1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Common operator transformations on timely streams and differential collections.
use std::future::Future;
use std::hash::{BuildHasher, Hash, Hasher};
use std::marker::PhantomData;
use std::rc::Weak;
use differential_dataflow::consolidation::ConsolidatingContainerBuilder;
use differential_dataflow::difference::{Multiply, Semigroup};
use differential_dataflow::lattice::Lattice;
use differential_dataflow::trace::{Batcher, Builder};
use differential_dataflow::{AsCollection, Collection, Hashable};
use timely::container::columnation::{Columnation, TimelyStack};
use timely::container::{ContainerBuilder, PushInto};
use timely::dataflow::channels::pact::{Exchange, ParallelizationContract, Pipeline};
use timely::dataflow::channels::pushers::Tee;
use timely::dataflow::operators::generic::builder_rc::OperatorBuilder as OperatorBuilderRc;
use timely::dataflow::operators::generic::operator::{self, Operator};
use timely::dataflow::operators::generic::{InputHandleCore, OperatorInfo, OutputHandleCore};
use timely::dataflow::operators::Capability;
use timely::dataflow::{Scope, StreamCore};
use timely::progress::{Antichain, Timestamp};
use timely::{Container, Data, ExchangeData, PartialOrder};
use crate::builder_async::{
AsyncInputHandle, AsyncOutputHandle, ConnectedToOne, Disconnected,
OperatorBuilder as OperatorBuilderAsync,
};
/// Extension methods for timely [`StreamCore`]s.
pub trait StreamExt<G, C1>
where
C1: Container,
G: Scope,
{
/// Like `timely::dataflow::operators::generic::operator::Operator::unary`,
/// but the logic function can handle failures.
///
/// Creates a new dataflow operator that partitions its input stream by a
/// parallelization strategy `pact` and repeatedly invokes `logic`, the
/// function returned by the function passed as `constructor`. The `logic`
/// function can read to the input stream and write to either of two output
/// streams, where the first output stream represents successful
/// computations and the second output stream represents failed
/// computations.
fn unary_fallible<DCB, ECB, B, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> (StreamCore<G, DCB::Container>, StreamCore<G, ECB::Container>)
where
DCB: ContainerBuilder,
ECB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
) -> Box<
dyn FnMut(
&mut InputHandleCore<G::Timestamp, C1, P::Puller>,
&mut OutputHandleCore<G::Timestamp, DCB, Tee<G::Timestamp, DCB::Container>>,
&mut OutputHandleCore<G::Timestamp, ECB, Tee<G::Timestamp, ECB::Container>>,
) + 'static,
>,
P: ParallelizationContract<G::Timestamp, C1>;
/// Creates a new dataflow operator that partitions its input stream by a parallelization
/// strategy pact, and repeatedly schedules logic, the future returned by the function passed
/// as constructor. logic can read from the input stream, and write to the output stream.
fn unary_async<CB, P, B, BFut>(
&self,
pact: P,
name: String,
constructor: B,
) -> StreamCore<G, CB::Container>
where
CB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
AsyncInputHandle<G::Timestamp, C1, ConnectedToOne>,
AsyncOutputHandle<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
) -> BFut,
BFut: Future + 'static,
P: ParallelizationContract<G::Timestamp, C1>;
/// Creates a new dataflow operator that partitions its input streams by a parallelization
/// strategy pact, and repeatedly schedules logic, the future returned by the function passed
/// as constructor. logic can read from the input streams, and write to the output stream.
fn binary_async<C2, CB, P1, P2, B, BFut>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: String,
constructor: B,
) -> StreamCore<G, CB::Container>
where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
AsyncInputHandle<G::Timestamp, C1, ConnectedToOne>,
AsyncInputHandle<G::Timestamp, C2, ConnectedToOne>,
AsyncOutputHandle<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
) -> BFut,
BFut: Future + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>;
/// Creates a new dataflow operator that partitions its input stream by a parallelization
/// strategy pact, and repeatedly schedules logic which can read from the input stream and
/// inspect the frontier at the input.
fn sink_async<P, B, BFut>(&self, pact: P, name: String, constructor: B)
where
B: FnOnce(OperatorInfo, AsyncInputHandle<G::Timestamp, C1, Disconnected>) -> BFut,
BFut: Future + 'static,
P: ParallelizationContract<G::Timestamp, C1>;
/// Like [`timely::dataflow::operators::map::Map::map`], but `logic`
/// is allowed to fail. The first returned stream will contain the
/// successful applications of `logic`, while the second returned stream
/// will contain the failed applications.
fn map_fallible<DCB, ECB, D2, E, L>(
&self,
name: &str,
mut logic: L,
) -> (StreamCore<G, DCB::Container>, StreamCore<G, ECB::Container>)
where
DCB: ContainerBuilder + PushInto<D2>,
ECB: ContainerBuilder + PushInto<E>,
L: for<'a> FnMut(C1::Item<'a>) -> Result<D2, E> + 'static,
{
self.flat_map_fallible::<DCB, ECB, _, _, _, _>(name, move |record| Some(logic(record)))
}
/// Like [`timely::dataflow::operators::map::Map::flat_map`], but `logic`
/// is allowed to fail. The first returned stream will contain the
/// successful applications of `logic`, while the second returned stream
/// will contain the failed applications.
fn flat_map_fallible<DCB, ECB, D2, E, I, L>(
&self,
name: &str,
logic: L,
) -> (StreamCore<G, DCB::Container>, StreamCore<G, ECB::Container>)
where
DCB: ContainerBuilder + PushInto<D2>,
ECB: ContainerBuilder + PushInto<E>,
I: IntoIterator<Item = Result<D2, E>>,
L: for<'a> FnMut(C1::Item<'a>) -> I + 'static;
/// Block progress of the frontier at `expiration` time, unless the token is dropped.
fn expire_stream_at(
&self,
name: &str,
expiration: G::Timestamp,
token: Weak<()>,
) -> StreamCore<G, C1>;
/// Take a Timely stream and convert it to a Differential stream, where each diff is "1"
/// and each time is the current Timely timestamp.
fn pass_through<CB, R>(&self, name: &str, unit: R) -> StreamCore<G, CB::Container>
where
CB: ContainerBuilder + for<'a> PushInto<(C1::Item<'a>, G::Timestamp, R)>,
R: Data;
/// Wraps the stream with an operator that passes through all received inputs as long as the
/// provided token can be upgraded. Once the token cannot be upgraded anymore, all data flowing
/// into the operator is dropped.
fn with_token(&self, token: Weak<()>) -> StreamCore<G, C1>;
/// Distributes the data of the stream to all workers in a round-robin fashion.
fn distribute(&self) -> StreamCore<G, C1>
where
C1: ExchangeData;
}
/// Extension methods for differential [`Collection`]s.
pub trait CollectionExt<G, D1, R>
where
G: Scope,
R: Semigroup,
{
/// Creates a new empty collection in `scope`.
fn empty(scope: &G) -> Collection<G, D1, R>;
/// Like [`Collection::map`], but `logic` is allowed to fail. The first
/// returned collection will contain successful applications of `logic`,
/// while the second returned collection will contain the failed
/// applications.
///
/// Callers need to specify the following type parameters:
/// * `DCB`: The container builder for the `Ok` output.
/// * `ECB`: The container builder for the `Err` output.
fn map_fallible<DCB, ECB, D2, E, L>(
&self,
name: &str,
mut logic: L,
) -> (Collection<G, D2, R>, Collection<G, E, R>)
where
DCB: ContainerBuilder<Container = Vec<(D2, G::Timestamp, R)>>
+ PushInto<(D2, G::Timestamp, R)>,
ECB: ContainerBuilder<Container = Vec<(E, G::Timestamp, R)>>
+ PushInto<(E, G::Timestamp, R)>,
D2: Data,
E: Data,
L: FnMut(D1) -> Result<D2, E> + 'static,
{
self.flat_map_fallible::<DCB, ECB, _, _, _, _>(name, move |record| Some(logic(record)))
}
/// Like [`Collection::flat_map`], but `logic` is allowed to fail. The first
/// returned collection will contain the successful applications of `logic`,
/// while the second returned collection will contain the failed
/// applications.
fn flat_map_fallible<DCB, ECB, D2, E, I, L>(
&self,
name: &str,
logic: L,
) -> (Collection<G, D2, R>, Collection<G, E, R>)
where
DCB: ContainerBuilder<Container = Vec<(D2, G::Timestamp, R)>>
+ PushInto<(D2, G::Timestamp, R)>,
ECB: ContainerBuilder<Container = Vec<(E, G::Timestamp, R)>>
+ PushInto<(E, G::Timestamp, R)>,
D2: Data,
E: Data,
I: IntoIterator<Item = Result<D2, E>>,
L: FnMut(D1) -> I + 'static;
/// Block progress of the frontier at `expiration` time, unless the token is dropped.
fn expire_collection_at(
&self,
name: &str,
expiration: G::Timestamp,
token: Weak<()>,
) -> Collection<G, D1, R>;
/// Replaces each record with another, with a new difference type.
///
/// This method is most commonly used to take records containing aggregatable data (e.g. numbers to be summed)
/// and move the data into the difference component. This will allow differential dataflow to update in-place.
fn explode_one<D2, R2, L>(&self, logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
where
D2: differential_dataflow::Data,
R2: Semigroup + Multiply<R>,
<R2 as Multiply<R>>::Output: Data + Semigroup,
L: FnMut(D1) -> (D2, R2) + 'static,
G::Timestamp: Lattice;
/// Partitions the input into a monotonic collection and
/// non-monotone exceptions, with respect to differences.
///
/// The exceptions are transformed by `into_err`.
fn ensure_monotonic<E, IE>(&self, into_err: IE) -> (Collection<G, D1, R>, Collection<G, E, R>)
where
E: Data,
IE: Fn(D1, R) -> (E, R) + 'static,
R: num_traits::sign::Signed;
/// Wraps the collection with an operator that passes through all received inputs as long as
/// the provided token can be upgraded. Once the token cannot be upgraded anymore, all data
/// flowing into the operator is dropped.
fn with_token(&self, token: Weak<()>) -> Collection<G, D1, R>;
/// Consolidates the collection if `must_consolidate` is `true` and leaves it
/// untouched otherwise.
fn consolidate_named_if<Ba>(self, must_consolidate: bool, name: &str) -> Self
where
D1: differential_dataflow::ExchangeData + Hash + Columnation,
R: Semigroup + differential_dataflow::ExchangeData + Columnation,
G::Timestamp: Lattice + Columnation,
Ba: Batcher<
Input = Vec<((D1, ()), G::Timestamp, R)>,
Output = TimelyStack<((D1, ()), G::Timestamp, R)>,
Time = G::Timestamp,
> + 'static;
/// Consolidates the collection.
fn consolidate_named<Ba>(self, name: &str) -> Self
where
D1: differential_dataflow::ExchangeData + Hash + Columnation,
R: Semigroup + differential_dataflow::ExchangeData + Columnation,
G::Timestamp: Lattice + Columnation,
Ba: Batcher<
Input = Vec<((D1, ()), G::Timestamp, R)>,
Output = TimelyStack<((D1, ()), G::Timestamp, R)>,
Time = G::Timestamp,
> + 'static;
}
impl<G, C1> StreamExt<G, C1> for StreamCore<G, C1>
where
C1: Container,
G: Scope,
{
fn unary_fallible<DCB, ECB, B, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> (StreamCore<G, DCB::Container>, StreamCore<G, ECB::Container>)
where
DCB: ContainerBuilder,
ECB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
) -> Box<
dyn FnMut(
&mut InputHandleCore<G::Timestamp, C1, P::Puller>,
&mut OutputHandleCore<G::Timestamp, DCB, Tee<G::Timestamp, DCB::Container>>,
&mut OutputHandleCore<G::Timestamp, ECB, Tee<G::Timestamp, ECB::Container>>,
) + 'static,
>,
P: ParallelizationContract<G::Timestamp, C1>,
{
let mut builder = OperatorBuilderRc::new(name.into(), self.scope());
builder.set_notify(false);
let operator_info = builder.operator_info();
let mut input = builder.new_input(self, pact);
let (mut ok_output, ok_stream) = builder.new_output();
let (mut err_output, err_stream) = builder.new_output();
builder.build(move |mut capabilities| {
// `capabilities` should be a single-element vector.
let capability = capabilities.pop().unwrap();
let mut logic = constructor(capability, operator_info);
move |_frontiers| {
let mut ok_output_handle = ok_output.activate();
let mut err_output_handle = err_output.activate();
logic(&mut input, &mut ok_output_handle, &mut err_output_handle);
}
});
(ok_stream, err_stream)
}
fn unary_async<CB, P, B, BFut>(
&self,
pact: P,
name: String,
constructor: B,
) -> StreamCore<G, CB::Container>
where
CB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
AsyncInputHandle<G::Timestamp, C1, ConnectedToOne>,
AsyncOutputHandle<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
) -> BFut,
BFut: Future + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
{
let mut builder = OperatorBuilderAsync::new(name, self.scope());
let operator_info = builder.operator_info();
let (output, stream) = builder.new_output();
let input = builder.new_input_for(self, pact, &output);
builder.build(move |mut capabilities| {
// `capabilities` should be a single-element vector.
let capability = capabilities.pop().unwrap();
constructor(capability, operator_info, input, output)
});
stream
}
fn binary_async<C2, CB, P1, P2, B, BFut>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: String,
constructor: B,
) -> StreamCore<G, CB::Container>
where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
AsyncInputHandle<G::Timestamp, C1, ConnectedToOne>,
AsyncInputHandle<G::Timestamp, C2, ConnectedToOne>,
AsyncOutputHandle<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
) -> BFut,
BFut: Future + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>,
{
let mut builder = OperatorBuilderAsync::new(name, self.scope());
let operator_info = builder.operator_info();
let (output, stream) = builder.new_output();
let input1 = builder.new_input_for(self, pact1, &output);
let input2 = builder.new_input_for(other, pact2, &output);
builder.build(move |mut capabilities| {
// `capabilities` should be a single-element vector.
let capability = capabilities.pop().unwrap();
constructor(capability, operator_info, input1, input2, output)
});
stream
}
/// Creates a new dataflow operator that partitions its input stream by a parallelization
/// strategy pact, and repeatedly schedules logic which can read from the input stream and
/// inspect the frontier at the input.
fn sink_async<P, B, BFut>(&self, pact: P, name: String, constructor: B)
where
B: FnOnce(OperatorInfo, AsyncInputHandle<G::Timestamp, C1, Disconnected>) -> BFut,
BFut: Future + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
{
let mut builder = OperatorBuilderAsync::new(name, self.scope());
let operator_info = builder.operator_info();
let input = builder.new_disconnected_input(self, pact);
builder.build(move |_capabilities| constructor(operator_info, input));
}
// XXX(guswynn): file an minimization bug report for the logic flat_map
// false positive here
// TODO(guswynn): remove this after https://github.com/rust-lang/rust-clippy/issues/8098 is
// resolved. The `logic` `FnMut` needs to be borrowed in the `flat_map` call, not moved in
// so the simple `|d1| logic(d1)` closure is load-bearing
#[allow(clippy::redundant_closure)]
fn flat_map_fallible<DCB, ECB, D2, E, I, L>(
&self,
name: &str,
mut logic: L,
) -> (StreamCore<G, DCB::Container>, StreamCore<G, ECB::Container>)
where
DCB: ContainerBuilder + PushInto<D2>,
ECB: ContainerBuilder + PushInto<E>,
I: IntoIterator<Item = Result<D2, E>>,
L: for<'a> FnMut(C1::Item<'a>) -> I + 'static,
{
self.unary_fallible::<DCB, ECB, _, _>(Pipeline, name, move |_, _| {
Box::new(move |input, ok_output, err_output| {
input.for_each(|time, data| {
let mut ok_session = ok_output.session_with_builder(&time);
let mut err_session = err_output.session_with_builder(&time);
for r in data.drain().flat_map(|d1| logic(d1)) {
match r {
Ok(d2) => ok_session.push_into(d2),
Err(e) => err_session.push_into(e),
}
}
})
})
})
}
fn expire_stream_at(
&self,
name: &str,
expiration: G::Timestamp,
token: Weak<()>,
) -> StreamCore<G, C1> {
let name = format!("expire_stream_at({name})");
self.unary_frontier(Pipeline, &name.clone(), move |cap, _| {
// Retain a capability for the expiration time, which we'll only drop if the token
// is dropped. Else, block progress at the expiration time to prevent downstream
// operators from making any statement about expiration time or any following time.
let mut cap = Some(cap.delayed(&expiration));
let mut warned = false;
move |input, output| {
if token.upgrade().is_none() {
// In shutdown, allow to propagate.
drop(cap.take());
} else {
let frontier = input.frontier().frontier();
if !frontier.less_than(&expiration) && !warned {
// Here, we print a warning, not an error. The state is only a liveness
// concern, but not relevant for correctness. Additionally, a race between
// shutting down the dataflow and dropping the token can cause the dataflow
// to shut down before we drop the token. This can happen when dropping
// the last remaining capability on a different worker. We do not want to
// log an error every time this happens.
tracing::warn!(
name = name,
frontier = ?frontier,
expiration = ?expiration,
"frontier not less than expiration"
);
warned = true;
}
}
input.for_each(|time, data| {
let mut session = output.session(&time);
session.give_container(data);
});
}
})
}
fn pass_through<CB, R>(&self, name: &str, unit: R) -> StreamCore<G, CB::Container>
where
CB: ContainerBuilder + for<'a> PushInto<(C1::Item<'a>, G::Timestamp, R)>,
R: Data,
{
self.unary::<CB, _, _, _>(Pipeline, name, move |_, _| {
move |input, output| {
input.for_each(|cap, data| {
let mut session = output.session_with_builder(&cap);
session.give_iterator(
data.drain()
.map(|payload| (payload, cap.time().clone(), unit.clone())),
);
});
}
})
}
fn with_token(&self, token: Weak<()>) -> StreamCore<G, C1> {
self.unary(Pipeline, "WithToken", move |_cap, _info| {
move |input, output| {
input.for_each(|cap, data| {
if token.upgrade().is_some() {
output.session(&cap).give_container(data);
}
});
}
})
}
fn distribute(&self) -> StreamCore<G, C1>
where
C1: ExchangeData,
{
self.unary(crate::pact::Distribute, "Distribute", move |_, _| {
move |input, output| {
input.for_each(|time, data| {
output.session(&time).give_container(data);
});
}
})
}
}
impl<G, D1, R> CollectionExt<G, D1, R> for Collection<G, D1, R>
where
G: Scope,
G::Timestamp: Data,
D1: Data,
R: Semigroup + 'static,
{
fn empty(scope: &G) -> Collection<G, D1, R> {
operator::empty(scope).as_collection()
}
fn flat_map_fallible<DCB, ECB, D2, E, I, L>(
&self,
name: &str,
mut logic: L,
) -> (Collection<G, D2, R>, Collection<G, E, R>)
where
DCB: ContainerBuilder<Container = Vec<(D2, G::Timestamp, R)>>
+ PushInto<(D2, G::Timestamp, R)>,
ECB: ContainerBuilder<Container = Vec<(E, G::Timestamp, R)>>
+ PushInto<(E, G::Timestamp, R)>,
D2: Data,
E: Data,
I: IntoIterator<Item = Result<D2, E>>,
L: FnMut(D1) -> I + 'static,
{
let (ok_stream, err_stream) =
self.inner
.flat_map_fallible::<DCB, ECB, _, _, _, _>(name, move |(d1, t, r)| {
logic(d1).into_iter().map(move |res| match res {
Ok(d2) => Ok((d2, t.clone(), r.clone())),
Err(e) => Err((e, t.clone(), r.clone())),
})
});
(ok_stream.as_collection(), err_stream.as_collection())
}
fn expire_collection_at(
&self,
name: &str,
expiration: G::Timestamp,
token: Weak<()>,
) -> Collection<G, D1, R> {
self.inner
.expire_stream_at(name, expiration, token)
.as_collection()
}
fn explode_one<D2, R2, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
where
D2: differential_dataflow::Data,
R2: Semigroup + Multiply<R>,
<R2 as Multiply<R>>::Output: Data + Semigroup,
L: FnMut(D1) -> (D2, R2) + 'static,
G::Timestamp: Lattice,
{
self.inner
.unary::<ConsolidatingContainerBuilder<_>, _, _, _>(
Pipeline,
"ExplodeOne",
move |_, _| {
move |input, output| {
input.for_each(|time, data| {
output
.session_with_builder(&time)
.give_iterator(data.drain(..).map(|(x, t, d)| {
let (x, d2) = logic(x);
(x, t, d2.multiply(&d))
}));
});
}
},
)
.as_collection()
}
fn ensure_monotonic<E, IE>(&self, into_err: IE) -> (Collection<G, D1, R>, Collection<G, E, R>)
where
E: Data,
IE: Fn(D1, R) -> (E, R) + 'static,
R: num_traits::sign::Signed,
{
let (oks, errs) = self
.inner
.unary_fallible(Pipeline, "EnsureMonotonic", move |_, _| {
Box::new(move |input, ok_output, err_output| {
input.for_each(|time, data| {
let mut ok_session = ok_output.session(&time);
let mut err_session = err_output.session(&time);
for (x, t, d) in data.drain(..) {
if d.is_positive() {
ok_session.give((x, t, d))
} else {
let (e, d2) = into_err(x, d);
err_session.give((e, t, d2))
}
}
})
})
});
(oks.as_collection(), errs.as_collection())
}
fn with_token(&self, token: Weak<()>) -> Collection<G, D1, R> {
self.inner.with_token(token).as_collection()
}
fn consolidate_named_if<Ba>(self, must_consolidate: bool, name: &str) -> Self
where
D1: differential_dataflow::ExchangeData + Hash + Columnation,
R: Semigroup + differential_dataflow::ExchangeData + Columnation,
G::Timestamp: Lattice + Ord + Columnation,
Ba: Batcher<
Input = Vec<((D1, ()), G::Timestamp, R)>,
Output = TimelyStack<((D1, ()), G::Timestamp, R)>,
Time = G::Timestamp,
> + 'static,
{
if must_consolidate {
// We employ AHash below instead of the default hasher in DD to obtain
// a better distribution of data to workers. AHash claims empirically
// both speed and high quality, according to
// https://github.com/tkaitchuck/aHash/blob/master/compare/readme.md.
// TODO(vmarcos): Consider here if it is worth it to spend the time to
// implement twisted tabulation hashing as proposed in Mihai Patrascu,
// Mikkel Thorup: Twisted Tabulation Hashing. SODA 2013: 209-228, available
// at https://epubs.siam.org/doi/epdf/10.1137/1.9781611973105.16. The latter
// would provide good bounds for balls-into-bins problems when the number of
// bins is small (as is our case), so we'd have a theoretical guarantee.
// NOTE: We fix the seeds of a RandomState instance explicity with the same
// seeds that would be given by `AHash` via ahash::AHasher::default() so as
// to avoid a different selection due to compile-time features being differently
// selected in other dependencies using `AHash` vis-à-vis cargo's strategy
// of unioning features.
// NOTE: Depending on target features, we may end up employing the fallback
// hasher of `AHash`, but it should be sufficient for our needs.
let random_state = ahash::RandomState::with_seeds(
0x243f_6a88_85a3_08d3,
0x1319_8a2e_0370_7344,
0xa409_3822_299f_31d0,
0x082e_fa98_ec4e_6c89,
);
let exchange = Exchange::new(move |update: &((D1, _), G::Timestamp, R)| {
let data = &(update.0).0;
let mut h = random_state.build_hasher();
data.hash(&mut h);
h.finish()
});
// Access to `arrange_core` is OK because we specify the trace and don't hold on to it.
consolidate_pact::<Ba, _, _, _, _, _>(&self.map(|k| (k, ())), exchange, name)
.map(|(k, ())| k)
} else {
self
}
}
fn consolidate_named<Ba>(self, name: &str) -> Self
where
D1: differential_dataflow::ExchangeData + Hash + Columnation,
R: Semigroup + differential_dataflow::ExchangeData + Columnation,
G::Timestamp: Lattice + Ord + Columnation,
Ba: Batcher<
Input = Vec<((D1, ()), G::Timestamp, R)>,
Output = TimelyStack<((D1, ()), G::Timestamp, R)>,
Time = G::Timestamp,
> + 'static,
{
let exchange =
Exchange::new(move |update: &((D1, ()), G::Timestamp, R)| (update.0).0.hashed());
consolidate_pact::<Ba, _, _, _, _, _>(&self.map(|k| (k, ())), exchange, name)
.map(|(k, ())| k)
}
}
/// Creates a new async data stream source for a scope.
///
/// The source is defined by a name, and a constructor which takes a default capability and an
/// output handle to a future. The future is then repeatedly scheduled, and is expected to
/// eventually send data and downgrade and release capabilities.
pub fn source_async<G: Scope, CB, B, BFut>(
scope: &G,
name: String,
constructor: B,
) -> StreamCore<G, CB::Container>
where
CB: ContainerBuilder,
B: FnOnce(
Capability<G::Timestamp>,
OperatorInfo,
AsyncOutputHandle<G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>,
) -> BFut,
BFut: Future + 'static,
{
let mut builder = OperatorBuilderAsync::new(name, scope.clone());
let operator_info = builder.operator_info();
let (output, stream) = builder.new_output();
builder.build(move |mut capabilities| {
// `capabilities` should be a single-element vector.
let capability = capabilities.pop().unwrap();
constructor(capability, operator_info, output)
});
stream
}
/// Aggregates the weights of equal records into at most one record.
///
/// The data are accumulated in place, each held back until their timestamp has completed.
///
/// This serves as a low-level building-block for more user-friendly functions.
pub fn consolidate_pact<B, P, G, K, V, R>(
collection: &Collection<G, (K, V), R>,
pact: P,
name: &str,
) -> Collection<G, (K, V), R>
where
G: Scope,
K: Data,
V: Data,
R: Data + Semigroup,
B: Batcher<Input = Vec<((K, V), G::Timestamp, R)>, Time = G::Timestamp> + 'static,
B::Output: Container,
for<'a> Vec<((K, V), G::Timestamp, R)>: PushInto<<B::Output as Container>::Item<'a>>,
P: ParallelizationContract<G::Timestamp, Vec<((K, V), G::Timestamp, R)>>,
{
collection
.inner
.unary_frontier(pact, name, |_cap, info| {
// Acquire a logger for arrange events.
let logger = {
let scope = collection.scope();
let register = scope.log_register();
register.get::<differential_dataflow::logging::DifferentialEvent>(
"differential/arrange",
)
};
let mut batcher = B::new(logger, info.global_id);
// Capabilities for the lower envelope of updates in `batcher`.
let mut capabilities = Antichain::<Capability<G::Timestamp>>::new();
let mut prev_frontier = Antichain::from_elem(G::Timestamp::minimum());
move |input, output| {
input.for_each(|cap, data| {
capabilities.insert(cap.retain());
batcher.push_container(data);
});
if prev_frontier.borrow() != input.frontier().frontier() {
if capabilities
.elements()
.iter()
.any(|c| !input.frontier().less_equal(c.time()))
{
let mut upper = Antichain::new(); // re-used allocation for sealing batches.
// For each capability not in advance of the input frontier ...
for (index, capability) in capabilities.elements().iter().enumerate() {
if !input.frontier().less_equal(capability.time()) {
// Assemble the upper bound on times we can commit with this capabilities.
// We must respect the input frontier, and *subsequent* capabilities, as
// we are pretending to retire the capability changes one by one.
upper.clear();
for time in input.frontier().frontier().iter() {
upper.insert(time.clone());
}
for other_capability in &capabilities.elements()[(index + 1)..] {
upper.insert(other_capability.time().clone());
}
// send the batch to downstream consumers, empty or not.
let mut session = output.session(&capabilities.elements()[index]);
// Extract updates not in advance of `upper`.
let output = batcher
.seal::<ConsolidateBuilder<_, _, _, _, _>>(upper.clone());
for mut batch in output {
session.give_container(&mut batch);
}
}
}
// Having extracted and sent batches between each capability and the input frontier,
// we should downgrade all capabilities to match the batcher's lower update frontier.
// This may involve discarding capabilities, which is fine as any new updates arrive
// in messages with new capabilities.
let mut new_capabilities = Antichain::new();
for time in batcher.frontier().iter() {
if let Some(capability) = capabilities
.elements()
.iter()
.find(|c| c.time().less_equal(time))
{
new_capabilities.insert(capability.delayed(time));
} else {
panic!("failed to find capability");
}
}
capabilities = new_capabilities;
}
prev_frontier.clear();
prev_frontier.extend(input.frontier().frontier().iter().cloned());
}
}
})
.as_collection()
}
/// A builder that wraps a session for direct output to a stream.
struct ConsolidateBuilder<K: Data, V: Data, T: Timestamp, R: Data, O> {
// Session<'a, T, Vec<((K, V), T, R)>, Counter<T, ((K, V), T, R), Tee<T, ((K, V), T, R)>>>,
buffer: Vec<Vec<((K, V), T, R)>>,
_marker: PhantomData<O>,
}
impl<K, V, T, R, O> Builder for ConsolidateBuilder<K, V, T, R, O>
where
K: Data,
V: Data,
T: Timestamp,
R: Data,
O: Container,
for<'a> Vec<((K, V), T, R)>: PushInto<O::Item<'a>>,
{
type Input = O;
type Time = T;
type Output = Vec<Vec<((K, V), T, R)>>;
fn new() -> Self {
Self {
buffer: Vec::default(),
_marker: PhantomData,
}
}
fn with_capacity(_keys: usize, _vals: usize, _upds: usize) -> Self {
Self::new()
}
fn push(&mut self, chunk: &mut Self::Input) {
// TODO(mh): This is less efficient than it could be because it extracts each item
// individually and then pushes it. However, it is not a regression over the previous
// implementation. In the future, we want to either clone many elements in one go,
// or ensure that `Vec<Input>` == `Output`, which would avoid looking at the container
// contents at all.
'element: for element in chunk.drain() {
if let Some(last) = self.buffer.last_mut() {
if last.len() < last.capacity() {
last.push_into(element);
continue 'element;
}
}
let mut new =
Vec::with_capacity(timely::container::buffer::default_capacity::<Self::Input>());
new.push_into(element);
self.buffer.push(new);
}
}
fn done(
self,
_lower: Antichain<Self::Time>,
_upper: Antichain<Self::Time>,
_since: Antichain<Self::Time>,
) -> Self::Output {
self.buffer
}
}