1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
use futures_util::task::{ArcWake, AtomicWaker};
use pin_project_lite::pin_project;
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::{AtomicU64, Ordering::SeqCst};
use std::sync::Arc;
use std::task::{Context, Poll};
use tokio_stream::Stream;

#[cfg(feature = "rt")]
use tokio::time::{Duration, Instant};

#[cfg(not(feature = "rt"))]
use std::time::{Duration, Instant};

/// Monitors key metrics of instrumented tasks.
///
/// ### Basic Usage
/// A [`TaskMonitor`] tracks key [metrics][TaskMetrics] of async tasks that have been
/// [instrumented][`TaskMonitor::instrument`] with the monitor.
///
/// In the below example, a [`TaskMonitor`] is [constructed][TaskMonitor::new] and used to
/// [instrument][TaskMonitor::instrument] three worker tasks; meanwhile, a fourth task
/// prints [metrics][TaskMetrics] in 500ms [intervals][TaskMonitor::intervals].
/// ```
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
///     // construct a metrics monitor
///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
///
///     // print task metrics every 500ms
///     {
///         let metrics_monitor = metrics_monitor.clone();
///         tokio::spawn(async move {
///             for interval in metrics_monitor.intervals() {
///                 // pretty-print the metric interval
///                 println!("{:?}", interval);
///                 // wait 500ms
///                 tokio::time::sleep(Duration::from_millis(500)).await;
///             }
///         });
///     }
///
///     // instrument some tasks and await them
///     // note that the same TaskMonitor can be used for multiple tasks
///     tokio::join![
///         metrics_monitor.instrument(do_work()),
///         metrics_monitor.instrument(do_work()),
///         metrics_monitor.instrument(do_work())
///     ];
/// }
///
/// async fn do_work() {
///     for _ in 0..25 {
///         tokio::task::yield_now().await;
///         tokio::time::sleep(Duration::from_millis(100)).await;
///     }
/// }
/// ```
///
/// ### What should I instrument?
/// In most cases, you should construct a *distinct* [`TaskMonitor`] for each kind of key task.
///
/// #### Instrumenting a web application
/// For instance, a web service should have a distinct [`TaskMonitor`] for each endpoint. Within
/// each endpoint, it's prudent to additionally instrument major sub-tasks, each with their own
/// distinct [`TaskMonitor`]s. [*Why are my tasks slow?*](#why-are-my-tasks-slow) explores a
/// debugging scenario for a web service that takes this approach to instrumentation. This
/// approach is exemplified in the below example:
/// ```no_run
/// // The unabridged version of this snippet is in the examples directory of this crate.
///
/// #[tokio::main]
/// async fn main() {
///     // construct a TaskMonitor for root endpoint
///     let monitor_root = tokio_metrics::TaskMonitor::new();
///
///     // construct TaskMonitors for create_users endpoint
///     let monitor_create_user = CreateUserMonitors {
///         // monitor for the entire endpoint
///         route: tokio_metrics::TaskMonitor::new(),
///         // monitor for database insertion subtask
///         insert: tokio_metrics::TaskMonitor::new(),
///     };
///
///     // build our application with two instrumented endpoints
///     let app = axum::Router::new()
///         // `GET /` goes to `root`
///         .route("/", axum::routing::get({
///             let monitor = monitor_root.clone();
///             move || monitor.instrument(async { "Hello, World!" })
///         }))
///         // `POST /users` goes to `create_user`
///         .route("/users", axum::routing::post({
///             let monitors = monitor_create_user.clone();
///             let route = monitors.route.clone();
///             move |payload| {
///                 route.instrument(create_user(payload, monitors))
///             }
///         }));
///
///     // print task metrics for each endpoint every 1s
///     let metrics_frequency = std::time::Duration::from_secs(1);
///     tokio::spawn(async move {
///         let root_intervals = monitor_root.intervals();
///         let create_user_route_intervals =
///             monitor_create_user.route.intervals();
///         let create_user_insert_intervals =
///             monitor_create_user.insert.intervals();
///         let create_user_intervals =
///             create_user_route_intervals.zip(create_user_insert_intervals);
///
///         let intervals = root_intervals.zip(create_user_intervals);
///         for (root_route, (create_user_route, create_user_insert)) in intervals {
///             println!("root_route = {:#?}", root_route);
///             println!("create_user_route = {:#?}", create_user_route);
///             println!("create_user_insert = {:#?}", create_user_insert);
///             tokio::time::sleep(metrics_frequency).await;
///         }
///     });
///
///     // run the server
///     let addr = std::net::SocketAddr::from(([127, 0, 0, 1], 3000));
///     axum::Server::bind(&addr)
///         .serve(app.into_make_service())
///         .await
///         .unwrap();
/// }
///
/// async fn create_user(
///     axum::Json(payload): axum::Json<CreateUser>,
///     monitors: CreateUserMonitors,
/// ) -> impl axum::response::IntoResponse {
///     let user = User { id: 1337, username: payload.username, };
///     // instrument inserting the user into the db:
///     let _ = monitors.insert.instrument(insert_user(user.clone())).await;
///     (axum::http::StatusCode::CREATED, axum::Json(user))
/// }
///
/// /* definitions of CreateUserMonitors, CreateUser and User omitted for brevity */
///
/// #
/// # #[derive(Clone)]
/// # struct CreateUserMonitors {
/// #     // monitor for the entire endpoint
/// #     route: tokio_metrics::TaskMonitor,
/// #     // monitor for database insertion subtask
/// #     insert: tokio_metrics::TaskMonitor,
/// # }
/// #
/// # #[derive(serde::Deserialize)] struct CreateUser { username: String, }
/// # #[derive(Clone, serde::Serialize)] struct User { id: u64, username: String, }
/// #
/// // insert the user into the database
/// async fn insert_user(_: User) {
///     /* implementation details elided */
///     tokio::time::sleep(std::time::Duration::from_secs(1)).await;
/// }
/// ```
///
/// ### Why are my tasks slow?
/// **Scenario:** You track key, high-level metrics about the customer response time. An alarm warns
/// you that P90 latency for an endpoint exceeds your targets. What is causing the increase?
///
/// #### Identifying the high-level culprits
/// A set of tasks will appear to execute more slowly if:
/// - they are taking longer to poll (i.e., they consume too much CPU time)
/// - they are waiting longer to be polled (e.g., they're waiting longer in tokio's scheduling
///   queues)
/// - they are waiting longer on external events to complete (e.g., asynchronous network requests)
///
/// The culprits, at a high level, may be some combination of these sources of latency. Fortunately,
/// you have instrumented the key tasks of each of your endpoints with distinct [`TaskMonitor`]s.
/// Using the monitors on the endpoint experiencing elevated latency, you begin by answering:
/// - [*Are my tasks taking longer to poll?*](#are-my-tasks-taking-longer-to-poll)
/// - [*Are my tasks spending more time waiting to be polled?*](#are-my-tasks-spending-more-time-waiting-to-be-polled)
/// - [*Are my tasks spending more time waiting on external events to complete?*](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
///
/// ##### Are my tasks taking longer to poll?
/// - **Did [`mean_poll_duration`][TaskMetrics::mean_poll_duration] increase?**   
///   This metric reflects the mean poll duration. If it increased, it means that, on average,
///   individual polls tended to take longer. However, this does not necessarily imply increased
///   task latency: An increase in poll durations could be offset by fewer polls.
/// - **Did [`slow_poll_ratio`][TaskMetrics::slow_poll_ratio] increase?**   
///   This metric reflects the proportion of polls that were 'slow'. If it increased, it means that
///   a greater proportion of polls performed excessive computation before yielding. This does not
///   necessarily imply increased task latency: An increase in the proportion of slow polls could be
///   offset by fewer or faster polls.
/// - **Did [`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration] increase?**   
///   This metric reflects the mean duration of slow polls. If it increased, it means that, on
///   average, slow polls got slower. This does not necessarily imply increased task latency: An
///   increase in average slow poll duration could be offset by fewer or faster polls.
///
/// If so, [*why are my tasks taking longer to poll?*](#why-are-my-tasks-taking-longer-to-poll)
///
/// ##### Are my tasks spending more time waiting to be polled?
/// - **Did [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increase?**   
///   This metric reflects the mean delay between the instant a task is first instrumented and the
///   instant it is first polled. If it increases, it means that, on average, tasks spent longer
///   waiting to be initially run.
/// - **Did [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration] increase?**   
///   This metric reflects the mean duration that tasks spent in the scheduled state. The
///   'scheduled' state of a task is the duration between the instant a task is awoken and the
///   instant it is subsequently polled. If this metric increases, it means that, on average, tasks
///   spent longer in tokio's queues before being polled.
/// - **Did [`long_delay_ratio`][TaskMetrics::long_delay_ratio] increase?**
///   This metric reflects the proportion of scheduling delays which were 'long'. If it increased,
///   it means that a greater proportion of tasks experienced excessive delays before they could
///   execute after being woken. This does not necessarily indicate an increase in latency, as this
///   could be offset by fewer or faster task polls.
/// - **Did [`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration] increase?**
///   This metric reflects the mean duration of long delays. If it increased, it means that, on
///   average, long delays got even longer. This does not necessarily imply increased task latency:
///   an increase in average long delay duration could be offset by fewer or faster polls or more
///   short schedules.
///
/// If so, [*why are my tasks spending more time waiting to be polled?*](#why-are-my-tasks-spending-more-time-waiting-to-be-polled)
///
/// ##### Are my tasks spending more time waiting on external events to complete?
/// - **Did [`mean_idle_duration`][TaskMetrics::mean_idle_duration] increase?**   
///   This metric reflects the mean duration that tasks spent in the idle state. The idle state is
///   the duration spanning the instant a task completes a poll, and the instant that it is next
///   awoken. Tasks inhabit this state when they are waiting for task-external events to complete
///   (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this metric increases,
///   tasks, in aggregate, spent more time waiting for task-external events to complete.
///
/// If so, [*why are my tasks spending more time waiting on external events to complete?*](#why-are-my-tasks-spending-more-time-waiting-on-external-events-to-complete)
///
/// #### Digging deeper
/// Having [established the high-level culprits](#identifying-the-high-level-culprits), you now
/// search for further explanation...
///
/// ##### Why are my tasks taking longer to poll?
/// You observed that [your tasks are taking longer to poll](#are-my-tasks-taking-longer-to-poll).
/// The culprit is likely some combination of:
/// - **Your tasks are accidentally blocking.** Common culprits include:
///     1. Using the Rust standard library's [filesystem](https://doc.rust-lang.org/std/fs/) or
///     [networking](https://doc.rust-lang.org/std/net/) APIs.   
///        These APIs are synchronous; use tokio's [filesystem](https://docs.rs/tokio/latest/tokio/fs/)
///        and [networking](https://docs.rs/tokio/latest/tokio/net/) APIs, instead.
///     3. Calling [`block_on`](https://docs.rs/tokio/latest/tokio/runtime/struct.Handle.html#method.block_on).
///     4. Invoking `println!` or other synchronous logging routines.   
///     Invocations of `println!` involve acquiring an exclusive lock on stdout, followed by a
///     synchronous write to stdout.
/// 2. **Your tasks are computationally expensive.** Common culprits include:
///     1. TLS/cryptographic routines
///     2. doing a lot of processing on bytes
///     3. calling non-Tokio resources
///
/// ##### Why are my tasks spending more time waiting to be polled?
/// You observed that [your tasks are spending more time waiting to be polled](#are-my-tasks-spending-more-time-waiting-to-be-polled)
/// suggesting some combination of:
/// - Your application is inflating the time elapsed between instrumentation and first poll.
/// - Your tasks are being scheduled into tokio's injection queue.
/// - Other tasks are spending too long without yielding, thus backing up tokio's queues.
///
/// Start by asking: [*Is time-to-first-poll unusually high?*](#is-time-to-first-poll-unusually-high)
///
/// ##### Why are my tasks spending more time waiting on external events to complete?
/// You observed that [your tasks are spending more time waiting waiting on external events to
/// complete](#are-my-tasks-spending-more-time-waiting-on-external-events-to-complete). But what
/// event? Fortunately, within the task experiencing increased idle times, you monitored several
/// sub-tasks with distinct [`TaskMonitor`]s. For each of these sub-tasks, you [*you try to identify
/// the performance culprits...*](#identifying-the-high-level-culprits)
///
/// #### Digging even deeper
///
/// ##### Is time-to-first-poll unusually high?
/// Contrast these two metrics:
/// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**  
///   This metric reflects the mean delay between the instant a task is first instrumented and the
///   instant it is *first* polled.
/// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**  
///   This metric reflects the mean delay between the instant when tasks were awoken and the
///   instant they were subsequently polled.
///
/// If the former metric exceeds the latter (or increased unexpectedly more than the latter), then
/// start by investigating [*if your application is artificially delaying the time-to-first-poll*](#is-my-application-delaying-the-time-to-first-poll).
///
/// Otherwise, investigate [*if other tasks are polling too long without yielding*](#are-other-tasks-polling-too-long-without-yielding).
///
/// ##### Is my application delaying the time-to-first-poll?
/// You observed that [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] increased, more
/// than [`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]. Your application may be
/// needlessly inflating the time elapsed between instrumentation and first poll. Are you
/// constructing (and instrumenting) tasks separately from awaiting or spawning them?
///
/// For instance, in the below example, the application induces 1 second delay between when `task`
/// is instrumented and when it is awaited:
/// ```rust
/// #[tokio::main]
/// async fn main() {
///     use tokio::time::Duration;
///     let monitor = tokio_metrics::TaskMonitor::new();
///
///     let task = monitor.instrument(async move {});
///
///     let one_sec = Duration::from_secs(1);
///     tokio::time::sleep(one_sec).await;
///
///     let _ = tokio::spawn(task).await;
///
///     assert!(monitor.cumulative().total_first_poll_delay >= one_sec);
/// }
/// ```
///
/// Otherwise, [`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay] might be unusually high
/// because [*your application is spawning key tasks into tokio's injection queue...*](#is-my-application-spawning-more-tasks-into-tokio’s-injection-queue)
///
/// ##### Is my application spawning more tasks into tokio's injection queue?
/// Tasks awoken from threads *not* managed by the tokio runtime are scheduled with a slower,
/// global "injection" queue.
///
/// You may be notifying runtime tasks from off-runtime. For instance, Given the following:
/// ```ignore
/// #[tokio::main]
/// async fn main() {
///     for _ in 0..100 {
///         let (tx, rx) = oneshot::channel();
///         tokio::spawn(async move {
///             tx.send(());
///         })
///         
///         rx.await;
///     }
/// }
/// ```
/// One would expect this to run efficiently, however, the main task is run *off* the main runtime
/// and the spawned tasks are *on* runtime, which means the snippet will run much slower than:
/// ```ignore
/// #[tokio::main]
/// async fn main() {
///     tokio::spawn(async {
///         for _ in 0..100 {
///             let (tx, rx) = oneshot::channel();
///             tokio::spawn(async move {
///                 tx.send(());
///             })
///
///             rx.await;
///         }
///     }).await;
/// }
/// ```
/// The slowdown is caused by a higher time between the `rx` task being notified (in `tx.send()`)
/// and the task being polled.
///
/// ##### Are other tasks polling too long without yielding?
/// You suspect that your tasks are slow because they're backed up in tokio's scheduling queues. For
/// *each* of your application's [`TaskMonitor`]s you check to see [*if their associated tasks are
/// taking longer to poll...*](#are-my-tasks-taking-longer-to-poll)
///
/// ### Limitations
/// The [`TaskMetrics`] type uses [`u64`] to represent both event counters and durations (measured
/// in nanoseconds). Consequently, event counters are accurate for ≤ [`u64::MAX`] events, and
/// durations are accurate for ≤ [`u64::MAX`] nanoseconds.
///
/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::cumulative`] increase
/// monotonically with each successive invocation of [`TaskMonitor::cumulative`]. Upon overflow,
/// counters and durations wrap.
///
/// The counters and durations of [`TaskMetrics`] produced by [`TaskMonitor::intervals`] are
/// calculated by computing the difference of metrics in successive invocations of
/// [`TaskMonitor::cumulative`]. If, within a monitoring interval, an event occurs more than
/// [`u64::MAX`] times, or a monitored duration exceeds [`u64::MAX`] nanoseconds, the metrics for
/// that interval will overflow and not be accurate.
///
/// ##### Examples at the limits
/// Consider the [`TaskMetrics::total_first_poll_delay`] metric. This metric accurately reflects
/// delays between instrumentation and first-poll ≤ [`u64::MAX`] nanoseconds:
/// ```
/// use tokio::time::Duration;
///
/// #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
///     let monitor = tokio_metrics::TaskMonitor::new();
///     let mut interval = monitor.intervals();
///     let mut next_interval = || interval.next().unwrap();
///
///     // construct and instrument a task, but do not `await` it
///     let task = monitor.instrument(async {});
///
///     // this is the maximum duration representable by tokio_metrics
///     let max_duration = Duration::from_nanos(u64::MAX);
///
///     // let's advance the clock by this amount and poll `task`
///     let _ = tokio::time::advance(max_duration).await;
///     task.await;
///
///     // durations ≤ `max_duration` are accurately reflected in this metric
///     assert_eq!(next_interval().total_first_poll_delay, max_duration);
///     assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
/// }
/// ```
/// If the total delay between instrumentation and first poll exceeds [`u64::MAX`] nanoseconds,
/// [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay] will overflow:
/// ```
/// # use tokio::time::Duration;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// #    let monitor = tokio_metrics::TaskMonitor::new();
/// #
///  // construct and instrument a task, but do not `await` it
///  let task_a = monitor.instrument(async {});
///  let task_b = monitor.instrument(async {});
///
///  // this is the maximum duration representable by tokio_metrics
///  let max_duration = Duration::from_nanos(u64::MAX);
///
///  // let's advance the clock by 1.5x this amount and await `task`
///  let _ = tokio::time::advance(3 * (max_duration / 2)).await;
///  task_a.await;
///  task_b.await;
///
///  // the `total_first_poll_delay` has overflowed
///  assert!(monitor.cumulative().total_first_poll_delay < max_duration);
/// # }
/// ```
/// If *many* tasks are spawned, it will take far less than a [`u64::MAX`]-nanosecond delay to bring
/// this metric to the precipice of overflow:
/// ```
/// # use tokio::time::Duration;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// #     let monitor = tokio_metrics::TaskMonitor::new();
/// #     let mut interval = monitor.intervals();
/// #     let mut next_interval = || interval.next().unwrap();
/// #
/// // construct and instrument u16::MAX tasks, but do not `await` them
/// let first_poll_count = u16::MAX as u64;
/// let mut tasks = Vec::with_capacity(first_poll_count as usize);
/// for _ in 0..first_poll_count { tasks.push(monitor.instrument(async {})); }
///
/// // this is the maximum duration representable by tokio_metrics
/// let max_duration = u64::MAX;
///
/// // let's advance the clock justenough such that all of the time-to-first-poll
/// // delays summed nearly equals `max_duration_nanos`, less some remainder...
/// let iffy_delay = max_duration / (first_poll_count as u64);
/// let small_remainder = max_duration % first_poll_count;
/// let _ = tokio::time::advance(Duration::from_nanos(iffy_delay)).await;
///
/// // ...then poll all of the instrumented tasks:
/// for task in tasks { task.await; }
///
/// // `total_first_poll_delay` is at the precipice of overflowing!
/// assert_eq!(
///     next_interval().total_first_poll_delay.as_nanos(),
///     (max_duration - small_remainder) as u128
/// );
/// assert_eq!(
///     monitor.cumulative().total_first_poll_delay.as_nanos(),
///     (max_duration - small_remainder) as u128
/// );
/// # }
/// ```
/// Frequent, interval-sampled metrics will retain their accuracy, even if the cumulative
/// metrics counter overflows at most once in the midst of an interval:
/// ```
/// # use tokio::time::Duration;
/// # use tokio_metrics::TaskMonitor;
/// #
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// #     let monitor = TaskMonitor::new();
/// #     let mut interval = monitor.intervals();
/// #     let mut next_interval = || interval.next().unwrap();
/// #
///  let first_poll_count = u16::MAX as u64;
///  let batch_size = first_poll_count / 3;
///
///  let max_duration_ns = u64::MAX;
///  let iffy_delay_ns = max_duration_ns / first_poll_count;
///
///  // Instrument `batch_size` number of tasks, wait for `delay` nanoseconds,
///  // then await the instrumented tasks.
///  async fn run_batch(monitor: &TaskMonitor, batch_size: usize, delay: u64) {
///      let mut tasks = Vec::with_capacity(batch_size);
///      for _ in 0..batch_size { tasks.push(monitor.instrument(async {})); }
///      let _ = tokio::time::advance(Duration::from_nanos(delay)).await;
///      for task in tasks { task.await; }
///  }
///
///  // this is how much `total_time_to_first_poll_ns` will
///  // increase with each batch we run
///  let batch_delay = iffy_delay_ns * batch_size;
///
///  // run batches 1, 2, and 3
///  for i in 1..=3 {
///      run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
///      assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
///      assert_eq!(i * batch_delay as u128, monitor.cumulative().total_first_poll_delay.as_nanos());
///  }
///
///  /* now, the `total_time_to_first_poll_ns` counter is at the precipice of overflow */
///  assert_eq!(monitor.cumulative().total_first_poll_delay.as_nanos(), max_duration_ns as u128);
///
///  // run batch 4
///  run_batch(&monitor, batch_size as usize, iffy_delay_ns).await;
///  // the interval counter remains accurate
///  assert_eq!(1 * batch_delay as u128, next_interval().total_first_poll_delay.as_nanos());
///  // but the cumulative counter has overflowed
///  assert_eq!(batch_delay as u128 - 1, monitor.cumulative().total_first_poll_delay.as_nanos());
/// # }
/// ```
/// If a cumulative metric overflows *more than once* in the midst of an interval,
/// its interval-sampled counterpart will also overflow.
#[derive(Clone, Debug)]
pub struct TaskMonitor {
    metrics: Arc<RawMetrics>,
}

/// Provides an interface for constructing a [`TaskMonitor`] with specialized configuration
/// parameters.
#[derive(Clone, Debug, Default)]
pub struct TaskMonitorBuilder {
    slow_poll_threshold: Option<Duration>,
    long_delay_threshold: Option<Duration>,
}

impl TaskMonitorBuilder {
    pub fn new() -> Self {
        Self {
            slow_poll_threshold: None,
            long_delay_threshold: None,
        }
    }

    /// Specifies the threshold at which polls are considered 'slow'.
    pub fn with_slow_poll_threshold(&mut self, threshold: Duration) -> &mut Self {
        self.slow_poll_threshold = Some(threshold);

        self
    }

    /// Specifies the threshold at which schedules are considered 'long'.
    pub fn with_long_delay_threshold(&mut self, threshold: Duration) -> &mut Self {
        self.long_delay_threshold = Some(threshold);

        self
    }

    /// Consume the builder, producing a [`TaskMonitor`].
    pub fn build(self) -> TaskMonitor {
        TaskMonitor::create(
            self.slow_poll_threshold
                .unwrap_or(TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD),
            self.long_delay_threshold
                .unwrap_or(TaskMonitor::DEFAULT_LONG_DELAY_THRESHOLD),
        )
    }
}

pin_project! {
    /// An async task that has been instrumented with [`TaskMonitor::instrument`].
    #[derive(Debug)]
    pub struct Instrumented<T> {
        // The task being instrumented
        #[pin]
        task: T,

        // True when the task is polled for the first time
        did_poll_once: bool,

        // The instant, tracked as nanoseconds since `instrumented_at`, at which the future finished
        // its last poll.
        idled_at: u64,

        // State shared between the task and its instrumented waker.
        state: Arc<State>,
    }

    impl<T> PinnedDrop for Instrumented<T> {
        fn drop(this: Pin<&mut Self>) {
            this.state.metrics.dropped_count.fetch_add(1, SeqCst);
        }
    }
}

/// Key metrics of [instrumented][`TaskMonitor::instrument`] tasks.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, Default)]
pub struct TaskMetrics {
    /// The number of tasks instrumented.
    ///
    /// ##### Examples
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // 0 tasks have been instrumented
    ///     assert_eq!(next_interval().instrumented_count, 0);
    ///
    ///     monitor.instrument(async {});
    ///
    ///     // 1 task has been instrumented
    ///     assert_eq!(next_interval().instrumented_count, 1);
    ///
    ///     monitor.instrument(async {});
    ///     monitor.instrument(async {});
    ///
    ///     // 2 tasks have been instrumented
    ///     assert_eq!(next_interval().instrumented_count, 2);
    ///
    ///     // since the last interval was produced, 0 tasks have been instrumented
    ///     assert_eq!(next_interval().instrumented_count, 0);
    /// }
    /// ```
    pub instrumented_count: u64,

    /// The number of tasks dropped.
    ///
    /// ##### Examples
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // 0 tasks have been dropped
    ///     assert_eq!(next_interval().dropped_count, 0);
    ///
    ///     let _task = monitor.instrument(async {});
    ///
    ///     // 0 tasks have been dropped
    ///     assert_eq!(next_interval().dropped_count, 0);
    ///
    ///     monitor.instrument(async {}).await;
    ///     drop(monitor.instrument(async {}));
    ///
    ///     // 2 tasks have been dropped
    ///     assert_eq!(next_interval().dropped_count, 2);
    ///
    ///     // since the last interval was produced, 0 tasks have been dropped
    ///     assert_eq!(next_interval().dropped_count, 0);
    /// }
    /// ```
    pub dropped_count: u64,

    /// The number of tasks polled for the first time.
    ///
    /// ##### Derived metrics
    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**  
    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
    ///   are first polled.
    ///
    /// ##### Examples
    /// In the below example, no tasks are instrumented or polled in the first sampling interval;
    /// one task is instrumented (but not polled) in the second sampling interval; that task is
    /// awaited to completion (and, thus, polled at least once) in the third sampling interval; no
    /// additional tasks are polled for the first time within the fourth sampling interval:
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, and polled at least once
    ///     assert_eq!(next_interval().first_poll_count, 0);
    ///
    ///     let task = metrics_monitor.instrument(async {});
    ///
    ///     // `task` has been constructed and instrumented, but has not yet been polled
    ///     assert_eq!(next_interval().first_poll_count, 0);
    ///
    ///     // poll `task` to completion
    ///     task.await;
    ///
    ///     // `task` has been constructed, instrumented, and polled at least once
    ///     assert_eq!(next_interval().first_poll_count, 1);
    ///
    ///     // since the last interval was produced, 0 tasks have been constructed, instrumented and polled
    ///     assert_eq!(next_interval().first_poll_count, 0);
    ///
    /// }
    /// ```
    pub first_poll_count: u64,

    /// The total duration elapsed between the instant tasks are instrumented, and the instant they
    /// are first polled.
    ///
    /// ##### Derived metrics
    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**   
    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
    ///   are first polled.
    ///
    /// ##### Examples
    /// In the below example, 0 tasks have been instrumented or polled within the first sampling
    /// interval, a total of 500ms elapse between the instrumentation and polling of tasks within
    /// the second sampling interval, and a total of 350ms elapse between the instrumentation and
    /// polling of tasks within the third sampling interval:
    /// ```
    /// use tokio::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have yet been created, instrumented, or polled
    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
    ///     assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
    ///
    ///     // constructs and instruments a task, pauses a given duration, then awaits the task
    ///     async fn instrument_pause_await(monitor: &tokio_metrics::TaskMonitor, pause: Duration) {
    ///         let task = monitor.instrument(async move {});
    ///         tokio::time::sleep(pause).await;
    ///         task.await;
    ///     }
    ///
    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
    ///     let task_a_pause_time = Duration::from_millis(500);
    ///     instrument_pause_await(&monitor, task_a_pause_time).await;
    ///
    ///     assert_eq!(next_interval().total_first_poll_delay, task_a_pause_time);
    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, task_a_pause_time);
    ///
    ///     // construct and await a task that pauses for 250ms between instrumentation and first poll
    ///     let task_b_pause_time = Duration::from_millis(250);
    ///     instrument_pause_await(&monitor, task_b_pause_time).await;
    ///
    ///     // construct and await a task that pauses for 100ms between instrumentation and first poll
    ///     let task_c_pause_time = Duration::from_millis(100);
    ///     instrument_pause_await(&monitor, task_c_pause_time).await;
    ///
    ///     assert_eq!(
    ///         next_interval().total_first_poll_delay,
    ///         task_b_pause_time + task_c_pause_time
    ///     );
    ///     assert_eq!(
    ///         monitor.cumulative().total_first_poll_delay,
    ///         task_a_pause_time + task_b_pause_time + task_c_pause_time
    ///     );
    /// }
    /// ```
    ///
    /// ##### When is this metric recorded?
    /// The delay between instrumentation and first poll is not recorded until the first poll
    /// actually occurs:
    /// ```
    /// # use tokio::time::Duration;
    /// #
    /// # #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// # async fn main() {
    /// #     let monitor = tokio_metrics::TaskMonitor::new();
    /// #     let mut interval = monitor.intervals();
    /// #     let mut next_interval = || interval.next().unwrap();
    /// #
    /// // we construct and instrument a task, but do not `await` it
    /// let task = monitor.instrument(async {});
    ///
    /// // let's sleep for 1s before we poll `task`
    /// let one_sec = Duration::from_secs(1);
    /// let _ = tokio::time::sleep(one_sec).await;
    ///
    /// // although 1s has now elapsed since the instrumentation of `task`,
    /// // this is not reflected in `total_first_poll_delay`...
    /// assert_eq!(next_interval().total_first_poll_delay, Duration::ZERO);
    /// assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
    ///
    /// // ...and won't be until `task` is actually polled
    /// task.await;
    ///
    /// // now, the 1s delay is reflected in `total_first_poll_delay`:
    /// assert_eq!(next_interval().total_first_poll_delay, one_sec);
    /// assert_eq!(monitor.cumulative().total_first_poll_delay, one_sec);
    /// # }
    /// ```
    ///
    /// ##### What if first-poll-delay is very large?
    /// The first-poll-delay of *individual* tasks saturates at `u64::MAX` nanoseconds. However, if
    /// the *total* first-poll-delay *across* monitored tasks exceeds `u64::MAX` nanoseconds, this
    /// metric will wrap around:
    /// ```
    /// use tokio::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // construct and instrument a task, but do not `await` it
    ///     let task = monitor.instrument(async {});
    ///
    ///     // this is the maximum duration representable by tokio_metrics
    ///     let max_duration = Duration::from_nanos(u64::MAX);
    ///
    ///     // let's advance the clock by double this amount and await `task`
    ///     let _ = tokio::time::advance(max_duration * 2).await;
    ///     task.await;
    ///
    ///     // the time-to-first-poll of `task` saturates at `max_duration`
    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, max_duration);
    ///
    ///     // ...but note that the metric *will* wrap around if more tasks are involved
    ///     let task = monitor.instrument(async {});
    ///     let _ = tokio::time::advance(Duration::from_nanos(1)).await;
    ///     task.await;
    ///     assert_eq!(monitor.cumulative().total_first_poll_delay, Duration::ZERO);
    /// }
    /// ```
    pub total_first_poll_delay: Duration,

    /// The total number of times that tasks idled, waiting to be awoken.
    ///
    /// An idle is recorded as occurring if a non-zero duration elapses between the instant a
    /// task completes a poll, and the instant that it is next awoken.
    ///
    /// ##### Derived metrics
    /// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**   
    ///   The mean duration of idles.
    ///
    /// ##### Examples
    /// ```
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = move || interval.next().unwrap();
    ///     let one_sec = std::time::Duration::from_secs(1);
    ///
    ///     monitor.instrument(async {}).await;
    ///
    ///     assert_eq!(next_interval().total_idled_count, 0);
    ///     assert_eq!(monitor.cumulative().total_idled_count, 0);
    ///
    ///     monitor.instrument(async move {
    ///         tokio::time::sleep(one_sec).await;
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_idled_count, 1);
    ///     assert_eq!(monitor.cumulative().total_idled_count, 1);
    ///
    ///     monitor.instrument(async {
    ///         tokio::time::sleep(one_sec).await;
    ///         tokio::time::sleep(one_sec).await;
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_idled_count, 2);
    ///     assert_eq!(monitor.cumulative().total_idled_count, 3);
    /// }
    /// ```
    pub total_idled_count: u64,

    /// The total duration that tasks idled.
    ///
    /// An idle is recorded as occurring if a non-zero duration elapses between the instant a
    /// task completes a poll, and the instant that it is next awoken.
    ///
    /// ##### Derived metrics
    /// - **[`mean_idle_duration`][TaskMetrics::mean_idle_duration]**   
    ///   The mean duration of idles.
    ///
    /// ##### Examples
    /// ```
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = move || interval.next().unwrap();
    ///     let one_sec = std::time::Duration::from_secs(1);
    ///     let two_sec = std::time::Duration::from_secs(2);
    ///
    ///     assert_eq!(next_interval().total_idle_duration.as_nanos(), 0);
    ///     assert_eq!(monitor.cumulative().total_idle_duration.as_nanos(), 0);
    ///
    ///     monitor.instrument(async move {
    ///         tokio::time::sleep(one_sec).await;
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_idle_duration, one_sec);
    ///     assert_eq!(monitor.cumulative().total_idle_duration, one_sec);
    ///
    ///     monitor.instrument(async move {
    ///         tokio::time::sleep(two_sec).await;
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_idle_duration, two_sec);
    ///     assert_eq!(monitor.cumulative().total_idle_duration, one_sec + two_sec);
    /// }
    /// ```
    pub total_idle_duration: Duration,

    /// The total number of times that tasks were awoken (and then, presumably, scheduled for
    /// execution).
    ///
    /// ##### Definition
    /// This metric is equal to [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration]
    /// + [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration].
    ///
    /// ##### Derived metrics
    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
    ///   The mean duration that tasks spent waiting to be executed after awakening.
    ///
    /// ##### Examples
    /// In the below example, a task yields to the scheduler a varying number of times between
    /// sampling intervals; this metric is equal to the number of times the task yielded:
    /// ```
    /// #[tokio::main]
    /// async fn main(){
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // [A] no tasks have been created, instrumented, and polled more than once
    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
    ///
    ///     // [B] a `task` is created and instrumented
    ///     let task = {
    ///         let monitor = metrics_monitor.clone();
    ///         metrics_monitor.instrument(async move {
    ///             let mut interval = monitor.intervals();
    ///             let mut next_interval = move || interval.next().unwrap();
    ///
    ///             // [E] `task` has not yet yielded to the scheduler, and
    ///             // thus has not yet been scheduled since its first `poll`
    ///             assert_eq!(next_interval().total_scheduled_count, 0);
    ///
    ///             tokio::task::yield_now().await; // yield to the scheduler
    ///
    ///             // [F] `task` has yielded to the scheduler once (and thus been
    ///             // scheduled once) since the last sampling interval
    ///             assert_eq!(next_interval().total_scheduled_count, 1);
    ///
    ///             tokio::task::yield_now().await; // yield to the scheduler
    ///             tokio::task::yield_now().await; // yield to the scheduler
    ///             tokio::task::yield_now().await; // yield to the scheduler
    ///
    ///             // [G] `task` has yielded to the scheduler thrice (and thus been
    ///             // scheduled thrice) since the last sampling interval
    ///             assert_eq!(next_interval().total_scheduled_count, 3);
    ///
    ///             tokio::task::yield_now().await; // yield to the scheduler
    ///
    ///             next_interval
    ///         })
    ///     };
    ///
    ///     // [C] `task` has not yet been polled at all
    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 0);
    ///
    ///     // [D] poll `task` to completion
    ///     let mut next_interval = task.await;
    ///
    ///     // [H] `task` has been polled 1 times since the last sample
    ///     assert_eq!(next_interval().total_scheduled_count, 1);
    ///
    ///     // [I] `task` has been polled 0 times since the last sample
    ///     assert_eq!(next_interval().total_scheduled_count, 0);
    ///
    ///     // [J] `task` has yielded to the scheduler a total of five times
    ///     assert_eq!(metrics_monitor.cumulative().total_scheduled_count, 5);
    /// }
    /// ```
    #[doc(alias = "total_delay_count")]
    pub total_scheduled_count: u64,

    /// The total duration that tasks spent waiting to be polled after awakening.
    ///
    /// ##### Definition
    /// This metric is equal to [`total_short_delay_count`][TaskMetrics::total_short_delay_count]
    /// + [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
    ///
    /// ##### Derived metrics
    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
    ///   The mean duration that tasks spent waiting to be executed after awakening.
    ///
    /// ##### Examples
    /// ```
    /// use tokio::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread")]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // construct and instrument and spawn a task that yields endlessly
    ///     tokio::spawn(metrics_monitor.instrument(async {
    ///         loop { tokio::task::yield_now().await }
    ///     }));
    ///
    ///     tokio::task::yield_now().await;
    ///
    ///     // block the executor for 1 second
    ///     std::thread::sleep(Duration::from_millis(1000));
    ///
    ///     tokio::task::yield_now().await;
    ///
    ///     // `endless_task` will have spent approximately one second waiting
    ///     let total_scheduled_duration = next_interval().total_scheduled_duration;
    ///     assert!(total_scheduled_duration >= Duration::from_millis(1000));
    ///     assert!(total_scheduled_duration <= Duration::from_millis(1100));
    /// }
    /// ```
    #[doc(alias = "total_delay_duration")]
    pub total_scheduled_duration: Duration,

    /// The total number of times that tasks were polled.
    ///
    /// ##### Definition
    /// This metric is equal to [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count]
    /// + [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
    ///
    /// ##### Derived metrics
    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
    ///   The mean duration of polls.
    ///
    /// ##### Examples
    /// In the below example, a task with multiple yield points is await'ed to completion; this
    /// metric reflects the number of `await`s within each sampling interval:
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // [A] no tasks have been created, instrumented, and polled more than once
    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
    ///
    ///     // [B] a `task` is created and instrumented
    ///     let task = {
    ///         let monitor = metrics_monitor.clone();
    ///         metrics_monitor.instrument(async move {
    ///             let mut interval = monitor.intervals();
    ///             let mut next_interval = move || interval.next().unwrap();
    ///
    ///             // [E] task is in the midst of its first poll
    ///             assert_eq!(next_interval().total_poll_count, 0);
    ///
    ///             tokio::task::yield_now().await; // poll 1
    ///
    ///             // [F] task has been polled 1 time
    ///             assert_eq!(next_interval().total_poll_count, 1);
    ///
    ///             tokio::task::yield_now().await; // poll 2
    ///             tokio::task::yield_now().await; // poll 3
    ///             tokio::task::yield_now().await; // poll 4
    ///
    ///             // [G] task has been polled 3 times
    ///             assert_eq!(next_interval().total_poll_count, 3);
    ///
    ///             tokio::task::yield_now().await; // poll 5
    ///
    ///             next_interval                   // poll 6
    ///         })
    ///     };
    ///
    ///     // [C] `task` has not yet been polled at all
    ///     assert_eq!(metrics_monitor.cumulative().total_poll_count, 0);
    ///
    ///     // [D] poll `task` to completion
    ///     let mut next_interval = task.await;
    ///
    ///     // [H] `task` has been polled 2 times since the last sample
    ///     assert_eq!(next_interval().total_poll_count, 2);
    ///
    ///     // [I] `task` has been polled 0 times since the last sample
    ///     assert_eq!(next_interval().total_poll_count, 0);
    ///
    ///     // [J] `task` has been polled 6 times
    ///     assert_eq!(metrics_monitor.cumulative().total_poll_count, 6);
    /// }
    /// ```
    pub total_poll_count: u64,

    /// The total duration elapsed during polls.
    ///
    /// ##### Definition
    /// This metric is equal to [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration]
    /// + [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration].
    ///
    /// ##### Derived metrics
    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
    ///   The mean duration of polls.
    ///
    /// #### Examples
    /// ```
    /// use tokio::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = move || interval.next().unwrap();
    ///
    ///     assert_eq!(next_interval().total_poll_duration, Duration::ZERO);
    ///
    ///     monitor.instrument(async {
    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
    ///         ()                                                  // poll 3 (0s)
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_poll_duration, Duration::from_secs(2));
    /// }
    /// ```
    pub total_poll_duration: Duration,

    /// The total number of times that polling tasks completed swiftly.
    ///
    /// Here, 'swiftly' is defined as completing in strictly less time than
    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
    ///
    /// ##### Derived metrics
    /// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**   
    ///   The mean duration of fast polls.
    ///
    /// ##### Examples
    /// In the below example, 0 polls occur within the first sampling interval, 3 fast polls occur
    /// within the second sampling interval, and 2 fast polls occur within the third sampling
    /// interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     assert_eq!(next_interval().total_fast_poll_count, 0);
    ///
    ///     let fast = Duration::ZERO;
    ///
    ///     // this task completes in three fast polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(fast).await; // fast poll 1
    ///         spin_for(fast).await; // fast poll 2
    ///         spin_for(fast)        // fast poll 3
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_fast_poll_count, 3);
    ///
    ///     // this task completes in two fast polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(fast).await; // fast poll 1
    ///         spin_for(fast)        // fast poll 2
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_fast_poll_count, 2);
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub total_fast_poll_count: u64,

    /// The total duration of fast polls.
    ///
    /// Here, 'fast' is defined as completing in strictly less time than
    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
    ///
    /// ##### Derived metrics
    /// - **[`mean_fast_poll_duration`][TaskMetrics::mean_fast_poll_duration]**   
    ///   The mean duration of fast polls.
    ///
    /// ##### Examples
    /// In the below example, no tasks are polled in the first sampling interval; three fast polls
    /// consume a total of 3μs time in the second sampling interval; and two fast polls consume a
    /// total of 2μs time in the third sampling interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     let interval = next_interval();
    ///     assert_eq!(interval.total_fast_poll_duration, Duration::ZERO);
    ///
    ///     let fast = Duration::from_micros(1);
    ///
    ///     // this task completes in three fast polls
    ///     let task_a_time = time(metrics_monitor.instrument(async {
    ///         spin_for(fast).await; // fast poll 1
    ///         spin_for(fast).await; // fast poll 2
    ///         spin_for(fast)        // fast poll 3
    ///     })).await;
    ///
    ///     let interval = next_interval();
    ///     assert!(interval.total_fast_poll_duration >= fast * 3);
    ///     assert!(interval.total_fast_poll_duration <= task_a_time);
    ///
    ///     // this task completes in two fast polls
    ///     let task_b_time = time(metrics_monitor.instrument(async {
    ///         spin_for(fast).await; // fast poll 1
    ///         spin_for(fast)        // fast poll 2
    ///     })).await;
    ///
    ///     let interval = next_interval();
    ///     assert!(interval.total_fast_poll_duration >= fast * 2);
    ///     assert!(interval.total_fast_poll_duration <= task_b_time);
    /// }
    ///
    /// /// Produces the amount of time it took to await a given async task.
    /// async fn time(task: impl Future) -> Duration {
    ///     let start = tokio::time::Instant::now();
    ///     task.await;
    ///     start.elapsed()
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub total_fast_poll_duration: Duration,

    /// The total number of times that polling tasks completed slowly.
    ///
    /// Here, 'slowly' is defined as completing in at least as much time as
    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
    ///
    /// ##### Derived metrics
    /// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**   
    ///   The mean duration of slow polls.
    ///
    /// ##### Examples
    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
    /// within the second sampling interval, and 2 slow polls occur within the third sampling
    /// interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     assert_eq!(next_interval().total_slow_poll_count, 0);
    ///
    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
    ///
    ///     // this task completes in three slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow).await; // slow poll 2
    ///         spin_for(slow)        // slow poll 3
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
    ///
    ///     // this task completes in two slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow)        // slow poll 2
    ///     }).await;
    ///
    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub total_slow_poll_count: u64,

    /// The total duration of slow polls.
    ///
    /// Here, 'slowly' is defined as completing in at least as much time as
    /// [`slow_poll_threshold`][TaskMonitor::slow_poll_threshold].
    ///
    /// ##### Derived metrics
    /// - **[`mean_slow_poll_duration`][`TaskMetrics::mean_slow_poll_duration`]**   
    ///   The mean duration of slow polls.
    ///
    /// ##### Examples
    /// In the below example, no tasks are polled in the first sampling interval; three slow polls
    /// consume a total of
    /// 30 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD]
    /// time in the second sampling interval; and two slow polls consume a total of
    /// 20 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
    /// third sampling interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     let interval = next_interval();
    ///     assert_eq!(interval.total_slow_poll_duration, Duration::ZERO);
    ///
    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
    ///
    ///     // this task completes in three slow polls
    ///     let task_a_time = time(metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow).await; // slow poll 2
    ///         spin_for(slow)        // slow poll 3
    ///     })).await;
    ///
    ///     let interval = next_interval();
    ///     assert!(interval.total_slow_poll_duration >= slow * 3);
    ///     assert!(interval.total_slow_poll_duration <= task_a_time);
    ///
    ///     // this task completes in two slow polls
    ///     let task_b_time = time(metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow)        // slow poll 2
    ///     })).await;
    ///
    ///     let interval = next_interval();
    ///     assert!(interval.total_slow_poll_duration >= slow * 2);
    ///     assert!(interval.total_slow_poll_duration <= task_b_time);
    /// }
    ///
    /// /// Produces the amount of time it took to await a given async task.
    /// async fn time(task: impl Future) -> Duration {
    ///     let start = tokio::time::Instant::now();
    ///     task.await;
    ///     start.elapsed()
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub total_slow_poll_duration: Duration,

    /// The total count of tasks with short scheduling delays.
    ///
    /// This is defined as tasks taking strictly less than
    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
    /// scheduled.
    ///
    /// ##### Derived metrics
    /// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**   
    ///   The mean duration of short scheduling delays.
    pub total_short_delay_count: u64,

    /// The total count of tasks with long scheduling delays.
    ///
    /// This is defined as tasks taking
    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] or longer to be executed
    /// after being scheduled.
    ///
    /// ##### Derived metrics
    /// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**   
    ///   The mean duration of short scheduling delays.
    pub total_long_delay_count: u64,

    /// The total duration of tasks with short scheduling delays.
    ///
    /// This is defined as tasks taking strictly less than
    /// [`long_delay_threshold`][TaskMonitor::long_delay_threshold] to be executed after being
    /// scheduled.
    ///
    /// ##### Derived metrics
    /// - **[`mean_short_delay_duration`][TaskMetrics::mean_short_delay_duration]**   
    ///   The mean duration of short scheduling delays.
    pub total_short_delay_duration: Duration,

    /// The total number of times that a task had a long scheduling duration.
    ///
    /// Here, a long scheduling duration is defined as taking longer to start execution after
    /// scheduling than [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
    ///
    /// ##### Derived metrics
    /// - **[`mean_long_delay_duration`][TaskMetrics::mean_long_delay_duration]**   
    ///   The mean duration of short scheduling delays.
    pub total_long_delay_duration: Duration,
}

/// Tracks the metrics, shared across the various types.
#[derive(Debug)]
struct RawMetrics {
    /// A task poll takes longer than this, it is considered a slow poll.
    slow_poll_threshold: Duration,

    /// A scheduling delay of at least this long will be considered a long delay
    long_delay_threshold: Duration,

    /// Total number of instrumented tasks.
    instrumented_count: AtomicU64,

    /// Total number of instrumented tasks polled at least once.
    first_poll_count: AtomicU64,

    /// Total number of times tasks entered the `idle` state.
    total_idled_count: AtomicU64,

    /// Total number of times tasks were scheduled.
    total_scheduled_count: AtomicU64,

    /// Total number of times tasks were polled fast
    total_fast_poll_count: AtomicU64,

    /// Total number of times tasks were polled slow
    total_slow_poll_count: AtomicU64,

    /// Total number of times tasks had long delay,
    total_long_delay_count: AtomicU64,

    /// Total number of times tasks had little delay
    total_short_delay_count: AtomicU64,

    /// Total number of times tasks were dropped
    dropped_count: AtomicU64,

    /// Total amount of time until the first poll
    total_first_poll_delay_ns: AtomicU64,

    /// Total amount of time tasks spent in the `idle` state.
    total_idle_duration_ns: AtomicU64,

    /// Total amount of time tasks spent in the waking state.
    total_scheduled_duration_ns: AtomicU64,

    /// Total amount of time tasks spent being polled below the slow cut off.
    total_fast_poll_duration_ns: AtomicU64,

    /// Total amount of time tasks spent being polled above the slow cut off.
    total_slow_poll_duration: AtomicU64,

    /// Total amount of time tasks spent being polled below the long delay cut off.
    total_short_delay_duration_ns: AtomicU64,

    /// Total amount of time tasks spent being polled at or above the long delay cut off.
    total_long_delay_duration_ns: AtomicU64,
}

#[derive(Debug)]
struct State {
    /// Where metrics should be recorded
    metrics: Arc<RawMetrics>,

    /// Instant at which the task was instrumented. This is used to track the time to first poll.
    instrumented_at: Instant,

    /// The instant, tracked as nanoseconds since `instrumented_at`, at which the future
    /// was last woken.
    woke_at: AtomicU64,

    /// Waker to forward notifications to.
    waker: AtomicWaker,
}

impl TaskMonitor {
    /// The default duration at which polls cross the threshold into being categorized as 'slow' is
    /// 50μs.
    #[cfg(not(test))]
    pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_micros(50);
    #[cfg(test)]
    pub const DEFAULT_SLOW_POLL_THRESHOLD: Duration = Duration::from_millis(500);

    /// The default duration at which schedules cross the threshold into being categorized as 'long'
    /// is 50μs.
    #[cfg(not(test))]
    pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_micros(50);
    #[cfg(test)]
    pub const DEFAULT_LONG_DELAY_THRESHOLD: Duration = Duration::from_millis(500);

    /// Constructs a new task monitor.
    ///
    /// Uses [`Self::DEFAULT_SLOW_POLL_THRESHOLD`] as the threshold at which polls will be
    /// considered 'slow'.
    ///
    /// Uses [`Self::DEFAULT_LONG_DELAY_THRESHOLD`] as the threshold at which scheduling will be
    /// considered 'long'.
    pub fn new() -> TaskMonitor {
        TaskMonitor::with_slow_poll_threshold(Self::DEFAULT_SLOW_POLL_THRESHOLD)
    }

    /// Constructs a builder for a task monitor.
    pub fn builder() -> TaskMonitorBuilder {
        TaskMonitorBuilder::new()
    }

    /// Constructs a new task monitor with a given threshold at which polls are considered 'slow'.
    ///
    /// ##### Selecting an appropriate threshold
    /// TODO. What advice can we give here?
    ///
    /// ##### Examples
    /// In the below example, low-threshold and high-threshold monitors are constructed and
    /// instrument identical tasks; the low-threshold monitor reports4 slow polls, and the
    /// high-threshold monitor reports only 2 slow polls:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    /// use tokio_metrics::TaskMonitor;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let lo_threshold = Duration::from_micros(10);
    ///     let hi_threshold = Duration::from_millis(10);
    ///
    ///     let lo_monitor = TaskMonitor::with_slow_poll_threshold(lo_threshold);
    ///     let hi_monitor = TaskMonitor::with_slow_poll_threshold(hi_threshold);
    ///
    ///     let make_task = || async {
    ///         spin_for(lo_threshold).await; // faster poll 1
    ///         spin_for(lo_threshold).await; // faster poll 2
    ///         spin_for(hi_threshold).await; // slower poll 3
    ///         spin_for(hi_threshold).await  // slower poll 4
    ///     };
    ///
    ///     lo_monitor.instrument(make_task()).await;
    ///     hi_monitor.instrument(make_task()).await;
    ///
    ///     // the low-threshold monitor reported 4 slow polls:
    ///     assert_eq!(lo_monitor.cumulative().total_slow_poll_count, 4);
    ///     // the high-threshold monitor reported only 2 slow polls:
    ///     assert_eq!(hi_monitor.cumulative().total_slow_poll_count, 2);
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn with_slow_poll_threshold(slow_poll_cut_off: Duration) -> TaskMonitor {
        Self::create(slow_poll_cut_off, Self::DEFAULT_LONG_DELAY_THRESHOLD)
    }

    fn create(slow_poll_cut_off: Duration, long_delay_cut_off: Duration) -> TaskMonitor {
        TaskMonitor {
            metrics: Arc::new(RawMetrics {
                slow_poll_threshold: slow_poll_cut_off,
                first_poll_count: AtomicU64::new(0),
                total_idled_count: AtomicU64::new(0),
                total_scheduled_count: AtomicU64::new(0),
                total_fast_poll_count: AtomicU64::new(0),
                total_slow_poll_count: AtomicU64::new(0),
                total_long_delay_count: AtomicU64::new(0),
                instrumented_count: AtomicU64::new(0),
                dropped_count: AtomicU64::new(0),
                total_first_poll_delay_ns: AtomicU64::new(0),
                total_scheduled_duration_ns: AtomicU64::new(0),
                total_idle_duration_ns: AtomicU64::new(0),
                total_fast_poll_duration_ns: AtomicU64::new(0),
                total_slow_poll_duration: AtomicU64::new(0),
                total_short_delay_duration_ns: AtomicU64::new(0),
                long_delay_threshold: long_delay_cut_off,
                total_short_delay_count: AtomicU64::new(0),
                total_long_delay_duration_ns: AtomicU64::new(0),
            }),
        }
    }

    /// Produces the duration greater-than-or-equal-to at which polls are categorized as slow.
    ///
    /// ##### Examples
    /// In the below example, [`TaskMonitor`] is initialized with [`TaskMonitor::new`];
    /// consequently, its slow-poll threshold equals [`TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD`]:
    /// ```
    /// use tokio_metrics::TaskMonitor;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = TaskMonitor::new();
    ///
    ///     assert_eq!(
    ///         metrics_monitor.slow_poll_threshold(),
    ///         TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD
    ///     );
    /// }
    /// ```
    pub fn slow_poll_threshold(&self) -> Duration {
        self.metrics.slow_poll_threshold
    }

    /// Produces the duration greater-than-or-equal-to at which scheduling delays are categorized
    /// as long.
    pub fn long_delay_threshold(&self) -> Duration {
        self.metrics.long_delay_threshold
    }

    /// Produces an instrumented façade around a given async task.
    ///
    /// ##### Examples
    /// Instrument an async task by passing it to [`TaskMonitor::instrument`]:
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // 0 tasks have been instrumented, much less polled
    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 0);
    ///
    ///     // instrument a task and poll it to completion
    ///     metrics_monitor.instrument(async {}).await;
    ///
    ///     // 1 task has been instrumented and polled
    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 1);
    ///
    ///     // instrument a task and poll it to completion
    ///     metrics_monitor.instrument(async {}).await;
    ///
    ///     // 2 tasks have been instrumented and polled
    ///     assert_eq!(metrics_monitor.cumulative().first_poll_count, 2);
    /// }
    /// ```
    /// An aync task may be tracked by multiple [`TaskMonitor`]s; e.g.:
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let monitor_a = tokio_metrics::TaskMonitor::new();
    ///     let monitor_b = tokio_metrics::TaskMonitor::new();
    ///
    ///     // 0 tasks have been instrumented, much less polled
    ///     assert_eq!(monitor_a.cumulative().first_poll_count, 0);
    ///     assert_eq!(monitor_b.cumulative().first_poll_count, 0);
    ///
    ///     // instrument a task and poll it to completion
    ///     monitor_a.instrument(monitor_b.instrument(async {})).await;
    ///
    ///     // 1 task has been instrumented and polled
    ///     assert_eq!(monitor_a.cumulative().first_poll_count, 1);
    ///     assert_eq!(monitor_b.cumulative().first_poll_count, 1);
    /// }
    /// ```
    /// It is also possible (but probably undesirable) to instrument an async task multiple times
    /// with the same [`TaskMonitor`]; e.g.:
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // 0 tasks have been instrumented, much less polled
    ///     assert_eq!(monitor.cumulative().first_poll_count, 0);
    ///
    ///     // instrument a task and poll it to completion
    ///     monitor.instrument(monitor.instrument(async {})).await;
    ///
    ///     // 2 tasks have been instrumented and polled, supposedly
    ///     assert_eq!(monitor.cumulative().first_poll_count, 2);
    /// }
    /// ```
    pub fn instrument<F>(&self, task: F) -> Instrumented<F> {
        self.metrics.instrumented_count.fetch_add(1, SeqCst);
        Instrumented {
            task,
            did_poll_once: false,
            idled_at: 0,
            state: Arc::new(State {
                metrics: self.metrics.clone(),
                instrumented_at: Instant::now(),
                woke_at: AtomicU64::new(0),
                waker: AtomicWaker::new(),
            }),
        }
    }

    /// Produces [`TaskMetrics`] for the tasks instrumented by this [`TaskMonitor`], collected since
    /// the construction of [`TaskMonitor`].
    ///
    /// ##### See also
    /// - [`TaskMonitor::intervals`]:
    ///     produces [`TaskMetrics`] for user-defined sampling intervals, instead of cumulatively
    ///
    /// ##### Examples
    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
    /// within the second sampling interval, and 2 slow polls occur within the third sampling
    /// interval; five slow polls occur across all sampling intervals:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // initialize a stream of sampling intervals
    ///     let mut intervals = metrics_monitor.intervals();
    ///     // each call of `next_interval` will produce metrics for the last sampling interval
    ///     let mut next_interval = || intervals.next().unwrap();
    ///
    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
    ///
    ///     // this task completes in three slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow).await; // slow poll 2
    ///         spin_for(slow)        // slow poll 3
    ///     }).await;
    ///
    ///     // in the previous sampling interval, there were 3 slow polls
    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 3);
    ///
    ///     // this task completes in two slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow)        // slow poll 2
    ///     }).await;
    ///
    ///     // in the previous sampling interval, there were 2 slow polls
    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
    ///
    ///     // across all sampling interval, there were a total of 5 slow polls
    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn cumulative(&self) -> TaskMetrics {
        self.metrics.metrics()
    }

    /// Produces an unending iterator of metric sampling intervals.
    ///
    /// Each sampling interval is defined by the time elapsed between advancements of the iterator
    /// produced by [`TaskMonitor::intervals`]. The item type of this iterator is [`TaskMetrics`],
    /// which is a bundle of task metrics that describe *only* events occurring within that sampling
    /// interval.
    ///
    /// ##### Examples
    /// In the below example, 0 polls occur within the first sampling interval, 3 slow polls occur
    /// within the second sampling interval, and 2 slow polls occur within the third sampling
    /// interval; five slow polls occur across all sampling intervals:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///
    ///     // initialize a stream of sampling intervals
    ///     let mut intervals = metrics_monitor.intervals();
    ///     // each call of `next_interval` will produce metrics for the last sampling interval
    ///     let mut next_interval = || intervals.next().unwrap();
    ///
    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
    ///
    ///     // this task completes in three slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow).await; // slow poll 2
    ///         spin_for(slow)        // slow poll 3
    ///     }).await;
    ///
    ///     // in the previous sampling interval, there were 3 slow polls
    ///     assert_eq!(next_interval().total_slow_poll_count, 3);
    ///
    ///     // this task completes in two slow polls
    ///     let _ = metrics_monitor.instrument(async {
    ///         spin_for(slow).await; // slow poll 1
    ///         spin_for(slow)        // slow poll 2
    ///     }).await;
    ///
    ///     // in the previous sampling interval, there were 2 slow polls
    ///     assert_eq!(next_interval().total_slow_poll_count, 2);
    ///
    ///     // across all sampling intervals, there were a total of 5 slow polls
    ///     assert_eq!(metrics_monitor.cumulative().total_slow_poll_count, 5);
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn intervals(&self) -> impl Iterator<Item = TaskMetrics> {
        let latest = self.metrics.clone();
        let mut previous: Option<TaskMetrics> = None;

        std::iter::from_fn(move || {
            let latest: TaskMetrics = latest.metrics();
            let next = if let Some(previous) = previous {
                TaskMetrics {
                    instrumented_count: latest
                        .instrumented_count
                        .wrapping_sub(previous.instrumented_count),
                    dropped_count: latest.dropped_count.wrapping_sub(previous.dropped_count),
                    total_poll_count: latest
                        .total_poll_count
                        .wrapping_sub(previous.total_poll_count),
                    total_poll_duration: sub(
                        latest.total_poll_duration,
                        previous.total_poll_duration,
                    ),
                    first_poll_count: latest
                        .first_poll_count
                        .wrapping_sub(previous.first_poll_count),
                    total_idled_count: latest
                        .total_idled_count
                        .wrapping_sub(previous.total_idled_count),
                    total_scheduled_count: latest
                        .total_scheduled_count
                        .wrapping_sub(previous.total_scheduled_count),
                    total_fast_poll_count: latest
                        .total_fast_poll_count
                        .wrapping_sub(previous.total_fast_poll_count),
                    total_short_delay_count: latest
                        .total_short_delay_count
                        .wrapping_sub(previous.total_short_delay_count),
                    total_slow_poll_count: latest
                        .total_slow_poll_count
                        .wrapping_sub(previous.total_slow_poll_count),
                    total_long_delay_count: latest
                        .total_long_delay_count
                        .wrapping_sub(previous.total_long_delay_count),
                    total_first_poll_delay: sub(
                        latest.total_first_poll_delay,
                        previous.total_first_poll_delay,
                    ),
                    total_idle_duration: sub(
                        latest.total_idle_duration,
                        previous.total_idle_duration,
                    ),
                    total_scheduled_duration: sub(
                        latest.total_scheduled_duration,
                        previous.total_scheduled_duration,
                    ),
                    total_fast_poll_duration: sub(
                        latest.total_fast_poll_duration,
                        previous.total_fast_poll_duration,
                    ),
                    total_short_delay_duration: sub(
                        latest.total_short_delay_duration,
                        previous.total_short_delay_duration,
                    ),
                    total_slow_poll_duration: sub(
                        latest.total_slow_poll_duration,
                        previous.total_slow_poll_duration,
                    ),
                    total_long_delay_duration: sub(
                        latest.total_long_delay_duration,
                        previous.total_long_delay_duration,
                    ),
                }
            } else {
                latest
            };

            previous = Some(latest);

            Some(next)
        })
    }
}

impl RawMetrics {
    fn metrics(&self) -> TaskMetrics {
        let total_fast_poll_count = self.total_fast_poll_count.load(SeqCst);
        let total_slow_poll_count = self.total_slow_poll_count.load(SeqCst);

        let total_fast_poll_duration =
            Duration::from_nanos(self.total_fast_poll_duration_ns.load(SeqCst));
        let total_slow_poll_duration =
            Duration::from_nanos(self.total_slow_poll_duration.load(SeqCst));

        let total_poll_count = total_fast_poll_count + total_slow_poll_count;
        let total_poll_duration = total_fast_poll_duration + total_slow_poll_duration;

        TaskMetrics {
            instrumented_count: self.instrumented_count.load(SeqCst),
            dropped_count: self.dropped_count.load(SeqCst),

            total_poll_count,
            total_poll_duration,
            first_poll_count: self.first_poll_count.load(SeqCst),
            total_idled_count: self.total_idled_count.load(SeqCst),
            total_scheduled_count: self.total_scheduled_count.load(SeqCst),
            total_fast_poll_count: self.total_fast_poll_count.load(SeqCst),
            total_slow_poll_count: self.total_slow_poll_count.load(SeqCst),
            total_short_delay_count: self.total_short_delay_count.load(SeqCst),
            total_long_delay_count: self.total_long_delay_count.load(SeqCst),
            total_first_poll_delay: Duration::from_nanos(
                self.total_first_poll_delay_ns.load(SeqCst),
            ),
            total_idle_duration: Duration::from_nanos(self.total_idle_duration_ns.load(SeqCst)),
            total_scheduled_duration: Duration::from_nanos(
                self.total_scheduled_duration_ns.load(SeqCst),
            ),
            total_fast_poll_duration: Duration::from_nanos(
                self.total_fast_poll_duration_ns.load(SeqCst),
            ),
            total_slow_poll_duration: Duration::from_nanos(
                self.total_slow_poll_duration.load(SeqCst),
            ),
            total_short_delay_duration: Duration::from_nanos(
                self.total_short_delay_duration_ns.load(SeqCst),
            ),
            total_long_delay_duration: Duration::from_nanos(
                self.total_long_delay_duration_ns.load(SeqCst),
            ),
        }
    }
}

impl Default for TaskMonitor {
    fn default() -> TaskMonitor {
        TaskMonitor::new()
    }
}

impl TaskMetrics {
    /// The mean duration elapsed between the instant tasks are instrumented, and the instant they
    /// are first polled.
    ///
    /// ##### Definition
    /// This metric is derived from [`total_first_poll_delay`][TaskMetrics::total_first_poll_delay]
    /// ÷ [`first_poll_count`][TaskMetrics::first_poll_count].
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that, on average, tasks spent longer waiting to be
    /// initially polled.
    ///
    /// ##### See also
    /// - **[`mean_scheduled_duration`][TaskMetrics::mean_scheduled_duration]**   
    ///   The mean duration that tasks spent waiting to be executed after awakening.
    ///
    /// ##### Examples
    /// In the below example, no tasks are instrumented or polled within the first sampling
    /// interval; in the second sampling interval, 500ms elapse between the instrumentation of a
    /// task and its first poll; in the third sampling interval, a mean of 750ms elapse between the
    /// instrumentation and first poll of two tasks:
    /// ```
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have yet been created, instrumented, or polled
    ///     assert_eq!(next_interval().mean_first_poll_delay(), Duration::ZERO);
    ///
    ///     // constructs and instruments a task, pauses for `pause_time`, awaits the task, then
    ///     // produces the total time it took to do all of the aforementioned
    ///     async fn instrument_pause_await(
    ///         metrics_monitor: &tokio_metrics::TaskMonitor,
    ///         pause_time: Duration
    ///     ) -> Duration
    ///     {
    ///         let before_instrumentation = tokio::time::Instant::now();
    ///         let task = metrics_monitor.instrument(async move {});
    ///         tokio::time::sleep(pause_time).await;
    ///         task.await;
    ///         before_instrumentation.elapsed()
    ///     }
    ///
    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
    ///     let task_a_pause_time = Duration::from_millis(500);
    ///     let task_a_total_time = instrument_pause_await(&metrics_monitor, task_a_pause_time).await;
    ///
    ///     // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
    ///     // pause time of 500ms, and less-than-or-equal-to the total runtime of `task_a`
    ///     let mean_first_poll_delay = next_interval().mean_first_poll_delay();
    ///     assert!(mean_first_poll_delay >= task_a_pause_time);
    ///     assert!(mean_first_poll_delay <= task_a_total_time);
    ///
    ///     // construct and await a task that pauses for 500ms between instrumentation and first poll
    ///     let task_b_pause_time = Duration::from_millis(500);
    ///     let task_b_total_time = instrument_pause_await(&metrics_monitor, task_b_pause_time).await;
    ///
    ///     // construct and await a task that pauses for 1000ms between instrumentation and first poll
    ///     let task_c_pause_time = Duration::from_millis(1000);
    ///     let task_c_total_time = instrument_pause_await(&metrics_monitor, task_c_pause_time).await;
    ///
    ///     // the `mean_first_poll_delay` will be some duration greater-than-or-equal-to the
    ///     // average pause time of 500ms, and less-than-or-equal-to the combined total runtime of
    ///     // `task_b` and `task_c`
    ///     let mean_first_poll_delay = next_interval().mean_first_poll_delay();
    ///     assert!(mean_first_poll_delay >= (task_b_pause_time + task_c_pause_time) / 2);
    ///     assert!(mean_first_poll_delay <= (task_b_total_time + task_c_total_time) / 2);
    /// }
    /// ```
    pub fn mean_first_poll_delay(&self) -> Duration {
        mean(self.total_first_poll_delay, self.first_poll_count)
    }

    /// The mean duration of idles.
    ///
    /// ##### Definition
    /// This metric is derived from [`total_idle_duration`][TaskMetrics::total_idle_duration] ÷
    /// [`total_idled_count`][TaskMetrics::total_idled_count].
    ///
    /// ##### Interpretation
    /// The idle state is the duration spanning the instant a task completes a poll, and the instant
    /// that it is next awoken. Tasks inhabit this state when they are waiting for task-external
    /// events to complete (e.g., an asynchronous sleep, a network request, file I/O, etc.). If this
    /// metric increases, it means that tasks, in aggregate, spent more time waiting for
    /// task-external events to complete.
    ///
    /// ##### Examples
    /// ```
    /// #[tokio::main]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let one_sec = std::time::Duration::from_secs(1);
    ///
    ///     monitor.instrument(async move {
    ///         tokio::time::sleep(one_sec).await;
    ///     }).await;
    ///
    ///     assert!(monitor.cumulative().mean_idle_duration() >= one_sec);
    /// }
    /// ```
    pub fn mean_idle_duration(&self) -> Duration {
        mean(self.total_idle_duration, self.total_idled_count)
    }

    /// The mean duration that tasks spent waiting to be executed after awakening.
    ///
    /// ##### Definition
    /// This metric is derived from
    /// [`total_scheduled_duration`][TaskMetrics::total_scheduled_duration] ÷
    /// [`total_scheduled_count`][`TaskMetrics::total_scheduled_count`].
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that, on average, tasks spent longer in the runtime's
    /// queues before being polled.
    ///
    /// ##### See also
    /// - **[`mean_first_poll_delay`][TaskMetrics::mean_first_poll_delay]**   
    ///   The mean duration elapsed between the instant tasks are instrumented, and the instant they
    ///   are first polled.
    ///
    /// ##### Examples
    /// ```
    /// use tokio::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread")]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // construct and instrument and spawn a task that yields endlessly
    ///     tokio::spawn(metrics_monitor.instrument(async {
    ///         loop { tokio::task::yield_now().await }
    ///     }));
    ///
    ///     tokio::task::yield_now().await;
    ///
    ///     // block the executor for 1 second
    ///     std::thread::sleep(Duration::from_millis(1000));
    ///
    ///     // get the task to run twice
    ///     // the first will have a 1 sec scheduling delay, the second will have almost none
    ///     tokio::task::yield_now().await;
    ///     tokio::task::yield_now().await;
    ///
    ///     // `endless_task` will have spent approximately one second waiting
    ///     let mean_scheduled_duration = next_interval().mean_scheduled_duration();
    ///     assert!(mean_scheduled_duration >= Duration::from_millis(500), "{}", mean_scheduled_duration.as_secs_f64());
    ///     assert!(mean_scheduled_duration <= Duration::from_millis(600), "{}", mean_scheduled_duration.as_secs_f64());
    /// }
    /// ```
    pub fn mean_scheduled_duration(&self) -> Duration {
        mean(self.total_scheduled_duration, self.total_scheduled_count)
    }

    /// The mean duration of polls.
    ///
    /// ##### Definition
    /// This metric is derived from [`total_poll_duration`][TaskMetrics::total_poll_duration] ÷
    /// [`total_poll_count`][TaskMetrics::total_poll_count].
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that, on average, individual polls are tending to take
    /// longer. However, this does not necessarily imply increased task latency: An increase in poll
    /// durations could be offset by fewer polls.
    ///
    /// ##### See also
    /// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**   
    ///   The ratio between the number polls categorized as slow and fast.
    /// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**   
    ///   The mean duration of slow polls.
    ///
    /// ##### Examples
    /// ```
    /// use std::time::Duration;
    ///
    /// #[tokio::main(flavor = "current_thread", start_paused = true)]
    /// async fn main() {
    ///     let monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = monitor.intervals();
    ///     let mut next_interval = move || interval.next().unwrap();
    ///  
    ///     assert_eq!(next_interval().mean_poll_duration(), Duration::ZERO);
    ///  
    ///     monitor.instrument(async {
    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 1 (1s)
    ///         tokio::time::advance(Duration::from_secs(1)).await; // poll 2 (1s)
    ///         ()                                                  // poll 3 (0s)
    ///     }).await;
    ///  
    ///     assert_eq!(next_interval().mean_poll_duration(), Duration::from_secs(2) / 3);
    /// }
    /// ```
    pub fn mean_poll_duration(&self) -> Duration {
        mean(self.total_poll_duration, self.total_poll_count)
    }

    /// The ratio between the number polls categorized as slow and fast.
    ///
    /// ##### Definition
    /// This metric is derived from [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count] ÷
    /// [`total_poll_count`][TaskMetrics::total_poll_count].
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that a greater proportion of polls took excessively long
    /// before yielding to the scheduler. This does not necessarily imply increased task latency:
    /// An increase in the proportion of slow polls could be offset by fewer or faster polls.
    /// However, as a rule, *should* yield to the scheduler frequently.
    ///
    /// ##### See also
    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
    ///   The mean duration of polls.
    /// - **[`mean_slow_poll_duration`][TaskMetrics::mean_slow_poll_duration]**   
    ///   The mean duration of slow polls.
    ///
    /// ##### Examples
    /// Changes in this metric may be observed by varying the ratio of slow and slow fast within
    /// sampling intervals; for instance:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     let interval = next_interval();
    ///     assert_eq!(interval.total_fast_poll_count, 0);
    ///     assert_eq!(interval.total_slow_poll_count, 0);
    ///     assert!(interval.slow_poll_ratio().is_nan());
    ///
    ///     let fast = Duration::ZERO;
    ///     let slow = 10 * metrics_monitor.slow_poll_threshold();
    ///
    ///     // this task completes in three fast polls
    ///     metrics_monitor.instrument(async {
    ///         spin_for(fast).await;   // fast poll 1
    ///         spin_for(fast).await;   // fast poll 2
    ///         spin_for(fast);         // fast poll 3
    ///     }).await;
    ///
    ///     // this task completes in two slow polls
    ///     metrics_monitor.instrument(async {
    ///         spin_for(slow).await;   // slow poll 1
    ///         spin_for(slow);         // slow poll 2
    ///     }).await;
    ///
    ///     let interval = next_interval();
    ///     assert_eq!(interval.total_fast_poll_count, 3);
    ///     assert_eq!(interval.total_slow_poll_count, 2);
    ///     assert_eq!(interval.slow_poll_ratio(), ratio(2., 3.));
    ///
    ///     // this task completes in three slow polls
    ///     metrics_monitor.instrument(async {
    ///         spin_for(slow).await;   // slow poll 1
    ///         spin_for(slow).await;   // slow poll 2
    ///         spin_for(slow);         // slow poll 3
    ///     }).await;
    ///
    ///     // this task completes in two fast polls
    ///     metrics_monitor.instrument(async {
    ///         spin_for(fast).await; // fast poll 1
    ///         spin_for(fast);       // fast poll 2
    ///     }).await;
    ///
    ///     let interval = next_interval();
    ///     assert_eq!(interval.total_fast_poll_count, 2);
    ///     assert_eq!(interval.total_slow_poll_count, 3);
    ///     assert_eq!(interval.slow_poll_ratio(), ratio(3., 2.));
    /// }
    ///
    /// fn ratio(a: f64, b: f64) -> f64 {
    ///     a / (a + b)
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn slow_poll_ratio(&self) -> f64 {
        self.total_slow_poll_count as f64 / self.total_poll_count as f64
    }

    /// The ratio of tasks exceeding [`long_delay_threshold`][TaskMonitor::long_delay_threshold].
    ///
    /// ##### Definition
    /// This metric is derived from [`total_long_delay_count`][TaskMetrics::total_long_delay_count] ÷
    /// [`total_scheduled_count`][TaskMetrics::total_scheduled_count].
    pub fn long_delay_ratio(&self) -> f64 {
        self.total_long_delay_count as f64 / self.total_scheduled_count as f64
    }

    /// The mean duration of fast polls.
    ///
    /// ##### Definition
    /// This metric is derived from
    /// [`total_fast_poll_duration`][TaskMetrics::total_fast_poll_duration] ÷
    /// [`total_fast_poll_count`][TaskMetrics::total_fast_poll_count].
    ///
    /// ##### Examples
    /// In the below example, no tasks are polled in the first sampling interval; three fast polls
    /// consume a mean of
    /// ⅜ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
    /// second sampling interval; and two fast polls consume a total of
    /// ½ × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
    /// third sampling interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     assert_eq!(next_interval().mean_fast_poll_duration(), Duration::ZERO);
    ///
    ///     let threshold = metrics_monitor.slow_poll_threshold();
    ///     let fast_1 = 1 * Duration::from_micros(1);
    ///     let fast_2 = 2 * Duration::from_micros(1);
    ///     let fast_3 = 3 * Duration::from_micros(1);
    ///
    ///     // this task completes in two fast polls
    ///     let total_time = time(metrics_monitor.instrument(async {
    ///         spin_for(fast_1).await; // fast poll 1
    ///         spin_for(fast_2)        // fast poll 2
    ///     })).await;
    ///
    ///     // `mean_fast_poll_duration` ≈ the mean of `fast_1` and `fast_2`
    ///     let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
    ///     assert!(mean_fast_poll_duration >= (fast_1 + fast_2) / 2);
    ///     assert!(mean_fast_poll_duration <= total_time / 2);
    ///
    ///     // this task completes in three fast polls
    ///     let total_time = time(metrics_monitor.instrument(async {
    ///         spin_for(fast_1).await; // fast poll 1
    ///         spin_for(fast_2).await; // fast poll 2
    ///         spin_for(fast_3)        // fast poll 3
    ///     })).await;
    ///
    ///     // `mean_fast_poll_duration` ≈ the mean of `fast_1`, `fast_2`, `fast_3`
    ///     let mean_fast_poll_duration = next_interval().mean_fast_poll_duration();
    ///     assert!(mean_fast_poll_duration >= (fast_1 + fast_2 + fast_3) / 3);
    ///     assert!(mean_fast_poll_duration <= total_time / 3);
    /// }
    ///
    /// /// Produces the amount of time it took to await a given task.
    /// async fn time(task: impl Future) -> Duration {
    ///     let start = tokio::time::Instant::now();
    ///     task.await;
    ///     start.elapsed()
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn mean_fast_poll_duration(&self) -> Duration {
        mean(self.total_fast_poll_duration, self.total_fast_poll_count)
    }

    /// The average time taken for a task with a short scheduling delay to be executed after being
    /// scheduled.
    ///
    /// ##### Definition
    /// This metric is derived from
    /// [`total_short_delay_duration`][TaskMetrics::total_short_delay_duration] ÷
    /// [`total_short_delay_count`][TaskMetrics::total_short_delay_count].
    pub fn mean_short_delay_duration(&self) -> Duration {
        mean(
            self.total_short_delay_duration,
            self.total_short_delay_count,
        )
    }

    /// The mean duration of slow polls.
    ///
    /// ##### Definition
    /// This metric is derived from
    /// [`total_slow_poll_duration`][TaskMetrics::total_slow_poll_duration] ÷
    /// [`total_slow_poll_count`][TaskMetrics::total_slow_poll_count].
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that a greater proportion of polls took excessively long
    /// before yielding to the scheduler. This does not necessarily imply increased task latency:
    /// An increase in the proportion of slow polls could be offset by fewer or faster polls.
    ///
    /// ##### See also
    /// - **[`mean_poll_duration`][TaskMetrics::mean_poll_duration]**   
    ///   The mean duration of polls.
    /// - **[`slow_poll_ratio`][TaskMetrics::slow_poll_ratio]**   
    ///   The ratio between the number polls categorized as slow and fast.
    ///
    /// ##### Interpretation
    /// If this metric increases, it means that, on average, slow polls got even slower. This does
    /// necessarily imply increased task latency: An increase in average slow poll duration could be
    /// offset by fewer or faster polls. However, as a rule, *should* yield to the scheduler
    /// frequently.
    ///
    /// ##### Examples
    /// In the below example, no tasks are polled in the first sampling interval; three slow polls
    /// consume a mean of
    /// 1.5 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
    /// second sampling interval; and two slow polls consume a total of
    /// 2 × [`DEFAULT_SLOW_POLL_THRESHOLD`][TaskMonitor::DEFAULT_SLOW_POLL_THRESHOLD] time in the
    /// third sampling interval:
    /// ```
    /// use std::future::Future;
    /// use std::time::Duration;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let metrics_monitor = tokio_metrics::TaskMonitor::new();
    ///     let mut interval = metrics_monitor.intervals();
    ///     let mut next_interval = || interval.next().unwrap();
    ///
    ///     // no tasks have been constructed, instrumented, or polled
    ///     assert_eq!(next_interval().mean_slow_poll_duration(), Duration::ZERO);
    ///
    ///     let threshold = metrics_monitor.slow_poll_threshold();
    ///     let slow_1 = 1 * threshold;
    ///     let slow_2 = 2 * threshold;
    ///     let slow_3 = 3 * threshold;
    ///
    ///     // this task completes in two slow polls
    ///     let total_time = time(metrics_monitor.instrument(async {
    ///         spin_for(slow_1).await; // slow poll 1
    ///         spin_for(slow_2)        // slow poll 2
    ///     })).await;
    ///
    ///     // `mean_slow_poll_duration` ≈ the mean of `slow_1` and `slow_2`
    ///     let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
    ///     assert!(mean_slow_poll_duration >= (slow_1 + slow_2) / 2);
    ///     assert!(mean_slow_poll_duration <= total_time / 2);
    ///
    ///     // this task completes in three slow polls
    ///     let total_time = time(metrics_monitor.instrument(async {
    ///         spin_for(slow_1).await; // slow poll 1
    ///         spin_for(slow_2).await; // slow poll 2
    ///         spin_for(slow_3)        // slow poll 3
    ///     })).await;
    ///
    ///     // `mean_slow_poll_duration` ≈ the mean of `slow_1`, `slow_2`, `slow_3`
    ///     let mean_slow_poll_duration = next_interval().mean_slow_poll_duration();
    ///     assert!(mean_slow_poll_duration >= (slow_1 + slow_2 + slow_3) / 3);
    ///     assert!(mean_slow_poll_duration <= total_time / 3);
    /// }
    ///
    /// /// Produces the amount of time it took to await a given task.
    /// async fn time(task: impl Future) -> Duration {
    ///     let start = tokio::time::Instant::now();
    ///     task.await;
    ///     start.elapsed()
    /// }
    ///
    /// /// Block the current thread for a given `duration`, then (optionally) yield to the scheduler.
    /// fn spin_for(duration: Duration) -> impl Future<Output=()> {
    ///     let start = tokio::time::Instant::now();
    ///     while start.elapsed() <= duration {}
    ///     tokio::task::yield_now()
    /// }
    /// ```
    pub fn mean_slow_poll_duration(&self) -> Duration {
        mean(self.total_slow_poll_duration, self.total_slow_poll_count)
    }

    /// The average scheduling delay for a task which takes a long time to start executing after
    /// being scheduled.
    ///
    /// ##### Definition
    /// This metric is derived from
    /// [`total_long_delay_duration`][TaskMetrics::total_long_delay_duration] ÷
    /// [`total_long_delay_count`][TaskMetrics::total_long_delay_count].
    pub fn mean_long_delay_duration(&self) -> Duration {
        mean(self.total_long_delay_duration, self.total_long_delay_count)
    }
}

impl<T: Future> Future for Instrumented<T> {
    type Output = T::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        instrument_poll(cx, self, Future::poll)
    }
}

impl<T: Stream> Stream for Instrumented<T> {
    type Item = T::Item;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        instrument_poll(cx, self, Stream::poll_next)
    }
}

fn instrument_poll<T, Out>(
    cx: &mut Context,
    instrumented: Pin<&mut Instrumented<T>>,
    poll_fn: impl FnOnce(Pin<&mut T>, &mut Context) -> Poll<Out>,
) -> Poll<Out> {
    let poll_start = Instant::now();
    let this = instrumented.project();
    let idled_at = this.idled_at;
    let state = this.state;
    let instrumented_at = state.instrumented_at;
    let metrics = &state.metrics;
    /* accounting for time-to-first-poll and tasks-count */
    // is this the first time this task has been polled?
    if !*this.did_poll_once {
        // if so, we need to do three things:
        /* 1. note that this task *has* been polled */
        *this.did_poll_once = true;

        /* 2. account for the time-to-first-poll of this task */
        // if the time-to-first-poll of this task exceeds `u64::MAX` ns,
        // round down to `u64::MAX` nanoseconds
        let elapsed = (poll_start - instrumented_at)
            .as_nanos()
            .try_into()
            .unwrap_or(u64::MAX);
        // add this duration to `time_to_first_poll_ns_total`
        metrics.total_first_poll_delay_ns.fetch_add(elapsed, SeqCst);

        /* 3. increment the count of tasks that have been polled at least once */
        state.metrics.first_poll_count.fetch_add(1, SeqCst);
    }
    /* accounting for time-idled and time-scheduled */
    // 1. note (and reset) the instant this task was last awoke
    let woke_at = state.woke_at.swap(0, SeqCst);
    // The state of a future is *idling* in the interim between the instant
    // it completes a `poll`, and the instant it is next awoken.
    if *idled_at < woke_at {
        // increment the counter of how many idles occurred
        metrics.total_idled_count.fetch_add(1, SeqCst);

        // compute the duration of the idle
        let idle_ns = woke_at - *idled_at;

        // adjust the total elapsed time monitored tasks spent idling
        metrics.total_idle_duration_ns.fetch_add(idle_ns, SeqCst);
    }
    // if this task spent any time in the scheduled state after instrumentation,
    // and after first poll, `woke_at` will be greater than 0.
    if woke_at > 0 {
        // increment the counter of how many schedules occurred
        metrics.total_scheduled_count.fetch_add(1, SeqCst);

        // recall that the `woke_at` field is internally represented as
        // nanoseconds-since-instrumentation. here, for accounting purposes,
        // we need to instead represent it as a proper `Instant`.
        let woke_instant = instrumented_at + Duration::from_nanos(woke_at);

        // the duration this task spent scheduled is time time elapsed between
        // when this task was awoke, and when it was polled.
        let scheduled_ns = (poll_start - woke_instant)
            .as_nanos()
            .try_into()
            .unwrap_or(u64::MAX);

        let scheduled = Duration::from_nanos(scheduled_ns);

        let (count_bucket, duration_bucket) = // was the scheduling delay long or short?
            if scheduled >= metrics.long_delay_threshold {
                (&metrics.total_long_delay_count, &metrics.total_long_delay_duration_ns)
            } else {
                (&metrics.total_short_delay_count, &metrics.total_short_delay_duration_ns)
            };
        // update the appropriate bucket
        count_bucket.fetch_add(1, SeqCst);
        duration_bucket.fetch_add(scheduled_ns, SeqCst);

        // add `scheduled_ns` to the Monitor's total
        metrics
            .total_scheduled_duration_ns
            .fetch_add(scheduled_ns, SeqCst);
    }
    // Register the waker
    state.waker.register(cx.waker());
    // Get the instrumented waker
    let waker_ref = futures_util::task::waker_ref(state);
    let mut cx = Context::from_waker(&waker_ref);
    // Poll the task
    let inner_poll_start = Instant::now();
    let ret = poll_fn(this.task, &mut cx);
    let inner_poll_end = Instant::now();
    /* idle time starts now */
    *idled_at = (inner_poll_end - instrumented_at)
        .as_nanos()
        .try_into()
        .unwrap_or(u64::MAX);
    /* accounting for poll time */
    let inner_poll_duration = inner_poll_end - inner_poll_start;
    let inner_poll_ns: u64 = inner_poll_duration
        .as_nanos()
        .try_into()
        .unwrap_or(u64::MAX);
    let (count_bucket, duration_bucket) = // was this a slow or fast poll?
            if inner_poll_duration >= metrics.slow_poll_threshold {
                (&metrics.total_slow_poll_count, &metrics.total_slow_poll_duration)
            } else {
                (&metrics.total_fast_poll_count, &metrics.total_fast_poll_duration_ns)
            };
    // update the appropriate bucket
    count_bucket.fetch_add(1, SeqCst);
    duration_bucket.fetch_add(inner_poll_ns, SeqCst);
    ret
}

impl State {
    fn on_wake(&self) {
        let woke_at: u64 = match self.instrumented_at.elapsed().as_nanos().try_into() {
            Ok(woke_at) => woke_at,
            // This is highly unlikely as it would mean the task ran for over
            // 500 years. If you ran your service for 500 years. If you are
            // reading this 500 years in the future, I'm sorry.
            Err(_) => return,
        };

        // We don't actually care about the result
        let _ = self.woke_at.compare_exchange(0, woke_at, SeqCst, SeqCst);
    }
}

impl ArcWake for State {
    fn wake_by_ref(arc_self: &Arc<State>) {
        arc_self.on_wake();
        arc_self.waker.wake();
    }

    fn wake(self: Arc<State>) {
        self.on_wake();
        self.waker.wake();
    }
}

#[inline(always)]
fn to_nanos(d: Duration) -> u64 {
    debug_assert!(d <= Duration::from_nanos(u64::MAX));
    d.as_secs()
        .wrapping_mul(1_000_000_000)
        .wrapping_add(d.subsec_nanos() as u64)
}

#[inline(always)]
fn sub(a: Duration, b: Duration) -> Duration {
    let nanos = to_nanos(a).wrapping_sub(to_nanos(b));
    Duration::from_nanos(nanos)
}

#[inline(always)]
fn mean(d: Duration, count: u64) -> Duration {
    if let Some(quotient) = to_nanos(d).checked_div(count) {
        Duration::from_nanos(quotient)
    } else {
        Duration::ZERO
    }
}