this is the maximum duration representable by tokio_metrics
439/// let max_duration = u64::MAX;
440///
441/// // let's advance the clock justenough such that all of the time-to-first-poll
442/// // delays summed nearly equals `max_duration_nanos`, less some remainder...
443/// let iffy_delay = max_duration / (first_poll_count as u64);
444/// let small_remainder = max_duration % first_poll_count;
445/// let _ = tokio::time::advance(Duration::from_nanos(iffy_delay)).await;
446///
447/// // ...then poll all of the instrumented tasks:
448/// for task in tasks { task.await; }
449///
450/// // `total_first_poll_delay` is at the precipice of overflowing!
451/// assert_eq!(
452///     next_interval().total_first_poll_delay.as_nanos(),
453///     (max_duration - small_remainder) as u128
454/// );
455/// assert_eq!(
456///     monitor.cumulative().total_first_poll_delay.as_nanos(),
457///     (max_duration - small_remainder) as u128
458/// );
459/// # }
460/// ```
461/// Frequent, interval-sampled metrics will retain their accuracy, even if the cumulative
462/// metrics counter overflows at most once in the midst of an interval:
463/// ```
464/// # use tokio::time::Duration;
465/// # use tokio_metrics::TaskMonitor;
466/// #
467/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
468/// # async fn main() {
469/// #     let monitor = TaskMonitor::new();
470/// #     let mut interval = monitor.intervals();
471/// #     let mut next_interval = || interval.next().unwrap();
472/// #
473///  let first_poll_count = u16::MAX as u64;
474///  let batch_size = first_poll_count / 3;
475///
476///  let max_duration_ns = u64::MAX;
477///  let iffy_delay_ns = max_duration_ns / first_poll_count;
478///
479///  // Instrument `batch_size` number of tasks, wait for `delay` nanoseconds,
480///  // then await the instrumented tasks.
481///  async fn run_batch(monitor: &TaskMonitor, batch_size: usize, delay: u64) {
482///      let mut tasks = Vec::with_capacity(batch_size);
483///      for _ in 0..batch_size { tasks.push(monitor.instrument(async {})); }
484///      let _ = tokio::time::advance(Duration::from_nanos(delay)).await;
485///      for task in tasks { task.await; }
486///  }
487///
488///  // this is how much `total_time_to_first_poll_ns` will
489///  // increase with each batch we run
490///  let batch_delay = iffy_delay_ns * batch_size;
491///
492///  // run batches 1, 2, and 3
493///  for i in 1..=3 {
494///      run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
495///      assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
496///      assert_eq!(i * batch_delay as u128, monitor.cumulative().total_first_poll_delay.as_nanos());
497///  }
498///
499///  /* now, the `total_time_to_first_poll_ns` counter is at the precipice of overflow */
500///  assert_eq!(monitor.cumulative().total_first_poll_delay.as_nanos(), max_duration_ns as u128);
501///
502///  // run batch 4
503///  run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
504///  // the interval counter remains accurate
505///  assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
506///  // but the cumulative counter has overflowed
507///  assert_eq!(batch_delay as u128 - 1, monitor.cumulative().total_first_poll_delay.as_nanos());
508/// # }
509/// ```
510/// If a cumulative metric overflows *more than once* in the midst of an interval,
511/// its interval-sampled counterpart will also overflow.
512#[derive(Clone, Debug)]
513pub struct TaskMonitor {
514    metrics: Arc<RawMetrics>,
515}
516
517/// Provides an interface for constructing a [`TaskMonitor`] with specialized configuration
518/// parameters.
519#[derive(Clone, Debug, Default)]
520pub struct TaskMonitorBuilder {
521    slow_poll_threshold: Option<Duration>,
522    long_delay_threshold: Option<Duration>,
523}
524
525impl TaskMonitorBuilder {
526    /// Creates a new [`TaskMonitorBuilder`].
527    pub fn new() -> Self {
528        Self {
529            slow_poll_threshold: None,
530            long_delay_threshold: None,
531        }
532    }
533
534    /// Specifies the threshold at which polls are considered 'slow'.
535    pub fn with_slow_poll_threshold(&mut self, threshold: Duration) -> &mut Self {
536        self.slow_poll_threshold = Some(threshold);
537
538        self
539    }
540
541    /// Specifies the threshold at which schedules are considered 'long'.
542    pub fn with_long_delay_threshold(&mut self, threshold: Duration) -> &mut Self {
543        self.long_delay_threshold = Some(threshold);
544
545        self
546    }
547
548    /// Consume the builder, producing a [`TaskMonitor`].
549    pub fn build(self) -> TaskMonitor {
550        TaskMonitor::create(
551            self.slow_poll_threshold
552                .unwrap_or(TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD),
553            self.long_delay_threshold
554                .unwrap_or(TaskMonitor::DEFAULT_LONG_DELAY_THRESHOLD),
555        )
556    }
557}
558
559pin_project! {
560    /// An async task that has been instrumented with [`TaskMonitor::instrument`].
561    #[derive(Debug)]
562    pub struct Instrumented<T> {
563        // The task being instrumented
564        #[pin]
565        task: T,
566
567        // True when the task is polled for the first time
568        did_poll_once: bool,
569
570        // The instant, tracked as nanoseconds since `instrumented_at`, at which the future finished
571        // its last poll.
572        idled_at: u64,
573
574        // State shared between the task and its instrumented waker.
575        state: Arc<State>,
576    }
577
578    impl<T> PinnedDrop for Instrumented<T> {
579        fn drop(this: Pin<&mut Self>) {
580            this.state.metrics.dropped_count.fetch_add(1, SeqCst);
581        }
582    }
583}
584
585/// Key metrics of [instrumented][`TaskMonitor::instrument`] tasks.
586#[non_exhaustive]
587#[derive(Debug, Clone, Copy, Default)]
588pub struct TaskMetrics {
589    /// The number of tasks instrumented.
590    ///
591    /// ##### Examples
592    /// ```
593    /// #[tokio::main]
594    /// async fn main() {
595    ///     let monitor = tokio_metrics::TaskMonitor::new();
596    ///     let mut interval = monitor.intervals();
597    ///     let mut next_interval = || interval.next().unwrap();
598    ///
599    ///     // 0 tasks have been instrumented
600    ///     assert_eq!(next_interval().instrumented_count, 0);
601    ///
602    ///     monitor.instrument(async {});
603    ///
604    ///     // 1 task has been instrumented
605    ///     assert_eq!(next_interval().instrumented_count, 1);
606    ///
607    ///     monitor.instrument(async {});
608    ///     monitor.instrument(async {});
609    ///
610    ///     // 2 tasks have been instrumented
611    ///     assert_eq!(next_interval().instrumented_count, 2);
612    ///
613    ///     // since the last interval was produced, 0 tasks have been instrumented
614    ///     assert_eq!(next_interval().instrumented_count, 0);
615    /// }
616    /// ```
617    pub instrumented_count: u64,
618
619    /// The number of tasks dropped.
620    ///
621    /// ##### Examples
622    /// ```
623    /// #[tokio::main]
624    /// async fn main() {
625    ///     let monitor = tokio_metrics::TaskMonitor::new();
626    ///     let mut interval = monitor.intervals();
627    ///     let mut next_interval = || interval.next().unwrap();
628    ///
629    ///     // 0 tasks have been dropped
630    ///     assert_eq!(next_interval().dropped_count, 0);
631    ///
632    ///     let _task = monitor.instrument(async {});
633    ///
634    ///     // 0 tasks have been dropped
635    ///     assert_eq!(next_interval().dropped_count, 0);
636    ///
637    ///     monitor.instrument(async {}).await;
638    ///     drop(monitor.instrument(async {}));
639    ///
640    ///     // 2 tasks have been dropped
641    ///     assert_eq!(next_interval().dropped_count, 2);
642    ///
643    ///     // since the last interval was produced, 0 tasks have been dropped
644    ///     assert_eq!(next_interval().dropped_count, 0);
645    /// }
646    /// ```
647    pub dropped_count: u64,
648
649    /// The number of tasks polled for the first time.
650    ///
651    /// ##### Derived metrics
652    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**  
653    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
654    ///   are first polled.
655    ///
656    /// ##### Examples
657    /// In the below example, no tasks are instrumented or polled in the first sampling interval;
658    /// one task is instrumented (but not polled) in the second sampling interval; that task is
659    /// awaited to completion (and, thus, polled at least once) in the third sampling interval; no
660    /// additional tasks are polled for the first time within the fourth sampling interval:
661    /// ```
662    /// #[tokio::main]
663    /// async fn main() {
664    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
665    ///     let mut interval = metrics_monitor.intervals();
666    ///     let mut next_interval = || interval.next().unwrap();
667    ///
668    ///     // no tasks have been constructed, instrumented, and polled at least once
669    ///     assert_eq!(next_interval().first_poll_count, 0);
670    ///
671    ///     let task = metrics_monitor.instrument(async {});
672    ///
673    ///     // `task` has been constructed and instrumented, but has not yet been polled
674    ///     assert_eq!(next_interval().first_poll_count, 0);
675    ///
676    ///     // poll `task` to completion
677    ///     task.await;
678    ///
679    ///     // `task` has been constructed, instrumented, and polled at least once
680    ///     assert_eq!(next_interval().first_poll_count, 1);
681    ///
682    ///     // since the last interval was produced, 0 tasks have been constructed, instrumented and polled
683    ///     assert_eq!(next_interval().first_poll_count, 0);
684    ///
685    /// }
686    /// ```
687    pub first_poll_count: u64,
688
689    /// The total duration elapsed between the instant tasks are instrumented, and the instant they
690    /// are first polled.
691    ///
692    /// ##### Derived metrics
693    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**   
694    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
695    ///   are first polled.
696    ///
697    /// ##### Examples
698    /// In the below example, 0 tasks have been instrumented or polled within the first sampling
699    /// interval, a total of 500ms elapse between the instrumentation and polling of tasks within
700    /// the second sampling interval, and a total of 350ms elapse between the instrumentation and
701    /// polling of tasks within the third sampling interval:
702    /// ```
703    /// use tokio::time::Duration;
704    ///
705    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
706    /// async fn main() {
707    ///     let monitor = tokio_metrics::TaskMonitor::new();
708    ///     let mut interval = monitor.intervals();
709    ///     let mut next_interval = || interval.next().unwrap();
710    ///
711    ///     // no tasks have yet been created, instrumented, or polled
712    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
713    ///     assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
714    ///
715    ///     // constructs and instruments a task, pauses a given duration, then awaits the task
716    ///     async fn instrument_pause_await(monitor: &tokio_metrics::TaskMonitor, pause: Duration) {
717    ///         let task = monitor.instrument(async move {});
718    ///         tokio::time::sleep(pause).await;
719    ///         task.await;
720    ///     }
721    ///
722    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
723    ///     let task_a_pause_time = Duration::from_millis(500);
724    ///     instrument_pause_await(&monitor, task_a_pause_time).await;
725    ///
726    ///     assert_eq!(next_interval().total_first_poll_delay, task_a_pause_time);
727    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, task_a_pause_time);
728    ///
729    ///     // construct and await a task that pauses for 250ms between instrumentation and first poll
730    ///     let task_b_pause_time = Duration::from_millis(250);
731    ///     instrument_pause_await(&monitor, task_b_pause_time).await;
732    ///
733    ///     // construct and await a task that pauses for 100ms between instrumentation and first poll
734    ///     let task_c_pause_time = Duration::from_millis(100);
735    ///     instrument_pause_await(&monitor, task_c_pause_time).await;
736    ///
737    ///     assert_eq!(
738    ///         next_interval().total_first_poll_delay,
739    ///         task_b_pause_time + task_c_pause_time
740    ///     );
741    ///     assert_eq!(
742    ///         monitor.cumulative().total_first_poll_delay,
743    ///         task_a_pause_time + task_b_pause_time + task_c_pause_time
744    ///     );
745    /// }
746    /// ```
747    ///
748    /// ##### When is this metric recorded?
749    /// The delay between instrumentation and first poll is not recorded until the first poll
750    /// actually occurs:
751    /// ```
752    /// # use tokio::time::Duration;
753    /// #
754    /// # #[tokio::main(flavor = "current_thread", start_paused = true)]
755    /// # async fn main() {
756    /// #     let monitor = tokio_metrics::TaskMonitor::new();
757    /// #     let mut interval = monitor.intervals();
758    /// #     let mut next_interval = || interval.next().unwrap();
759    /// #
760    /// // we construct and instrument a task, but do not `await` it
761    /// let task = monitor.instrument(async {});
762    ///
763    /// // let's sleep for 1s before we poll `task`
764    /// let one_sec = Duration::from_secs(1);
765    /// let _ = tokio::time::sleep(one_sec).await;
766    ///
767    /// // although 1s has now elapsed since the instrumentation of `task`,
768    /// // this is not reflected in `total_first_poll_delay`...
769    /// assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
770    /// assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
771    ///
772    /// // ...and won't be until `task` is actually polled
773    /// task.await;
774    ///
775    /// // now, the 1s delay is reflected in `total_first_poll_delay`:
776    /// assert_eq!(next_interval().total_first_poll_delay, one_sec);
777    /// assert_eq!(monitor.cumulative().total_first_poll_delay, one_sec);
778    /// # }
779    /// ```
780    ///
781    /// ##### What if first-poll-delay is very large?
782    /// The first-poll-delay of *individual* tasks saturates at `u64::MAX` nanoseconds. However, if
783    /// the *total* first-poll-delay *across* monitored tasks exceeds `u64::MAX` nanoseconds, this
784    /// metric will wrap around:
785    /// ```
786    /// use tokio::time::Duration;
787    ///
788    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
789    /// async fn main() {
790    ///     let monitor = tokio_metrics::TaskMonitor::new();
791    ///
792    ///     // construct and instrument a task, but do not `await` it
793    ///     let task = monitor.instrument(async {});
794    ///
795    ///     // this is the maximum duration representable by tokio_metrics
796    ///     let max_duration = Duration::from_nanos(u64::MAX);
797    ///
798    ///     // let's advance the clock by double this amount and await `task`
799    ///     let _ = tokio::time::advance(max_duration * 2).await;
800    ///     task.await;
801    ///
802    ///     // the time-to-first-poll of `task` saturates at `max_duration`
803    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
804    ///
805    ///     // ...but note that the metric *will* wrap around if more tasks are involved
806    ///     let task = monitor.instrument(async {});
807    ///     let _ = tokio::time::advance(Duration::from_nanos(1)).await;
808    ///     task.await;
809    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
810    /// }
811    /// ```
812    pub total_first_poll_delay: Duration,
813
814    /// The total number of times that tasks idled, waiting to be awoken.
815    ///
816    /// An idle is recorded as occurring if a non-zero duration elapses between the instant a
817    /// task completes a poll, and the instant that it is next awoken.
818    ///
819    /// ##### Derived metrics
820    /// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**   
821    ///   The mean duration of idles.
822    ///
823    /// ##### Examples
824    /// ```
825    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
826    /// async fn main() {
827    ///     let monitor = tokio_metrics::TaskMonitor::new();
828    ///     let mut interval = monitor.intervals();
829    ///     let mut next_interval = move || interval.next().unwrap();
830    ///     let one_sec = std::time::Duration::from_secs(1);
831    ///
832    ///     monitor.instrument(async {}).await;
833    ///
834    ///     assert_eq!(next_interval().total_idled_count, 0);
835    ///     assert_eq!(monitor.cumulative().total_idled_count, 0);
836    ///
837    ///     monitor.instrument(async move {
838    ///         tokio::time::sleep(one_sec).await;
839    ///     }).await;
840    ///
841    ///     assert_eq!(next_interval().total_idled_count, 1);
842    ///     assert_eq!(monitor.cumulative().total_idled_count, 1);
843    ///
844    ///     monitor.instrument(async {
845    ///         tokio::time::sleep(one_sec).await;
846    ///         tokio::time::sleep(one_sec).await;
847    ///     }).await;
848    ///
849    ///     assert_eq!(next_interval().total_idled_count, 2);
850    ///     assert_eq!(monitor.cumulative().total_idled_count, 3);
851    /// }
852    /// ```
853    pub total_idled_count: u64,
854
855    /// The total duration that tasks idled.
856    ///
857    /// An idle is recorded as occurring if a non-zero duration elapses between the instant a
858    /// task completes a poll, and the instant that it is next awoken.
859    ///
860    /// ##### Derived metrics
861    /// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**   
862    ///   The mean duration of idles.
863    ///
864    /// ##### Examples
865    /// ```
866    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
867    /// async fn main() {
868    ///     let monitor = tokio_metrics::TaskMonitor::new();
869    ///     let mut interval = monitor.intervals();
870    ///     let mut next_interval = move || interval.next().unwrap();
871    ///     let one_sec = std::time::Duration::from_secs(1);
872    ///     let two_sec = std::time::Duration::from_secs(2);
873    ///
874    ///     assert_eq!(next_interval().total_idle_duration.as_nanos(), 0);
875    ///     assert_eq!(monitor.cumulative().total_idle_duration.as_nanos(), 0);
876    ///
877    ///     monitor.instrument(async move {
878    ///         tokio::time::sleep(one_sec).await;
879    ///     }).await;
880    ///
881    ///     assert_eq!(next_interval().total_idle_duration, one_sec);
882    ///     assert_eq!(monitor.cumulative().total_idle_duration, one_sec);
883    ///
884    ///     monitor.instrument(async move {
885    ///         tokio::time::sleep(two_sec).await;
886    ///     }).await;
887    ///
888    ///     assert_eq!(next_interval().total_idle_duration, two_sec);
889    ///     assert_eq!(monitor.cumulative().total_idle_duration, one_sec + two_sec);
890    /// }
891    /// ```
892    pub total_idle_duration: Duration,
893
894    /// The total number of times that tasks were awoken (and then, presumably, scheduled for
895    /// execution).
896    ///
897    /// ##### Definition
898    /// This metric is equal to [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration]
899    /// \+ [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration].
900    ///
901    /// ##### Derived metrics
902    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
903    ///   The mean duration that tasks spent waiting to be executed after awakening.
904    ///
905    /// ##### Examples
906    /// In the below example, a task yields to the scheduler a varying number of times between
907    /// sampling intervals; this metric is equal to the number of times the task yielded:
908    /// ```
909    /// #[tokio::main]
910    /// async fn main(){
911    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
912    ///
913    ///     // [A] no tasks have been created, instrumented, and polled more than once
914    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
915    ///
916    ///     // [B] a `task` is created and instrumented
917    ///     let task = {
918    ///         let monitor = metrics_monitor.clone();
919    ///         metrics_monitor.instrument(async move {
920    ///             let mut interval = monitor.intervals();
921    ///             let mut next_interval = move || interval.next().unwrap();
922    ///
923    ///             // [E] `task` has not yet yielded to the scheduler, and
924    ///             // thus has not yet been scheduled since its first `poll`
925    ///             assert_eq!(next_interval().total_scheduled_count, 0);
926    ///
927    ///             tokio::task::yield_now().await; // yield to the scheduler
928    ///
929    ///             // [F] `task` has yielded to the scheduler once (and thus been
930    ///             // scheduled once) since the last sampling interval
931    ///             assert_eq!(next_interval().total_scheduled_count, 1);
932    ///
933    ///             tokio::task::yield_now().await; // yield to the scheduler
934    ///             tokio::task::yield_now().await; // yield to the scheduler
935    ///             tokio::task::yield_now().await; // yield to the scheduler
936    ///
937    ///             // [G] `task` has yielded to the scheduler thrice (and thus been
938    ///             // scheduled thrice) since the last sampling interval
939    ///             assert_eq!(next_interval().total_scheduled_count, 3);
940    ///
941    ///             tokio::task::yield_now().await; // yield to the scheduler
942    ///
943    ///             next_interval
944    ///         })
945    ///     };
946    ///
947    ///     // [C] `task` has not yet been polled at all
948    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
949    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
950    ///
951    ///     // [D] poll `task` to completion
952    ///     let mut next_interval = task.await;
953    ///
954    ///     // [H] `task` has been polled 1 times since the last sample
955    ///     assert_eq!(next_interval().total_scheduled_count, 1);
956    ///
957    ///     // [I] `task` has been polled 0 times since the last sample
958    ///     assert_eq!(next_interval().total_scheduled_count, 0);
959    ///
960    ///     // [J] `task` has yielded to the scheduler a total of five times
961    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 5);
962    /// }
963    /// ```
964    #[doc(alias = "total_delay_count")]
965    pub total_scheduled_count: u64,
966
967    /// The total duration that tasks spent waiting to be polled after awakening.
968    ///
969    /// ##### Definition
970    /// This metric is equal to [`total_short_delay_count`][TaskMetrics::total_short_delay_count]
971    /// \+ [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
972    ///
973    /// ##### Derived metrics
974    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
975    ///   The mean duration that tasks spent waiting to be executed after awakening.
976    ///
977    /// ##### Examples
978    /// ```
979    /// use tokio::time::Duration;
980    ///
981    /// #[tokio::main(flavor = "current_thread")]
982    /// async fn main() {
983    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
984    ///     let mut interval = metrics_monitor.intervals();
985    ///     let mut next_interval = || interval.next().unwrap();
986    ///
987    ///     // construct and instrument and spawn a task that yields endlessly
988    ///     tokio::spawn(metrics_monitor.instrument(async {
989    ///         loop { tokio::task::yield_now().await }
990    ///     }));
991    ///
992    ///     tokio::task::yield_now().await;
993    ///
994    ///     // block the executor for 1 second
995    ///     std::thread::sleep(Duration::from_millis(1000));
996    ///
997    ///     tokio::task::yield_now().await;
998    ///
999    ///     // `endless_task` will have spent approximately one second waiting
1000    ///     let total_scheduled_duration = next_interval().total_scheduled_duration;
1001    ///     assert!(total_scheduled_duration >= Duration::from_millis(1000));
1002    ///     assert!(total_scheduled_duration <= Duration::from_millis(1100));
1003    /// }
1004    /// ```
1005    #[doc(alias = "total_delay_duration")]
1006    pub total_scheduled_duration: Duration,
1007
1008    /// The total number of times that tasks were polled.
1009    ///
1010    /// ##### Definition
1011    /// This metric is equal to [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count]
1012    /// \+ [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
1013    ///
1014    /// ##### Derived metrics
1015    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
1016    ///   The mean duration of polls.
1017    ///
1018    /// ##### Examples
1019    /// In the below example, a task with multiple yield points is await'ed to completion; this
1020    /// metric reflects the number of `await`s within each sampling interval:
1021    /// ```
1022    /// #[tokio::main]
1023    /// async fn main() {
1024    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1025    ///
1026    ///     // [A] no tasks have been created, instrumented, and polled more than once
1027    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
1028    ///
1029    ///     // [B] a `task` is created and instrumented
1030    ///     let task = {
1031    ///         let monitor = metrics_monitor.clone();
1032    ///         metrics_monitor.instrument(async move {
1033    ///             let mut interval = monitor.intervals();
1034    ///             let mut next_interval = move || interval.next().unwrap();
1035    ///
1036    ///             // [E] task is in the midst of its first poll
1037    ///             assert_eq!(next_interval().total_poll_count, 0);
1038    ///
1039    ///             tokio::task::yield_now().await; // poll 1
1040    ///
1041    ///             // [F] task has been polled 1 time
1042    ///             assert_eq!(next_interval().total_poll_count, 1);
1043    ///
1044    ///             tokio::task::yield_now().await; // poll 2
1045    ///             tokio::task::yield_now().await; // poll 3
1046    ///             tokio::task::yield_now().await; // poll 4
1047    ///
1048    ///             // [G] task has been polled 3 times
1049    ///             assert_eq!(next_interval().total_poll_count, 3);
1050    ///
1051    ///             tokio::task::yield_now().await; // poll 5
1052    ///
1053    ///             next_interval                   // poll 6
1054    ///         })
1055    ///     };
1056    ///
1057    ///     // [C] `task` has not yet been polled at all
1058    ///     assert_eq!(metrics_monitor.cumulative().total_poll_count, 0);
1059    ///
1060    ///     // [D] poll `task` to completion
1061    ///     let mut next_interval = task.await;
1062    ///
1063    ///     // [H] `task` has been polled 2 times since the last sample
1064    ///     assert_eq!(next_interval().total_poll_count, 2);
1065    ///
1066    ///     // [I] `task` has been polled 0 times since the last sample
1067    ///     assert_eq!(next_interval().total_poll_count, 0);
1068    ///
1069    ///     // [J] `task` has been polled 6 times
1070    ///     assert_eq!(metrics_monitor.cumulative().total_poll_count, 6);
1071    /// }
1072    /// ```
1073    pub total_poll_count: u64,
1074
1075    /// The total duration elapsed during polls.
1076    ///
1077    /// ##### Definition
1078    /// This metric is equal to [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration]
1079    /// \+ [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration].
1080    ///
1081    /// ##### Derived metrics
1082    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
1083    ///   The mean duration of polls.
1084    ///
1085    /// #### Examples
1086    /// ```
1087    /// use tokio::time::Duration;
1088    ///
1089    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
1090    /// async fn main() {
1091    ///     let monitor = tokio_metrics::TaskMonitor::new();
1092    ///     let mut interval = monitor.intervals();
1093    ///     let mut next_interval = move || interval.next().unwrap();
1094    ///
1095    ///     assert_eq!(next_interval().total_poll_duration, Duration::ZERO);
1096    ///
1097    ///     monitor.instrument(async {
1098    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
1099    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
1100    ///         ()                                                  // poll 3 (0s)
1101    ///     }).await;
1102    ///
1103    ///     assert_eq!(next_interval().total_poll_duration, Duration::from_secs(2));
1104    /// }
1105    /// ```
1106    pub total_poll_duration: Duration,
1107
1108    /// The total number of times that polling tasks completed swiftly.
1109    ///
1110    /// Here, 'swiftly' is defined as completing in strictly less time than
1111    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
1112    ///
1113    /// ##### Derived metrics
1114    /// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**   
1115    ///   The mean duration of fast polls.
1116    ///
1117    /// ##### Examples
1118    /// In the below example, 0 polls occur within the first sampling interval, 3 fast polls occur
1119    /// within the second sampling interval, and 2 fast polls occur within the third sampling
1120    /// interval:
1121    /// ```
1122    /// use std::future::Future;
1123    /// use std::time::Duration;
1124    ///
1125    /// #[tokio::main]
1126    /// async fn main() {
1127    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1128    ///     let mut interval = metrics_monitor.intervals();
1129    ///     let mut next_interval = || interval.next().unwrap();
1130    ///
1131    ///     // no tasks have been constructed, instrumented, or polled
1132    ///     assert_eq!(next_interval().total_fast_poll_count, 0);
1133    ///
1134    ///     let fast = Duration::ZERO;
1135    ///
1136    ///     // this task completes in three fast polls
1137    ///     let _ = metrics_monitor.instrument(async {
1138    ///         spin_for(fast).await; // fast poll 1
1139    ///         spin_for(fast).await; // fast poll 2
1140    ///         spin_for(fast)        // fast poll 3
1141    ///     }).await;
1142    ///
1143    ///     assert_eq!(next_interval().total_fast_poll_count, 3);
1144    ///
1145    ///     // this task completes in two fast polls
1146    ///     let _ = metrics_monitor.instrument(async {
1147    ///         spin_for(fast).await; // fast poll 1
1148    ///         spin_for(fast)        // fast poll 2
1149    ///     }).await;
1150    ///
1151    ///     assert_eq!(next_interval().total_fast_poll_count, 2);
1152    /// }
1153    ///
1154    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1155    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1156    ///     let start = tokio::time::Instant::now();
1157    ///     while start.elapsed() <= duration {}
1158    ///     tokio::task::yield_now()
1159    /// }
1160    /// ```
1161    pub total_fast_poll_count: u64,
1162
1163    /// The total duration of fast polls.
1164    ///
1165    /// Here, 'fast' is defined as completing in strictly less time than
1166    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
1167    ///
1168    /// ##### Derived metrics
1169    /// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**   
1170    ///   The mean duration of fast polls.
1171    ///
1172    /// ##### Examples
1173    /// In the below example, no tasks are polled in the first sampling interval; three fast polls
1174    /// consume a total of 3μs time in the second sampling interval; and two fast polls consume a
1175    /// total of 2μs time in the third sampling interval:
1176    /// ```
1177    /// use std::future::Future;
1178    /// use std::time::Duration;
1179    ///
1180    /// #[tokio::main]
1181    /// async fn main() {
1182    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1183    ///     let mut interval = metrics_monitor.intervals();
1184    ///     let mut next_interval = || interval.next().unwrap();
1185    ///
1186    ///     // no tasks have been constructed, instrumented, or polled
1187    ///     let interval = next_interval();
1188    ///     assert_eq!(interval.total_fast_poll_duration, Duration::ZERO);
1189    ///
1190    ///     let fast = Duration::from_micros(1);
1191    ///
1192    ///     // this task completes in three fast polls
1193    ///     let task_a_time = time(metrics_monitor.instrument(async {
1194    ///         spin_for(fast).await; // fast poll 1
1195    ///         spin_for(fast).await; // fast poll 2
1196    ///         spin_for(fast)        // fast poll 3
1197    ///     })).await;
1198    ///
1199    ///     let interval = next_interval();
1200    ///     assert!(interval.total_fast_poll_duration >= fast * 3);
1201    ///     assert!(interval.total_fast_poll_duration <= task_a_time);
1202    ///
1203    ///     // this task completes in two fast polls
1204    ///     let task_b_time = time(metrics_monitor.instrument(async {
1205    ///         spin_for(fast).await; // fast poll 1
1206    ///         spin_for(fast)        // fast poll 2
1207    ///     })).await;
1208    ///
1209    ///     let interval = next_interval();
1210    ///     assert!(interval.total_fast_poll_duration >= fast * 2);
1211    ///     assert!(interval.total_fast_poll_duration <= task_b_time);
1212    /// }
1213    ///
1214    /// /// Produces the amount of time it took to await a given async task.
1215    /// async fn time(task: impl Future) -> Duration {
1216    ///     let start = tokio::time::Instant::now();
1217    ///     task.await;
1218    ///     start.elapsed()
1219    /// }
1220    ///
1221    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1222    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1223    ///     let start = tokio::time::Instant::now();
1224    ///     while start.elapsed() <= duration {}
1225    ///     tokio::task::yield_now()
1226    /// }
1227    /// ```
1228    pub total_fast_poll_duration: Duration,
1229
1230    /// The total number of times that polling tasks completed slowly.
1231    ///
1232    /// Here, 'slowly' is defined as completing in at least as much time as
1233    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
1234    ///
1235    /// ##### Derived metrics
1236    /// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**   
1237    ///   The mean duration of slow polls.
1238    ///
1239    /// ##### Examples
1240    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
1241    /// within the second sampling interval, and 2 slow polls occur within the third sampling
1242    /// interval:
1243    /// ```
1244    /// use std::future::Future;
1245    /// use std::time::Duration;
1246    ///
1247    /// #[tokio::main]
1248    /// async fn main() {
1249    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1250    ///     let mut interval = metrics_monitor.intervals();
1251    ///     let mut next_interval = || interval.next().unwrap();
1252    ///
1253    ///     // no tasks have been constructed, instrumented, or polled
1254    ///     assert_eq!(next_interval().total_slow_poll_count, 0);
1255    ///
1256    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
1257    ///
1258    ///     // this task completes in three slow polls
1259    ///     let _ = metrics_monitor.instrument(async {
1260    ///         spin_for(slow).await; // slow poll 1
1261    ///         spin_for(slow).await; // slow poll 2
1262    ///         spin_for(slow)        // slow poll 3
1263    ///     }).await;
1264    ///
1265    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
1266    ///
1267    ///     // this task completes in two slow polls
1268    ///     let _ = metrics_monitor.instrument(async {
1269    ///         spin_for(slow).await; // slow poll 1
1270    ///         spin_for(slow)        // slow poll 2
1271    ///     }).await;
1272    ///
1273    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
1274    /// }
1275    ///
1276    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1277    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1278    ///     let start = tokio::time::Instant::now();
1279    ///     while start.elapsed() <= duration {}
1280    ///     tokio::task::yield_now()
1281    /// }
1282    /// ```
1283    pub total_slow_poll_count: u64,
1284
1285    /// The total duration of slow polls.
1286    ///
1287    /// Here, 'slowly' is defined as completing in at least as much time as
1288    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
1289    ///
1290    /// ##### Derived metrics
1291    /// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**   
1292    ///   The mean duration of slow polls.
1293    ///
1294    /// ##### Examples
1295    /// In the below example, no tasks are polled in the first sampling interval; three slow polls
1296    /// consume a total of
1297    /// 30 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD]
1298    /// time in the second sampling interval; and two slow polls consume a total of
1299    /// 20 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
1300    /// third sampling interval:
1301    /// ```
1302    /// use std::future::Future;
1303    /// use std::time::Duration;
1304    ///
1305    /// #[tokio::main]
1306    /// async fn main() {
1307    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1308    ///     let mut interval = metrics_monitor.intervals();
1309    ///     let mut next_interval = || interval.next().unwrap();
1310    ///
1311    ///     // no tasks have been constructed, instrumented, or polled
1312    ///     let interval = next_interval();
1313    ///     assert_eq!(interval.total_slow_poll_duration, Duration::ZERO);
1314    ///
1315    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
1316    ///
1317    ///     // this task completes in three slow polls
1318    ///     let task_a_time = time(metrics_monitor.instrument(async {
1319    ///         spin_for(slow).await; // slow poll 1
1320    ///         spin_for(slow).await; // slow poll 2
1321    ///         spin_for(slow)        // slow poll 3
1322    ///     })).await;
1323    ///
1324    ///     let interval = next_interval();
1325    ///     assert!(interval.total_slow_poll_duration >= slow * 3);
1326    ///     assert!(interval.total_slow_poll_duration <= task_a_time);
1327    ///
1328    ///     // this task completes in two slow polls
1329    ///     let task_b_time = time(metrics_monitor.instrument(async {
1330    ///         spin_for(slow).await; // slow poll 1
1331    ///         spin_for(slow)        // slow poll 2
1332    ///     })).await;
1333    ///
1334    ///     let interval = next_interval();
1335    ///     assert!(interval.total_slow_poll_duration >= slow * 2);
1336    ///     assert!(interval.total_slow_poll_duration <= task_b_time);
1337    /// }
1338    ///
1339    /// /// Produces the amount of time it took to await a given async task.
1340    /// async fn time(task: impl Future) -> Duration {
1341    ///     let start = tokio::time::Instant::now();
1342    ///     task.await;
1343    ///     start.elapsed()
1344    /// }
1345    ///
1346    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1347    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1348    ///     let start = tokio::time::Instant::now();
1349    ///     while start.elapsed() <= duration {}
1350    ///     tokio::task::yield_now()
1351    /// }
1352    /// ```
1353    pub total_slow_poll_duration: Duration,
1354
1355    /// The total count of tasks with short scheduling delays.
1356    ///
1357    /// This is defined as tasks taking strictly less than
1358    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
1359    /// scheduled.
1360    ///
1361    /// ##### Derived metrics
1362    /// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**   
1363    ///   The mean duration of short scheduling delays.
1364    pub total_short_delay_count: u64,
1365
1366    /// The total count of tasks with long scheduling delays.
1367    ///
1368    /// This is defined as tasks taking
1369    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] or longer to be executed
1370    /// after being scheduled.
1371    ///
1372    /// ##### Derived metrics
1373    /// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**   
1374    ///   The mean duration of short scheduling delays.
1375    pub total_long_delay_count: u64,
1376
1377    /// The total duration of tasks with short scheduling delays.
1378    ///
1379    /// This is defined as tasks taking strictly less than
1380    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
1381    /// scheduled.
1382    ///
1383    /// ##### Derived metrics
1384    /// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**   
1385    ///   The mean duration of short scheduling delays.
1386    pub total_short_delay_duration: Duration,
1387
1388    /// The total number of times that a task had a long scheduling duration.
1389    ///
1390    /// Here, a long scheduling duration is defined as taking longer to start execution after
1391    /// scheduling than [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
1392    ///
1393    /// ##### Derived metrics
1394    /// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**   
1395    ///   The mean duration of short scheduling delays.
1396    pub total_long_delay_duration: Duration,
1397}
1398
1399/// Tracks the metrics, shared across the various types.
1400#[derive(Debug)]
1401struct RawMetrics {
1402    /// A task poll takes longer than this, it is considered a slow poll.
1403    slow_poll_threshold: Duration,
1404
1405    /// A scheduling delay of at least this long will be considered a long delay
1406    long_delay_threshold: Duration,
1407
1408    /// Total number of instrumented tasks.
1409    instrumented_count: AtomicU64,
1410
1411    /// Total number of instrumented tasks polled at least once.
1412    first_poll_count: AtomicU64,
1413
1414    /// Total number of times tasks entered the `idle` state.
1415    total_idled_count: AtomicU64,
1416
1417    /// Total number of times tasks were scheduled.
1418    total_scheduled_count: AtomicU64,
1419
1420    /// Total number of times tasks were polled fast
1421    total_fast_poll_count: AtomicU64,
1422
1423    /// Total number of times tasks were polled slow
1424    total_slow_poll_count: AtomicU64,
1425
1426    /// Total number of times tasks had long delay,
1427    total_long_delay_count: AtomicU64,
1428
1429    /// Total number of times tasks had little delay
1430    total_short_delay_count: AtomicU64,
1431
1432    /// Total number of times tasks were dropped
1433    dropped_count: AtomicU64,
1434
1435    /// Total amount of time until the first poll
1436    total_first_poll_delay_ns: AtomicU64,
1437
1438    /// Total amount of time tasks spent in the `idle` state.
1439    total_idle_duration_ns: AtomicU64,
1440
1441    /// Total amount of time tasks spent in the waking state.
1442    total_scheduled_duration_ns: AtomicU64,
1443
1444    /// Total amount of time tasks spent being polled below the slow cut off.
1445    total_fast_poll_duration_ns: AtomicU64,
1446
1447    /// Total amount of time tasks spent being polled above the slow cut off.
1448    total_slow_poll_duration: AtomicU64,
1449
1450    /// Total amount of time tasks spent being polled below the long delay cut off.
1451    total_short_delay_duration_ns: AtomicU64,
1452
1453    /// Total amount of time tasks spent being polled at or above the long delay cut off.
1454    total_long_delay_duration_ns: AtomicU64,
1455}
1456
1457#[derive(Debug)]
1458struct State {
1459    /// Where metrics should be recorded
1460    metrics: Arc<RawMetrics>,
1461
1462    /// Instant at which the task was instrumented. This is used to track the time to first poll.
1463    instrumented_at: Instant,
1464
1465    /// The instant, tracked as nanoseconds since `instrumented_at`, at which the future
1466    /// was last woken.
1467    woke_at: AtomicU64,
1468
1469    /// Waker to forward notifications to.
1470    waker: AtomicWaker,
1471}
1472
1473impl TaskMonitor {
1474    /// The default duration at which polls cross the threshold into being categorized as 'slow' is
1475    /// 50μs.
1476    #[cfg(not(test))]
1477    pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_micros(50);
1478    #[cfg(test)]
1479    #[allow(missing_docs)]
1480    pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_millis(500);
1481
1482    /// The default duration at which schedules cross the threshold into being categorized as 'long'
1483    /// is 50μs.
1484    #[cfg(not(test))]
1485    pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_micros(50);
1486    #[cfg(test)]
1487    #[allow(missing_docs)]
1488    pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_millis(500);
1489
1490    /// Constructs a new task monitor.
1491    ///
1492    /// Uses [`Self::DEFAULT_SLOW_POLL_THRESHOLD`] as the threshold at which polls will be
1493    /// considered 'slow'.
1494    ///
1495    /// Uses [`Self::DEFAULT_LONG_DELAY_THRESHOLD`] as the threshold at which scheduling will be
1496    /// considered 'long'.
1497    pub fn new() -> TaskMonitor {
1498        TaskMonitor::with_slow_poll_threshold(Self::DEFAULT_SLOW_POLL_THRESHOLD)
1499    }
1500
1501    /// Constructs a builder for a task monitor.
1502    pub fn builder() -> TaskMonitorBuilder {
1503        TaskMonitorBuilder::new()
1504    }
1505
1506    /// Constructs a new task monitor with a given threshold at which polls are considered 'slow'.
1507    ///
1508    /// ##### Selecting an appropriate threshold
1509    /// TODO. What advice can we give here?
1510    ///
1511    /// ##### Examples
1512    /// In the below example, low-threshold and high-threshold monitors are constructed and
1513    /// instrument identical tasks; the low-threshold monitor reports4 slow polls, and the
1514    /// high-threshold monitor reports only 2 slow polls:
1515    /// ```
1516    /// use std::future::Future;
1517    /// use std::time::Duration;
1518    /// use tokio_metrics::TaskMonitor;
1519    ///
1520    /// #[tokio::main]
1521    /// async fn main() {
1522    ///     let lo_threshold = Duration::from_micros(10);
1523    ///     let hi_threshold = Duration::from_millis(10);
1524    ///
1525    ///     let lo_monitor = TaskMonitor::with_slow_poll_threshold(lo_threshold);
1526    ///     let hi_monitor = TaskMonitor::with_slow_poll_threshold(hi_threshold);
1527    ///
1528    ///     let make_task = || async {
1529    ///         spin_for(lo_threshold).await; // faster poll 1
1530    ///         spin_for(lo_threshold).await; // faster poll 2
1531    ///         spin_for(hi_threshold).await; // slower poll 3
1532    ///         spin_for(hi_threshold).await  // slower poll 4
1533    ///     };
1534    ///
1535    ///     lo_monitor.instrument(make_task()).await;
1536    ///     hi_monitor.instrument(make_task()).await;
1537    ///
1538    ///     // the low-threshold monitor reported 4 slow polls:
1539    ///     assert_eq!(lo_monitor.cumulative().total_slow_poll_count, 4);
1540    ///     // the high-threshold monitor reported only 2 slow polls:
1541    ///     assert_eq!(hi_monitor.cumulative().total_slow_poll_count, 2);
1542    /// }
1543    ///
1544    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1545    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1546    ///     let start = tokio::time::Instant::now();
1547    ///     while start.elapsed() <= duration {}
1548    ///     tokio::task::yield_now()
1549    /// }
1550    /// ```
1551    pub fn with_slow_poll_threshold(slow_poll_cut_off: Duration) -> TaskMonitor {
1552        Self::create(slow_poll_cut_off, Self::DEFAULT_LONG_DELAY_THRESHOLD)
1553    }
1554
1555    fn create(slow_poll_cut_off: Duration, long_delay_cut_off: Duration) -> TaskMonitor {
1556        TaskMonitor {
1557            metrics: Arc::new(RawMetrics {
1558                slow_poll_threshold: slow_poll_cut_off,
1559                first_poll_count: AtomicU64::new(0),
1560                total_idled_count: AtomicU64::new(0),
1561                total_scheduled_count: AtomicU64::new(0),
1562                total_fast_poll_count: AtomicU64::new(0),
1563                total_slow_poll_count: AtomicU64::new(0),
1564                total_long_delay_count: AtomicU64::new(0),
1565                instrumented_count: AtomicU64::new(0),
1566                dropped_count: AtomicU64::new(0),
1567                total_first_poll_delay_ns: AtomicU64::new(0),
1568                total_scheduled_duration_ns: AtomicU64::new(0),
1569                total_idle_duration_ns: AtomicU64::new(0),
1570                total_fast_poll_duration_ns: AtomicU64::new(0),
1571                total_slow_poll_duration: AtomicU64::new(0),
1572                total_short_delay_duration_ns: AtomicU64::new(0),
1573                long_delay_threshold: long_delay_cut_off,
1574                total_short_delay_count: AtomicU64::new(0),
1575                total_long_delay_duration_ns: AtomicU64::new(0),
1576            }),
1577        }
1578    }
1579
1580    /// Produces the duration greater-than-or-equal-to at which polls are categorized as slow.
1581    ///
1582    /// ##### Examples
1583    /// In the below example, [`TaskMonitor`] is initialized with [`TaskMonitor::new`];
1584    /// consequently, its slow-poll threshold equals [`TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD`]:
1585    /// ```
1586    /// use tokio_metrics::TaskMonitor;
1587    ///
1588    /// #[tokio::main]
1589    /// async fn main() {
1590    ///     let metrics_monitor = TaskMonitor::new();
1591    ///
1592    ///     assert_eq!(
1593    ///         metrics_monitor.slow_poll_threshold(),
1594    ///         TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD
1595    ///     );
1596    /// }
1597    /// ```
1598    pub fn slow_poll_threshold(&self) -> Duration {
1599        self.metrics.slow_poll_threshold
1600    }
1601
1602    /// Produces the duration greater-than-or-equal-to at which scheduling delays are categorized
1603    /// as long.
1604    pub fn long_delay_threshold(&self) -> Duration {
1605        self.metrics.long_delay_threshold
1606    }
1607
1608    /// Produces an instrumented façade around a given async task.
1609    ///
1610    /// ##### Examples
1611    /// Instrument an async task by passing it to [`TaskMonitor::instrument`]:
1612    /// ```
1613    /// #[tokio::main]
1614    /// async fn main() {
1615    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1616    ///
1617    ///     // 0 tasks have been instrumented, much less polled
1618    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
1619    ///
1620    ///     // instrument a task and poll it to completion
1621    ///     metrics_monitor.instrument(async {}).await;
1622    ///
1623    ///     // 1 task has been instrumented and polled
1624    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 1);
1625    ///
1626    ///     // instrument a task and poll it to completion
1627    ///     metrics_monitor.instrument(async {}).await;
1628    ///
1629    ///     // 2 tasks have been instrumented and polled
1630    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 2);
1631    /// }
1632    /// ```
1633    /// An aync task may be tracked by multiple [`TaskMonitor`]s; e.g.:
1634    /// ```
1635    /// #[tokio::main]
1636    /// async fn main() {
1637    ///     let monitor_a = tokio_metrics::TaskMonitor::new();
1638    ///     let monitor_b = tokio_metrics::TaskMonitor::new();
1639    ///
1640    ///     // 0 tasks have been instrumented, much less polled
1641    ///     assert_eq!(monitor_a.cumulative().first_poll_count, 0);
1642    ///     assert_eq!(monitor_b.cumulative().first_poll_count, 0);
1643    ///
1644    ///     // instrument a task and poll it to completion
1645    ///     monitor_a.instrument(monitor_b.instrument(async {})).await;
1646    ///
1647    ///     // 1 task has been instrumented and polled
1648    ///     assert_eq!(monitor_a.cumulative().first_poll_count, 1);
1649    ///     assert_eq!(monitor_b.cumulative().first_poll_count, 1);
1650    /// }
1651    /// ```
1652    /// It is also possible (but probably undesirable) to instrument an async task multiple times
1653    /// with the same [`TaskMonitor`]; e.g.:
1654    /// ```
1655    /// #[tokio::main]
1656    /// async fn main() {
1657    ///     let monitor = tokio_metrics::TaskMonitor::new();
1658    ///
1659    ///     // 0 tasks have been instrumented, much less polled
1660    ///     assert_eq!(monitor.cumulative().first_poll_count, 0);
1661    ///
1662    ///     // instrument a task and poll it to completion
1663    ///     monitor.instrument(monitor.instrument(async {})).await;
1664    ///
1665    ///     // 2 tasks have been instrumented and polled, supposedly
1666    ///     assert_eq!(monitor.cumulative().first_poll_count, 2);
1667    /// }
1668    /// ```
1669    pub fn instrument<F>(&self, task: F) -> Instrumented<F> {
1670        self.metrics.instrumented_count.fetch_add(1, SeqCst);
1671        Instrumented {
1672            task,
1673            did_poll_once: false,
1674            idled_at: 0,
1675            state: Arc::new(State {
1676                metrics: self.metrics.clone(),
1677                instrumented_at: Instant::now(),
1678                woke_at: AtomicU64::new(0),
1679                waker: AtomicWaker::new(),
1680            }),
1681        }
1682    }
1683
1684    /// Produces [`TaskMetrics`] for the tasks instrumented by this [`TaskMonitor`], collected since
1685    /// the construction of [`TaskMonitor`].
1686    ///
1687    /// ##### See also
1688    /// - [`TaskMonitor::intervals`]:
1689    ///   produces [`TaskMetrics`] for user-defined sampling intervals, instead of cumulatively
1690    ///
1691    /// ##### Examples
1692    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
1693    /// within the second sampling interval, and 2 slow polls occur within the third sampling
1694    /// interval; five slow polls occur across all sampling intervals:
1695    /// ```
1696    /// use std::future::Future;
1697    /// use std::time::Duration;
1698    ///
1699    /// #[tokio::main]
1700    /// async fn main() {
1701    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1702    ///
1703    ///     // initialize a stream of sampling intervals
1704    ///     let mut intervals = metrics_monitor.intervals();
1705    ///     // each call of `next_interval` will produce metrics for the last sampling interval
1706    ///     let mut next_interval = || intervals.next().unwrap();
1707    ///
1708    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
1709    ///
1710    ///     // this task completes in three slow polls
1711    ///     let _ = metrics_monitor.instrument(async {
1712    ///         spin_for(slow).await; // slow poll 1
1713    ///         spin_for(slow).await; // slow poll 2
1714    ///         spin_for(slow)        // slow poll 3
1715    ///     }).await;
1716    ///
1717    ///     // in the previous sampling interval, there were 3 slow polls
1718    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
1719    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 3);
1720    ///
1721    ///     // this task completes in two slow polls
1722    ///     let _ = metrics_monitor.instrument(async {
1723    ///         spin_for(slow).await; // slow poll 1
1724    ///         spin_for(slow)        // slow poll 2
1725    ///     }).await;
1726    ///
1727    ///     // in the previous sampling interval, there were 2 slow polls
1728    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
1729    ///
1730    ///     // across all sampling interval, there were a total of 5 slow polls
1731    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
1732    /// }
1733    ///
1734    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1735    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1736    ///     let start = tokio::time::Instant::now();
1737    ///     while start.elapsed() <= duration {}
1738    ///     tokio::task::yield_now()
1739    /// }
1740    /// ```
1741    pub fn cumulative(&self) -> TaskMetrics {
1742        self.metrics.metrics()
1743    }
1744
1745    /// Produces an unending iterator of metric sampling intervals.
1746    ///
1747    /// Each sampling interval is defined by the time elapsed between advancements of the iterator
1748    /// produced by [`TaskMonitor::intervals`]. The item type of this iterator is [`TaskMetrics`],
1749    /// which is a bundle of task metrics that describe *only* events occurring within that sampling
1750    /// interval.
1751    ///
1752    /// ##### Examples
1753    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
1754    /// within the second sampling interval, and 2 slow polls occur within the third sampling
1755    /// interval; five slow polls occur across all sampling intervals:
1756    /// ```
1757    /// use std::future::Future;
1758    /// use std::time::Duration;
1759    ///
1760    /// #[tokio::main]
1761    /// async fn main() {
1762    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1763    ///
1764    ///     // initialize a stream of sampling intervals
1765    ///     let mut intervals = metrics_monitor.intervals();
1766    ///     // each call of `next_interval` will produce metrics for the last sampling interval
1767    ///     let mut next_interval = || intervals.next().unwrap();
1768    ///
1769    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
1770    ///
1771    ///     // this task completes in three slow polls
1772    ///     let _ = metrics_monitor.instrument(async {
1773    ///         spin_for(slow).await; // slow poll 1
1774    ///         spin_for(slow).await; // slow poll 2
1775    ///         spin_for(slow)        // slow poll 3
1776    ///     }).await;
1777    ///
1778    ///     // in the previous sampling interval, there were 3 slow polls
1779    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
1780    ///
1781    ///     // this task completes in two slow polls
1782    ///     let _ = metrics_monitor.instrument(async {
1783    ///         spin_for(slow).await; // slow poll 1
1784    ///         spin_for(slow)        // slow poll 2
1785    ///     }).await;
1786    ///
1787    ///     // in the previous sampling interval, there were 2 slow polls
1788    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
1789    ///
1790    ///     // across all sampling intervals, there were a total of 5 slow polls
1791    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
1792    /// }
1793    ///
1794    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
1795    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
1796    ///     let start = tokio::time::Instant::now();
1797    ///     while start.elapsed() <= duration {}
1798    ///     tokio::task::yield_now()
1799    /// }
1800    /// ```
1801    pub fn intervals(&self) -> impl Iterator<Item = TaskMetrics> {
1802        let latest = self.metrics.clone();
1803        let mut previous: Option<TaskMetrics> = None;
1804
1805        std::iter::from_fn(move || {
1806            let latest: TaskMetrics = latest.metrics();
1807            let next = if let Some(previous) = previous {
1808                TaskMetrics {
1809                    instrumented_count: latest
1810                        .instrumented_count
1811                        .wrapping_sub(previous.instrumented_count),
1812                    dropped_count: latest.dropped_count.wrapping_sub(previous.dropped_count),
1813                    total_poll_count: latest
1814                        .total_poll_count
1815                        .wrapping_sub(previous.total_poll_count),
1816                    total_poll_duration: sub(
1817                        latest.total_poll_duration,
1818                        previous.total_poll_duration,
1819                    ),
1820                    first_poll_count: latest
1821                        .first_poll_count
1822                        .wrapping_sub(previous.first_poll_count),
1823                    total_idled_count: latest
1824                        .total_idled_count
1825                        .wrapping_sub(previous.total_idled_count),
1826                    total_scheduled_count: latest
1827                        .total_scheduled_count
1828                        .wrapping_sub(previous.total_scheduled_count),
1829                    total_fast_poll_count: latest
1830                        .total_fast_poll_count
1831                        .wrapping_sub(previous.total_fast_poll_count),
1832                    total_short_delay_count: latest
1833                        .total_short_delay_count
1834                        .wrapping_sub(previous.total_short_delay_count),
1835                    total_slow_poll_count: latest
1836                        .total_slow_poll_count
1837                        .wrapping_sub(previous.total_slow_poll_count),
1838                    total_long_delay_count: latest
1839                        .total_long_delay_count
1840                        .wrapping_sub(previous.total_long_delay_count),
1841                    total_first_poll_delay: sub(
1842                        latest.total_first_poll_delay,
1843                        previous.total_first_poll_delay,
1844                    ),
1845                    total_idle_duration: sub(
1846                        latest.total_idle_duration,
1847                        previous.total_idle_duration,
1848                    ),
1849                    total_scheduled_duration: sub(
1850                        latest.total_scheduled_duration,
1851                        previous.total_scheduled_duration,
1852                    ),
1853                    total_fast_poll_duration: sub(
1854                        latest.total_fast_poll_duration,
1855                        previous.total_fast_poll_duration,
1856                    ),
1857                    total_short_delay_duration: sub(
1858                        latest.total_short_delay_duration,
1859                        previous.total_short_delay_duration,
1860                    ),
1861                    total_slow_poll_duration: sub(
1862                        latest.total_slow_poll_duration,
1863                        previous.total_slow_poll_duration,
1864                    ),
1865                    total_long_delay_duration: sub(
1866                        latest.total_long_delay_duration,
1867                        previous.total_long_delay_duration,
1868                    ),
1869                }
1870            } else {
1871                latest
1872            };
1873
1874            previous = Some(latest);
1875
1876            Some(next)
1877        })
1878    }
1879}
1880
1881impl RawMetrics {
1882    fn metrics(&self) -> TaskMetrics {
1883        let total_fast_poll_count = self.total_fast_poll_count.load(SeqCst);
1884        let total_slow_poll_count = self.total_slow_poll_count.load(SeqCst);
1885
1886        let total_fast_poll_duration =
1887            Duration::from_nanos(self.total_fast_poll_duration_ns.load(SeqCst));
1888        let total_slow_poll_duration =
1889            Duration::from_nanos(self.total_slow_poll_duration.load(SeqCst));
1890
1891        let total_poll_count = total_fast_poll_count + total_slow_poll_count;
1892        let total_poll_duration = total_fast_poll_duration + total_slow_poll_duration;
1893
1894        TaskMetrics {
1895            instrumented_count: self.instrumented_count.load(SeqCst),
1896            dropped_count: self.dropped_count.load(SeqCst),
1897
1898            total_poll_count,
1899            total_poll_duration,
1900            first_poll_count: self.first_poll_count.load(SeqCst),
1901            total_idled_count: self.total_idled_count.load(SeqCst),
1902            total_scheduled_count: self.total_scheduled_count.load(SeqCst),
1903            total_fast_poll_count: self.total_fast_poll_count.load(SeqCst),
1904            total_slow_poll_count: self.total_slow_poll_count.load(SeqCst),
1905            total_short_delay_count: self.total_short_delay_count.load(SeqCst),
1906            total_long_delay_count: self.total_long_delay_count.load(SeqCst),
1907            total_first_poll_delay: Duration::from_nanos(
1908                self.total_first_poll_delay_ns.load(SeqCst),
1909            ),
1910            total_idle_duration: Duration::from_nanos(self.total_idle_duration_ns.load(SeqCst)),
1911            total_scheduled_duration: Duration::from_nanos(
1912                self.total_scheduled_duration_ns.load(SeqCst),
1913            ),
1914            total_fast_poll_duration: Duration::from_nanos(
1915                self.total_fast_poll_duration_ns.load(SeqCst),
1916            ),
1917            total_slow_poll_duration: Duration::from_nanos(
1918                self.total_slow_poll_duration.load(SeqCst),
1919            ),
1920            total_short_delay_duration: Duration::from_nanos(
1921                self.total_short_delay_duration_ns.load(SeqCst),
1922            ),
1923            total_long_delay_duration: Duration::from_nanos(
1924                self.total_long_delay_duration_ns.load(SeqCst),
1925            ),
1926        }
1927    }
1928}
1929
1930impl Default for TaskMonitor {
1931    fn default() -> TaskMonitor {
1932        TaskMonitor::new()
1933    }
1934}
1935
1936impl TaskMetrics {
1937    /// The mean duration elapsed between the instant tasks are instrumented, and the instant they
1938    /// are first polled.
1939    ///
1940    /// ##### Definition
1941    /// This metric is derived from [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay]
1942    /// ÷ [`first_poll_count`][TaskMetrics::first_poll_count].
1943    ///
1944    /// ##### Interpretation
1945    /// If this metric increases, it means that, on average, tasks spent longer waiting to be
1946    /// initially polled.
1947    ///
1948    /// ##### See also
1949    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
1950    ///   The mean duration that tasks spent waiting to be executed after awakening.
1951    ///
1952    /// ##### Examples
1953    /// In the below example, no tasks are instrumented or polled within the first sampling
1954    /// interval; in the second sampling interval, 500ms elapse between the instrumentation of a
1955    /// task and its first poll; in the third sampling interval, a mean of 750ms elapse between the
1956    /// instrumentation and first poll of two tasks:
1957    /// ```
1958    /// use std::time::Duration;
1959    ///
1960    /// #[tokio::main]
1961    /// async fn main() {
1962    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
1963    ///     let mut interval = metrics_monitor.intervals();
1964    ///     let mut next_interval = || interval.next().unwrap();
1965    ///
1966    ///     // no tasks have yet been created, instrumented, or polled
1967    ///     assert_eq!(next_interval().mean_first_poll_delay(), Duration::ZERO);
1968    ///
1969    ///     // constructs and instruments a task, pauses for `pause_time`, awaits the task, then
1970    ///     // produces the total time it took to do all of the aforementioned
1971    ///     async fn instrument_pause_await(
1972    ///         metrics_monitor: &tokio_metrics::TaskMonitor,
1973    ///         pause_time: Duration
1974    ///     ) -> Duration
1975    ///     {
1976    ///         let before_instrumentation = tokio::time::Instant::now();
1977    ///         let task = metrics_monitor.instrument(async move {});
1978    ///         tokio::time::sleep(pause_time).await;
1979    ///         task.await;
1980    ///         before_instrumentation.elapsed()
1981    ///     }
1982    ///
1983    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
1984    ///     let task_a_pause_time = Duration::from_millis(500);
1985    ///     let task_a_total_time = instrument_pause_await(&metrics_monitor, task_a_pause_time).await;
1986    ///
1987    ///     // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
1988    ///     // pause time of 500ms, and less-than-or-equal-to the total runtime of `task_a`
1989    ///     let mean_first_poll_delay = next_interval().mean_first_poll_delay();
1990    ///     assert!(mean_first_poll_delay >= task_a_pause_time);
1991    ///     assert!(mean_first_poll_delay <= task_a_total_time);
1992    ///
1993    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
1994    ///     let task_b_pause_time = Duration::from_millis(500);
1995    ///     let task_b_total_time = instrument_pause_await(&metrics_monitor, task_b_pause_time).await;
1996    ///
1997    ///     // construct and await a task that pauses for 1000ms between instrumentation and first poll
1998    ///     let task_c_pause_time = Duration::from_millis(1000);
1999    ///     let task_c_total_time = instrument_pause_await(&metrics_monitor, task_c_pause_time).await;
2000    ///
2001    ///     // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
2002    ///     // average pause time of 500ms, and less-than-or-equal-to the combined total runtime of
2003    ///     // `task_b` and `task_c`
2004    ///     let mean_first_poll_delay = next_interval().mean_first_poll_delay();
2005    ///     assert!(mean_first_poll_delay >= (task_b_pause_time + task_c_pause_time) / 2);
2006    ///     assert!(mean_first_poll_delay <= (task_b_total_time + task_c_total_time) / 2);
2007    /// }
2008    /// ```
2009    pub fn mean_first_poll_delay(&self) -> Duration {
2010        mean(self.total_first_poll_delay, self.first_poll_count)
2011    }
2012
2013    /// The mean duration of idles.
2014    ///
2015    /// ##### Definition
2016    /// This metric is derived from [`total_idle_duration`][TaskMetrics::total_idle_duration] ÷
2017    /// [`total_idled_count`][TaskMetrics::total_idled_count].
2018    ///
2019    /// ##### Interpretation
2020    /// The idle state is the duration spanning the instant a task completes a poll, and the instant
2021    /// that it is next awoken. Tasks inhabit this state when they are waiting for task-external
2022    /// events to complete (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this
2023    /// metric increases, it means that tasks, in aggregate, spent more time waiting for
2024    /// task-external events to complete.
2025    ///
2026    /// ##### Examples
2027    /// ```
2028    /// #[tokio::main]
2029    /// async fn main() {
2030    ///     let monitor = tokio_metrics::TaskMonitor::new();
2031    ///     let one_sec = std::time::Duration::from_secs(1);
2032    ///
2033    ///     monitor.instrument(async move {
2034    ///         tokio::time::sleep(one_sec).await;
2035    ///     }).await;
2036    ///
2037    ///     assert!(monitor.cumulative().mean_idle_duration() >= one_sec);
2038    /// }
2039    /// ```
2040    pub fn mean_idle_duration(&self) -> Duration {
2041        mean(self.total_idle_duration, self.total_idled_count)
2042    }
2043
2044    /// The mean duration that tasks spent waiting to be executed after awakening.
2045    ///
2046    /// ##### Definition
2047    /// This metric is derived from
2048    /// [`total_scheduled_duration`][TaskMetrics::total_scheduled_duration] ÷
2049    /// [`total_scheduled_count`][`TaskMetrics::total_scheduled_count`].
2050    ///
2051    /// ##### Interpretation
2052    /// If this metric increases, it means that, on average, tasks spent longer in the runtime's
2053    /// queues before being polled.
2054    ///
2055    /// ##### See also
2056    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**   
2057    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
2058    ///   are first polled.
2059    ///
2060    /// ##### Examples
2061    /// ```
2062    /// use tokio::time::Duration;
2063    ///
2064    /// #[tokio::main(flavor = "current_thread")]
2065    /// async fn main() {
2066    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
2067    ///     let mut interval = metrics_monitor.intervals();
2068    ///     let mut next_interval = || interval.next().unwrap();
2069    ///
2070    ///     // construct and instrument and spawn a task that yields endlessly
2071    ///     tokio::spawn(metrics_monitor.instrument(async {
2072    ///         loop { tokio::task::yield_now().await }
2073    ///     }));
2074    ///
2075    ///     tokio::task::yield_now().await;
2076    ///
2077    ///     // block the executor for 1 second
2078    ///     std::thread::sleep(Duration::from_millis(1000));
2079    ///
2080    ///     // get the task to run twice
2081    ///     // the first will have a 1 sec scheduling delay, the second will have almost none
2082    ///     tokio::task::yield_now().await;
2083    ///     tokio::task::yield_now().await;
2084    ///
2085    ///     // `endless_task` will have spent approximately one second waiting
2086    ///     let mean_scheduled_duration = next_interval().mean_scheduled_duration();
2087    ///     assert!(mean_scheduled_duration >= Duration::from_millis(500), "{}", mean_scheduled_duration.as_secs_f64());
2088    ///     assert!(mean_scheduled_duration <= Duration::from_millis(600), "{}", mean_scheduled_duration.as_secs_f64());
2089    /// }
2090    /// ```
2091    pub fn mean_scheduled_duration(&self) -> Duration {
2092        mean(self.total_scheduled_duration, self.total_scheduled_count)
2093    }
2094
2095    /// The mean duration of polls.
2096    ///
2097    /// ##### Definition
2098    /// This metric is derived from [`total_poll_duration`][TaskMetrics::total_poll_duration] ÷
2099    /// [`total_poll_count`][TaskMetrics::total_poll_count].
2100    ///
2101    /// ##### Interpretation
2102    /// If this metric increases, it means that, on average, individual polls are tending to take
2103    /// longer. However, this does not necessarily imply increased task latency: An increase in poll
2104    /// durations could be offset by fewer polls.
2105    ///
2106    /// ##### See also
2107    /// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**   
2108    ///   The ratio between the number polls categorized as slow and fast.
2109    /// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**   
2110    ///   The mean duration of slow polls.
2111    ///
2112    /// ##### Examples
2113    /// ```
2114    /// use std::time::Duration;
2115    ///
2116    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
2117    /// async fn main() {
2118    ///     let monitor = tokio_metrics::TaskMonitor::new();
2119    ///     let mut interval = monitor.intervals();
2120    ///     let mut next_interval = move || interval.next().unwrap();
2121    ///  
2122    ///     assert_eq!(next_interval().mean_poll_duration(), Duration::ZERO);
2123    ///  
2124    ///     monitor.instrument(async {
2125    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
2126    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
2127    ///         ()                                                  // poll 3 (0s)
2128    ///     }).await;
2129    ///  
2130    ///     assert_eq!(next_interval().mean_poll_duration(), Duration::from_secs(2) / 3);
2131    /// }
2132    /// ```
2133    pub fn mean_poll_duration(&self) -> Duration {
2134        mean(self.total_poll_duration, self.total_poll_count)
2135    }
2136
2137    /// The ratio between the number polls categorized as slow and fast.
2138    ///
2139    /// ##### Definition
2140    /// This metric is derived from [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count] ÷
2141    /// [`total_poll_count`][TaskMetrics::total_poll_count].
2142    ///
2143    /// ##### Interpretation
2144    /// If this metric increases, it means that a greater proportion of polls took excessively long
2145    /// before yielding to the scheduler. This does not necessarily imply increased task latency:
2146    /// An increase in the proportion of slow polls could be offset by fewer or faster polls.
2147    /// However, as a rule, *should* yield to the scheduler frequently.
2148    ///
2149    /// ##### See also
2150    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
2151    ///   The mean duration of polls.
2152    /// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**   
2153    ///   The mean duration of slow polls.
2154    ///
2155    /// ##### Examples
2156    /// Changes in this metric may be observed by varying the ratio of slow and slow fast within
2157    /// sampling intervals; for instance:
2158    /// ```
2159    /// use std::future::Future;
2160    /// use std::time::Duration;
2161    ///
2162    /// #[tokio::main]
2163    /// async fn main() {
2164    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
2165    ///     let mut interval = metrics_monitor.intervals();
2166    ///     let mut next_interval = || interval.next().unwrap();
2167    ///
2168    ///     // no tasks have been constructed, instrumented, or polled
2169    ///     let interval = next_interval();
2170    ///     assert_eq!(interval.total_fast_poll_count, 0);
2171    ///     assert_eq!(interval.total_slow_poll_count, 0);
2172    ///     assert!(interval.slow_poll_ratio().is_nan());
2173    ///
2174    ///     let fast = Duration::ZERO;
2175    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
2176    ///
2177    ///     // this task completes in three fast polls
2178    ///     metrics_monitor.instrument(async {
2179    ///         spin_for(fast).await;   // fast poll 1
2180    ///         spin_for(fast).await;   // fast poll 2
2181    ///         spin_for(fast);         // fast poll 3
2182    ///     }).await;
2183    ///
2184    ///     // this task completes in two slow polls
2185    ///     metrics_monitor.instrument(async {
2186    ///         spin_for(slow).await;   // slow poll 1
2187    ///         spin_for(slow);         // slow poll 2
2188    ///     }).await;
2189    ///
2190    ///     let interval = next_interval();
2191    ///     assert_eq!(interval.total_fast_poll_count, 3);
2192    ///     assert_eq!(interval.total_slow_poll_count, 2);
2193    ///     assert_eq!(interval.slow_poll_ratio(), ratio(2., 3.));
2194    ///
2195    ///     // this task completes in three slow polls
2196    ///     metrics_monitor.instrument(async {
2197    ///         spin_for(slow).await;   // slow poll 1
2198    ///         spin_for(slow).await;   // slow poll 2
2199    ///         spin_for(slow);         // slow poll 3
2200    ///     }).await;
2201    ///
2202    ///     // this task completes in two fast polls
2203    ///     metrics_monitor.instrument(async {
2204    ///         spin_for(fast).await; // fast poll 1
2205    ///         spin_for(fast);       // fast poll 2
2206    ///     }).await;
2207    ///
2208    ///     let interval = next_interval();
2209    ///     assert_eq!(interval.total_fast_poll_count, 2);
2210    ///     assert_eq!(interval.total_slow_poll_count, 3);
2211    ///     assert_eq!(interval.slow_poll_ratio(), ratio(3., 2.));
2212    /// }
2213    ///
2214    /// fn ratio(a: f64, b: f64) -> f64 {
2215    ///     a / (a + b)
2216    /// }
2217    ///
2218    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
2219    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
2220    ///     let start = tokio::time::Instant::now();
2221    ///     while start.elapsed() <= duration {}
2222    ///     tokio::task::yield_now()
2223    /// }
2224    /// ```
2225    pub fn slow_poll_ratio(&self) -> f64 {
2226        self.total_slow_poll_count as f64 / self.total_poll_count as f64
2227    }
2228
2229    /// The ratio of tasks exceeding [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
2230    ///
2231    /// ##### Definition
2232    /// This metric is derived from [`total_long_delay_count`][TaskMetrics::total_long_delay_count] ÷
2233    /// [`total_scheduled_count`][TaskMetrics::total_scheduled_count].
2234    pub fn long_delay_ratio(&self) -> f64 {
2235        self.total_long_delay_count as f64 / self.total_scheduled_count as f64
2236    }
2237
2238    /// The mean duration of fast polls.
2239    ///
2240    /// ##### Definition
2241    /// This metric is derived from
2242    /// [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration] ÷
2243    /// [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count].
2244    ///
2245    /// ##### Examples
2246    /// In the below example, no tasks are polled in the first sampling interval; three fast polls
2247    /// consume a mean of
2248    /// ⅜ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
2249    /// second sampling interval; and two fast polls consume a total of
2250    /// ½ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
2251    /// third sampling interval:
2252    /// ```
2253    /// use std::future::Future;
2254    /// use std::time::Duration;
2255    ///
2256    /// #[tokio::main]
2257    /// async fn main() {
2258    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
2259    ///     let mut interval = metrics_monitor.intervals();
2260    ///     let mut next_interval = || interval.next().unwrap();
2261    ///
2262    ///     // no tasks have been constructed, instrumented, or polled
2263    ///     assert_eq!(next_interval().mean_fast_poll_duration(), Duration::ZERO);
2264    ///
2265    ///     let threshold = metrics_monitor.slow_poll_threshold();
2266    ///     let fast_1 = 1 * Duration::from_micros(1);
2267    ///     let fast_2 = 2 * Duration::from_micros(1);
2268    ///     let fast_3 = 3 * Duration::from_micros(1);
2269    ///
2270    ///     // this task completes in two fast polls
2271    ///     let total_time = time(metrics_monitor.instrument(async {
2272    ///         spin_for(fast_1).await; // fast poll 1
2273    ///         spin_for(fast_2)        // fast poll 2
2274    ///     })).await;
2275    ///
2276    ///     // `mean_fast_poll_duration` ≈ the mean of `fast_1` and `fast_2`
2277    ///     let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
2278    ///     assert!(mean_fast_poll_duration >= (fast_1 + fast_2) / 2);
2279    ///     assert!(mean_fast_poll_duration <= total_time / 2);
2280    ///
2281    ///     // this task completes in three fast polls
2282    ///     let total_time = time(metrics_monitor.instrument(async {
2283    ///         spin_for(fast_1).await; // fast poll 1
2284    ///         spin_for(fast_2).await; // fast poll 2
2285    ///         spin_for(fast_3)        // fast poll 3
2286    ///     })).await;
2287    ///
2288    ///     // `mean_fast_poll_duration` ≈ the mean of `fast_1`, `fast_2`, `fast_3`
2289    ///     let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
2290    ///     assert!(mean_fast_poll_duration >= (fast_1 + fast_2 + fast_3) / 3);
2291    ///     assert!(mean_fast_poll_duration <= total_time / 3);
2292    /// }
2293    ///
2294    /// /// Produces the amount of time it took to await a given task.
2295    /// async fn time(task: impl Future) -> Duration {
2296    ///     let start = tokio::time::Instant::now();
2297    ///     task.await;
2298    ///     start.elapsed()
2299    /// }
2300    ///
2301    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
2302    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
2303    ///     let start = tokio::time::Instant::now();
2304    ///     while start.elapsed() <= duration {}
2305    ///     tokio::task::yield_now()
2306    /// }
2307    /// ```
2308    pub fn mean_fast_poll_duration(&self) -> Duration {
2309        mean(self.total_fast_poll_duration, self.total_fast_poll_count)
2310    }
2311
2312    /// The average time taken for a task with a short scheduling delay to be executed after being
2313    /// scheduled.
2314    ///
2315    /// ##### Definition
2316    /// This metric is derived from
2317    /// [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration] ÷
2318    /// [`total_short_delay_count`][TaskMetrics::total_short_delay_count].
2319    pub fn mean_short_delay_duration(&self) -> Duration {
2320        mean(
2321            self.total_short_delay_duration,
2322            self.total_short_delay_count,
2323        )
2324    }
2325
2326    /// The mean duration of slow polls.
2327    ///
2328    /// ##### Definition
2329    /// This metric is derived from
2330    /// [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration] ÷
2331    /// [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
2332    ///
2333    /// ##### Interpretation
2334    /// If this metric increases, it means that a greater proportion of polls took excessively long
2335    /// before yielding to the scheduler. This does not necessarily imply increased task latency:
2336    /// An increase in the proportion of slow polls could be offset by fewer or faster polls.
2337    ///
2338    /// ##### See also
2339    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
2340    ///   The mean duration of polls.
2341    /// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**   
2342    ///   The ratio between the number polls categorized as slow and fast.
2343    ///
2344    /// ##### Interpretation
2345    /// If this metric increases, it means that, on average, slow polls got even slower. This does
2346    /// necessarily imply increased task latency: An increase in average slow poll duration could be
2347    /// offset by fewer or faster polls. However, as a rule, *should* yield to the scheduler
2348    /// frequently.
2349    ///
2350    /// ##### Examples
2351    /// In the below example, no tasks are polled in the first sampling interval; three slow polls
2352    /// consume a mean of
2353    /// 1.5 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
2354    /// second sampling interval; and two slow polls consume a total of
2355    /// 2 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
2356    /// third sampling interval:
2357    /// ```
2358    /// use std::future::Future;
2359    /// use std::time::Duration;
2360    ///
2361    /// #[tokio::main]
2362    /// async fn main() {
2363    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
2364    ///     let mut interval = metrics_monitor.intervals();
2365    ///     let mut next_interval = || interval.next().unwrap();
2366    ///
2367    ///     // no tasks have been constructed, instrumented, or polled
2368    ///     assert_eq!(next_interval().mean_slow_poll_duration(), Duration::ZERO);
2369    ///
2370    ///     let threshold = metrics_monitor.slow_poll_threshold();
2371    ///     let slow_1 = 1 * threshold;
2372    ///     let slow_2 = 2 * threshold;
2373    ///     let slow_3 = 3 * threshold;
2374    ///
2375    ///     // this task completes in two slow polls
2376    ///     let total_time = time(metrics_monitor.instrument(async {
2377    ///         spin_for(slow_1).await; // slow poll 1
2378    ///         spin_for(slow_2)        // slow poll 2
2379    ///     })).await;
2380    ///
2381    ///     // `mean_slow_poll_duration` ≈ the mean of `slow_1` and `slow_2`
2382    ///     let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
2383    ///     assert!(mean_slow_poll_duration >= (slow_1 + slow_2) / 2);
2384    ///     assert!(mean_slow_poll_duration <= total_time / 2);
2385    ///
2386    ///     // this task completes in three slow polls
2387    ///     let total_time = time(metrics_monitor.instrument(async {
2388    ///         spin_for(slow_1).await; // slow poll 1
2389    ///         spin_for(slow_2).await; // slow poll 2
2390    ///         spin_for(slow_3)        // slow poll 3
2391    ///     })).await;
2392    ///
2393    ///     // `mean_slow_poll_duration` ≈ the mean of `slow_1`, `slow_2`, `slow_3`
2394    ///     let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
2395    ///     assert!(mean_slow_poll_duration >= (slow_1 + slow_2 + slow_3) / 3);
2396    ///     assert!(mean_slow_poll_duration <= total_time / 3);
2397    /// }
2398    ///
2399    /// /// Produces the amount of time it took to await a given task.
2400    /// async fn time(task: impl Future) -> Duration {
2401    ///     let start = tokio::time::Instant::now();
2402    ///     task.await;
2403    ///     start.elapsed()
2404    /// }
2405    ///
2406    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
2407    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
2408    ///     let start = tokio::time::Instant::now();
2409    ///     while start.elapsed() <= duration {}
2410    ///     tokio::task::yield_now()
2411    /// }
2412    /// ```
2413    pub fn mean_slow_poll_duration(&self) -> Duration {
2414        mean(self.total_slow_poll_duration, self.total_slow_poll_count)
2415    }
2416
2417    /// The average scheduling delay for a task which takes a long time to start executing after
2418    /// being scheduled.
2419    ///
2420    /// ##### Definition
2421    /// This metric is derived from
2422    /// [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration] ÷
2423    /// [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
2424    pub fn mean_long_delay_duration(&self) -> Duration {
2425        mean(self.total_long_delay_duration, self.total_long_delay_count)
2426    }
2427}
2428
2429impl<T: Future> Future for Instrumented<T> {
2430    type Output = T::Output;
2431
2432    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2433        instrument_poll(cx, self, Future::poll)
2434    }
2435}
2436
2437impl<T: Stream> Stream for Instrumented<T> {
2438    type Item = T::Item;
2439
2440    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
2441        instrument_poll(cx, self, Stream::poll_next)
2442    }
2443}
2444
2445fn instrument_poll<T, Out>(
2446    cx: &mut Context<'_>,
2447    instrumented: Pin<&mut Instrumented<T>>,
2448    poll_fn: impl FnOnce(Pin<&mut T>, &mut Context<'_>) -> Poll<Out>,
2449) -> Poll<Out> {
2450    let poll_start = Instant::now();
2451    let this = instrumented.project();
2452    let idled_at = this.idled_at;
2453    let state = this.state;
2454    let instrumented_at = state.instrumented_at;
2455    let metrics = &state.metrics;
2456    /* accounting for time-to-first-poll and tasks-count */
2457    // is this the first time this task has been polled?
2458    if !*this.did_poll_once {
2459        // if so, we need to do three things:
2460        /* 1. note that this task *has* been polled */
2461        *this.did_poll_once = true;
2462
2463        /* 2. account for the time-to-first-poll of this task */
2464        // if the time-to-first-poll of this task exceeds `u64::MAX` ns,
2465        // round down to `u64::MAX` nanoseconds
2466        let elapsed = (poll_start - instrumented_at)
2467            .as_nanos()
2468            .try_into()
2469            .unwrap_or(u64::MAX);
2470        // add this duration to `time_to_first_poll_ns_total`
2471        metrics.total_first_poll_delay_ns.fetch_add(elapsed, SeqCst);
2472
2473        /* 3. increment the count of tasks that have been polled at least once */
2474        state.metrics.first_poll_count.fetch_add(1, SeqCst);
2475    }
2476    /* accounting for time-idled and time-scheduled */
2477    // 1. note (and reset) the instant this task was last awoke
2478    let woke_at = state.woke_at.swap(0, SeqCst);
2479    // The state of a future is *idling* in the interim between the instant
2480    // it completes a `poll`, and the instant it is next awoken.
2481    if *idled_at < woke_at {
2482        // increment the counter of how many idles occurred
2483        metrics.total_idled_count.fetch_add(1, SeqCst);
2484
2485        // compute the duration of the idle
2486        let idle_ns = woke_at - *idled_at;
2487
2488        // adjust the total elapsed time monitored tasks spent idling
2489        metrics.total_idle_duration_ns.fetch_add(idle_ns, SeqCst);
2490    }
2491    // if this task spent any time in the scheduled state after instrumentation,
2492    // and after first poll, `woke_at` will be greater than 0.
2493    if woke_at > 0 {
2494        // increment the counter of how many schedules occurred
2495        metrics.total_scheduled_count.fetch_add(1, SeqCst);
2496
2497        // recall that the `woke_at` field is internally represented as
2498        // nanoseconds-since-instrumentation. here, for accounting purposes,
2499        // we need to instead represent it as a proper `Instant`.
2500        let woke_instant = instrumented_at + Duration::from_nanos(woke_at);
2501
2502        // the duration this task spent scheduled is time time elapsed between
2503        // when this task was awoke, and when it was polled.
2504        let scheduled_ns = (poll_start - woke_instant)
2505            .as_nanos()
2506            .try_into()
2507            .unwrap_or(u64::MAX);
2508
2509        let scheduled = Duration::from_nanos(scheduled_ns);
2510
2511        let (count_bucket, duration_bucket) = // was the scheduling delay long or short?
2512            if scheduled >= metrics.long_delay_threshold {
2513                (&metrics.total_long_delay_count, &metrics.total_long_delay_duration_ns)
2514            } else {
2515                (&metrics.total_short_delay_count, &metrics.total_short_delay_duration_ns)
2516            };
2517        // update the appropriate bucket
2518        count_bucket.fetch_add(1, SeqCst);
2519        duration_bucket.fetch_add(scheduled_ns, SeqCst);
2520
2521        // add `scheduled_ns` to the Monitor's total
2522        metrics
2523            .total_scheduled_duration_ns
2524            .fetch_add(scheduled_ns, SeqCst);
2525    }
2526    // Register the waker
2527    state.waker.register(cx.waker());
2528    // Get the instrumented waker
2529    let waker_ref = futures_util::task::waker_ref(state);
2530    let mut cx = Context::from_waker(&waker_ref);
2531    // Poll the task
2532    let inner_poll_start = Instant::now();
2533    let ret = poll_fn(this.task, &mut cx);
2534    let inner_poll_end = Instant::now();
2535    /* idle time starts now */
2536    *idled_at = (inner_poll_end - instrumented_at)
2537        .as_nanos()
2538        .try_into()
2539        .unwrap_or(u64::MAX);
2540    /* accounting for poll time */
2541    let inner_poll_duration = inner_poll_end - inner_poll_start;
2542    let inner_poll_ns: u64 = inner_poll_duration
2543        .as_nanos()
2544        .try_into()
2545        .unwrap_or(u64::MAX);
2546    let (count_bucket, duration_bucket) = // was this a slow or fast poll?
2547            if inner_poll_duration >= metrics.slow_poll_threshold {
2548                (&metrics.total_slow_poll_count, &metrics.total_slow_poll_duration)
2549            } else {
2550                (&metrics.total_fast_poll_count, &metrics.total_fast_poll_duration_ns)
2551            };
2552    // update the appropriate bucket
2553    count_bucket.fetch_add(1, SeqCst);
2554    duration_bucket.fetch_add(inner_poll_ns, SeqCst);
2555    ret
2556}
2557
2558impl State {
2559    fn on_wake(&self) {
2560        let woke_at: u64 = match self.instrumented_at.elapsed().as_nanos().try_into() {
2561            Ok(woke_at) => woke_at,
2562            // This is highly unlikely as it would mean the task ran for over
2563            // 500 years. If you ran your service for 500 years. If you are
2564            // reading this 500 years in the future, I'm sorry.
2565            Err(_) => return,
2566        };
2567
2568        // We don't actually care about the result
2569        let _ = self.woke_at.compare_exchange(0, woke_at, SeqCst, SeqCst);
2570    }
2571}
2572
2573impl ArcWake for State {
2574    fn wake_by_ref(arc_self: &Arc<State>) {
2575        arc_self.on_wake();
2576        arc_self.waker.wake();
2577    }
2578
2579    fn wake(self: Arc<State>) {
2580        self.on_wake();
2581        self.waker.wake();
2582    }
2583}
2584
2585#[inline(always)]
2586fn to_nanos(d: Duration) -> u64 {
2587    debug_assert!(d <= Duration::from_nanos(u64::MAX));
2588    d.as_secs()
2589        .wrapping_mul(1_000_000_000)
2590        .wrapping_add(d.subsec_nanos() as u64)
2591}
2592
2593#[inline(always)]
2594fn sub(a: Duration, b: Duration) -> Duration {
2595    let nanos = to_nanos(a).wrapping_sub(to_nanos(b));
2596    Duration::from_nanos(nanos)
2597}
2598
2599#[inline(always)]
2600fn mean(d: Duration, count: u64) -> Duration {
2601    if let Some(quotient) = to_nanos(d).checked_div(count) {
2602        Duration::from_nanos(quotient)
2603    } else {
2604        Duration::ZERO
2605    }
2606}