proptest/strategy/unions.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::std_facade::{fmt, Arc, Vec};
use core::cmp::{max, min};
use core::u32;
#[cfg(not(feature = "std"))]
use num_traits::float::FloatCore;
use crate::num::sample_uniform;
use crate::strategy::{lazy::LazyValueTree, traits::*};
use crate::test_runner::*;
/// A **relative** `weight` of a particular `Strategy` corresponding to `T`
/// coupled with `T` itself. The weight is currently given in `u32`.
pub type W<T> = (u32, T);
/// A **relative** `weight` of a particular `Strategy` corresponding to `T`
/// coupled with `Arc<T>`. The weight is currently given in `u32`.
pub type WA<T> = (u32, Arc<T>);
/// A `Strategy` which picks from one of several delegate `Stragegy`s.
///
/// See `Strategy::prop_union()`.
#[derive(Clone, Debug)]
#[must_use = "strategies do nothing unless used"]
pub struct Union<T: Strategy> {
// In principle T could be any `Strategy + Clone`, but that isn't possible
// for BC reasons with the 0.9 series.
options: Vec<WA<T>>,
}
impl<T: Strategy> Union<T> {
/// Create a strategy which selects uniformly from the given delegate
/// strategies.
///
/// When shrinking, after maximal simplification of the chosen element, the
/// strategy will move to earlier options and continue simplification with
/// those.
///
/// ## Panics
///
/// Panics if `options` is empty.
pub fn new(options: impl IntoIterator<Item = T>) -> Self {
let options: Vec<WA<T>> =
options.into_iter().map(|v| (1, Arc::new(v))).collect();
assert!(!options.is_empty());
Self { options }
}
pub(crate) fn try_new<E>(
it: impl Iterator<Item = Result<T, E>>,
) -> Result<Self, E> {
let options: Vec<WA<T>> = it
.map(|r| r.map(|v| (1, Arc::new(v))))
.collect::<Result<_, _>>()?;
assert!(!options.is_empty());
Ok(Self { options })
}
/// Create a strategy which selects from the given delegate strategies.
///
/// Each strategy is assigned a non-zero weight which determines how
/// frequently that strategy is chosen. For example, a strategy with a
/// weight of 2 will be chosen twice as frequently as one with a weight of
/// 1\.
///
/// ## Panics
///
/// Panics if `options` is empty or any element has a weight of 0.
///
/// Panics if the sum of the weights overflows a `u32`.
pub fn new_weighted(options: Vec<W<T>>) -> Self {
assert!(!options.is_empty());
assert!(
!options.iter().any(|&(w, _)| 0 == w),
"Union option has a weight of 0"
);
assert!(
options.iter().map(|&(w, _)| u64::from(w)).sum::<u64>()
<= u64::from(u32::MAX),
"Union weights overflow u32"
);
let options =
options.into_iter().map(|(w, v)| (w, Arc::new(v))).collect();
Self { options }
}
/// Add `other` as an additional alternate strategy with weight 1.
pub fn or(mut self, other: T) -> Self {
self.options.push((1, Arc::new(other)));
self
}
}
fn pick_weighted<I: Iterator<Item = u32>>(
runner: &mut TestRunner,
weights1: I,
weights2: I,
) -> usize {
let sum = weights1.map(u64::from).sum();
let weighted_pick = sample_uniform(runner, 0..sum);
weights2
.scan(0u64, |state, w| {
*state += u64::from(w);
Some(*state)
})
.filter(|&v| v <= weighted_pick)
.count()
}
impl<T: Strategy> Strategy for Union<T> {
type Tree = UnionValueTree<T>;
type Value = T::Value;
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
fn extract_weight<V>(&(w, _): &WA<V>) -> u32 {
w
}
let pick = pick_weighted(
runner,
self.options.iter().map(extract_weight::<T>),
self.options.iter().map(extract_weight::<T>),
);
let mut options = Vec::with_capacity(pick);
// Delay initialization for all options less than pick.
for option in &self.options[0..pick] {
options.push(LazyValueTree::new(Arc::clone(&option.1), runner));
}
// Initialize the tree at pick so at least one value is available. Note
// that if generation for the value at pick fails, the entire strategy
// will fail. This seems like the right call.
options.push(LazyValueTree::new_initialized(
self.options[pick].1.new_tree(runner)?,
));
Ok(UnionValueTree {
options,
pick,
min_pick: 0,
prev_pick: None,
})
}
}
macro_rules! access_vec {
([$($muta:tt)*] $dst:ident = $this:expr, $ix:expr, $body:block) => {{
let $dst = &$($muta)* $this.options[$ix];
$body
}}
}
/// `ValueTree` corresponding to `Union`.
pub struct UnionValueTree<T: Strategy> {
options: Vec<LazyValueTree<T>>,
// This struct maintains the invariant that between function calls,
// `pick` and `prev_pick` (if Some) always point to initialized
// trees.
pick: usize,
min_pick: usize,
prev_pick: Option<usize>,
}
macro_rules! lazy_union_value_tree_body {
($typ:ty, $access:ident) => {
type Value = $typ;
fn current(&self) -> Self::Value {
$access!([] opt = self, self.pick, {
opt.as_inner().unwrap_or_else(||
panic!(
"value tree at self.pick = {} must be initialized",
self.pick,
)
).current()
})
}
fn simplify(&mut self) -> bool {
let orig_pick = self.pick;
if $access!([mut] opt = self, orig_pick, {
opt.as_inner_mut().unwrap_or_else(||
panic!(
"value tree at self.pick = {} must be initialized",
orig_pick,
)
).simplify()
}) {
self.prev_pick = None;
return true;
}
assert!(
self.pick >= self.min_pick,
"self.pick = {} should never go below self.min_pick = {}",
self.pick,
self.min_pick,
);
if self.pick == self.min_pick {
// No more simplification to be done.
return false;
}
// self.prev_pick is always a valid pick.
self.prev_pick = Some(self.pick);
let mut next_pick = self.pick;
while next_pick > self.min_pick {
next_pick -= 1;
let initialized = $access!([mut] opt = self, next_pick, {
opt.maybe_init();
opt.is_initialized()
});
if initialized {
// next_pick was correctly initialized above.
self.pick = next_pick;
return true;
}
}
false
}
fn complicate(&mut self) -> bool {
if let Some(pick) = self.prev_pick {
// simplify() ensures that the previous pick was initialized.
self.pick = pick;
self.min_pick = pick;
self.prev_pick = None;
true
} else {
let pick = self.pick;
$access!([mut] opt = self, pick, {
opt.as_inner_mut().unwrap_or_else(||
panic!(
"value tree at self.pick = {} must be initialized",
pick,
)
).complicate()
})
}
}
}
}
impl<T: Strategy> ValueTree for UnionValueTree<T> {
lazy_union_value_tree_body!(T::Value, access_vec);
}
impl<T: Strategy> Clone for UnionValueTree<T>
where
T::Tree: Clone,
{
fn clone(&self) -> Self {
Self {
options: self.options.clone(),
pick: self.pick,
min_pick: self.min_pick,
prev_pick: self.prev_pick,
}
}
}
impl<T: Strategy> fmt::Debug for UnionValueTree<T>
where
T::Tree: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("UnionValueTree")
.field("options", &self.options)
.field("pick", &self.pick)
.field("min_pick", &self.min_pick)
.field("prev_pick", &self.prev_pick)
.finish()
}
}
macro_rules! def_access_tuple {
($b:tt $name:ident, $($n:tt)*) => {
macro_rules! $name {
([$b($b muta:tt)*] $b dst:ident = $b this:expr,
$b ix:expr, $b body:block) => {
match $b ix {
0 => {
let $b dst = &$b($b muta)* $b this.options.0;
$b body
},
$(
$n => {
if let Some(ref $b($b muta)* $b dst) =
$b this.options.$n
{
$b body
} else {
panic!("TupleUnion tried to access \
uninitialised slot {}", $n)
}
},
)*
_ => panic!("TupleUnion tried to access out-of-range \
slot {}", $b ix),
}
}
}
}
}
def_access_tuple!($ access_tuple2, 1);
def_access_tuple!($ access_tuple3, 1 2);
def_access_tuple!($ access_tuple4, 1 2 3);
def_access_tuple!($ access_tuple5, 1 2 3 4);
def_access_tuple!($ access_tuple6, 1 2 3 4 5);
def_access_tuple!($ access_tuple7, 1 2 3 4 5 6);
def_access_tuple!($ access_tuple8, 1 2 3 4 5 6 7);
def_access_tuple!($ access_tuple9, 1 2 3 4 5 6 7 8);
def_access_tuple!($ access_tupleA, 1 2 3 4 5 6 7 8 9);
/// Similar to `Union`, but internally uses a tuple to hold the strategies.
///
/// This allows better performance than vanilla `Union` since one does not need
/// to resort to boxing and dynamic dispatch to handle heterogeneous
/// strategies.
///
/// The difference between this and `TupleUnion` is that with this, value trees
/// for variants that aren't picked at first are generated lazily.
#[must_use = "strategies do nothing unless used"]
#[derive(Clone, Copy, Debug)]
pub struct TupleUnion<T>(T);
impl<T> TupleUnion<T> {
/// Wrap `tuple` in a `TupleUnion`.
///
/// The struct definition allows any `T` for `tuple`, but to be useful, it
/// must be a 2- to 10-tuple of `(u32, Arc<impl Strategy>)` pairs where all
/// strategies ultimately produce the same value. Each `u32` indicates the
/// relative weight of its corresponding strategy.
/// You may use `WA<S>` as an alias for `(u32, Arc<S>)`.
///
/// Using this constructor directly is discouraged; prefer to use
/// `prop_oneof!` since it is generally clearer.
pub fn new(tuple: T) -> Self {
TupleUnion(tuple)
}
}
macro_rules! tuple_union {
($($gen:ident $ix:tt)*) => {
impl<A : Strategy, $($gen: Strategy<Value = A::Value>),*>
Strategy for TupleUnion<(WA<A>, $(WA<$gen>),*)> {
type Tree = TupleUnionValueTree<
(LazyValueTree<A>, $(Option<LazyValueTree<$gen>>),*)>;
type Value = A::Value;
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
let weights = [((self.0).0).0, $(((self.0).$ix).0),*];
let pick = pick_weighted(runner, weights.iter().cloned(),
weights.iter().cloned());
Ok(TupleUnionValueTree {
options: (
if 0 == pick {
LazyValueTree::new_initialized(
((self.0).0).1.new_tree(runner)?)
} else {
LazyValueTree::new(
Arc::clone(&((self.0).0).1), runner)
},
$(
if $ix == pick {
Some(LazyValueTree::new_initialized(
((self.0).$ix).1.new_tree(runner)?))
} else if $ix < pick {
Some(LazyValueTree::new(
Arc::clone(&((self.0).$ix).1), runner))
} else {
None
}),*),
pick: pick,
min_pick: 0,
prev_pick: None,
})
}
}
}
}
tuple_union!(B 1);
tuple_union!(B 1 C 2);
tuple_union!(B 1 C 2 D 3);
tuple_union!(B 1 C 2 D 3 E 4);
tuple_union!(B 1 C 2 D 3 E 4 F 5);
tuple_union!(B 1 C 2 D 3 E 4 F 5 G 6);
tuple_union!(B 1 C 2 D 3 E 4 F 5 G 6 H 7);
tuple_union!(B 1 C 2 D 3 E 4 F 5 G 6 H 7 I 8);
tuple_union!(B 1 C 2 D 3 E 4 F 5 G 6 H 7 I 8 J 9);
/// `ValueTree` type produced by `TupleUnion`.
#[derive(Clone, Copy, Debug)]
pub struct TupleUnionValueTree<T> {
options: T,
pick: usize,
min_pick: usize,
prev_pick: Option<usize>,
}
macro_rules! value_tree_tuple {
($access:ident, $($gen:ident)*) => {
impl<A : Strategy, $($gen: Strategy<Value = A::Value>),*> ValueTree
for TupleUnionValueTree<
(LazyValueTree<A>, $(Option<LazyValueTree<$gen>>),*)
> {
lazy_union_value_tree_body!(A::Value, $access);
}
}
}
value_tree_tuple!(access_tuple2, B);
value_tree_tuple!(access_tuple3, B C);
value_tree_tuple!(access_tuple4, B C D);
value_tree_tuple!(access_tuple5, B C D E);
value_tree_tuple!(access_tuple6, B C D E F);
value_tree_tuple!(access_tuple7, B C D E F G);
value_tree_tuple!(access_tuple8, B C D E F G H);
value_tree_tuple!(access_tuple9, B C D E F G H I);
value_tree_tuple!(access_tupleA, B C D E F G H I J);
const WEIGHT_BASE: u32 = 0x8000_0000;
/// Convert a floating-point weight in the range (0.0,1.0) to a pair of weights
/// that can be used with `Union` and similar.
///
/// The first return value is the weight corresponding to `f`; the second
/// return value is the weight corresponding to `1.0 - f`.
///
/// This call does not make any guarantees as to what range of weights it may
/// produce, except that adding the two return values will never overflow a
/// `u32`. As such, it is generally not meaningful to combine any other weights
/// with the two returned.
///
/// ## Panics
///
/// Panics if `f` is not a real number between 0.0 and 1.0, both exclusive.
pub fn float_to_weight(f: f64) -> (u32, u32) {
assert!(f > 0.0 && f < 1.0, "Invalid probability: {}", f);
// Clamp to 1..WEIGHT_BASE-1 so that we never produce a weight of 0.
let pos = max(
1,
min(WEIGHT_BASE - 1, (f * f64::from(WEIGHT_BASE)).round() as u32),
);
let neg = WEIGHT_BASE - pos;
(pos, neg)
}
#[cfg(test)]
mod test {
use super::*;
use crate::strategy::just::Just;
// FIXME(2018-06-01): figure out a way to run this test on no_std.
// The problem is that the default seed is fixed and does not produce
// enough passed tests. We need some universal source of non-determinism
// for the seed, which is unlikely.
#[cfg(feature = "std")]
#[test]
fn test_union() {
let input = (10u32..20u32).prop_union(30u32..40u32);
// Expect that 25% of cases pass (left input happens to be < 15, and
// left is chosen as initial value). Of the 75% that fail, 50% should
// converge to 15 and 50% to 30 (the latter because the left is beneath
// the passing threshold).
let mut passed = 0;
let mut converged_low = 0;
let mut converged_high = 0;
let mut runner = TestRunner::deterministic();
for _ in 0..256 {
let case = input.new_tree(&mut runner).unwrap();
let result = runner.run_one(case, |v| {
prop_assert!(v < 15);
Ok(())
});
match result {
Ok(true) => passed += 1,
Err(TestError::Fail(_, 15)) => converged_low += 1,
Err(TestError::Fail(_, 30)) => converged_high += 1,
e => panic!("Unexpected result: {:?}", e),
}
}
assert!(passed >= 32 && passed <= 96, "Bad passed count: {}", passed);
assert!(
converged_low >= 32 && converged_low <= 160,
"Bad converged_low count: {}",
converged_low
);
assert!(
converged_high >= 32 && converged_high <= 160,
"Bad converged_high count: {}",
converged_high
);
}
#[test]
fn test_union_weighted() {
let input = Union::new_weighted(vec![
(1, Just(0usize)),
(2, Just(1usize)),
(1, Just(2usize)),
]);
let mut counts = [0, 0, 0];
let mut runner = TestRunner::deterministic();
for _ in 0..65536 {
counts[input.new_tree(&mut runner).unwrap().current()] += 1;
}
println!("{:?}", counts);
assert!(counts[0] > 0);
assert!(counts[2] > 0);
assert!(counts[1] > counts[0] * 3 / 2);
assert!(counts[1] > counts[2] * 3 / 2);
}
#[test]
fn test_union_sanity() {
check_strategy_sanity(
Union::new_weighted(vec![
(1, 0i32..100),
(2, 200i32..300),
(1, 400i32..500),
]),
None,
);
}
// FIXME(2018-06-01): See note on `test_union`.
#[cfg(feature = "std")]
#[test]
fn test_tuple_union() {
let input = TupleUnion::new((
(1, Arc::new(10u32..20u32)),
(1, Arc::new(30u32..40u32)),
));
// Expect that 25% of cases pass (left input happens to be < 15, and
// left is chosen as initial value). Of the 75% that fail, 50% should
// converge to 15 and 50% to 30 (the latter because the left is beneath
// the passing threshold).
let mut passed = 0;
let mut converged_low = 0;
let mut converged_high = 0;
let mut runner = TestRunner::deterministic();
for _ in 0..256 {
let case = input.new_tree(&mut runner).unwrap();
let result = runner.run_one(case, |v| {
prop_assert!(v < 15);
Ok(())
});
match result {
Ok(true) => passed += 1,
Err(TestError::Fail(_, 15)) => converged_low += 1,
Err(TestError::Fail(_, 30)) => converged_high += 1,
e => panic!("Unexpected result: {:?}", e),
}
}
assert!(passed >= 32 && passed <= 96, "Bad passed count: {}", passed);
assert!(
converged_low >= 32 && converged_low <= 160,
"Bad converged_low count: {}",
converged_low
);
assert!(
converged_high >= 32 && converged_high <= 160,
"Bad converged_high count: {}",
converged_high
);
}
#[test]
fn test_tuple_union_weighting() {
let input = TupleUnion::new((
(1, Arc::new(Just(0usize))),
(2, Arc::new(Just(1usize))),
(1, Arc::new(Just(2usize))),
));
let mut counts = [0, 0, 0];
let mut runner = TestRunner::deterministic();
for _ in 0..65536 {
counts[input.new_tree(&mut runner).unwrap().current()] += 1;
}
println!("{:?}", counts);
assert!(counts[0] > 0);
assert!(counts[2] > 0);
assert!(counts[1] > counts[0] * 3 / 2);
assert!(counts[1] > counts[2] * 3 / 2);
}
#[test]
fn test_tuple_union_all_sizes() {
let mut runner = TestRunner::deterministic();
let r = Arc::new(1i32..10);
macro_rules! test {
($($part:expr),*) => {{
let input = TupleUnion::new((
$((1, $part.clone())),*,
(1, Arc::new(Just(0i32)))
));
let mut pass = false;
for _ in 0..1024 {
if 0 == input.new_tree(&mut runner).unwrap().current() {
pass = true;
break;
}
}
assert!(pass);
}}
}
test!(r); // 2
test!(r, r); // 3
test!(r, r, r); // 4
test!(r, r, r, r); // 5
test!(r, r, r, r, r); // 6
test!(r, r, r, r, r, r); // 7
test!(r, r, r, r, r, r, r); // 8
test!(r, r, r, r, r, r, r, r); // 9
test!(r, r, r, r, r, r, r, r, r); // 10
}
#[test]
fn test_tuple_union_sanity() {
check_strategy_sanity(
TupleUnion::new((
(1, Arc::new(0i32..100i32)),
(1, Arc::new(200i32..1000i32)),
(1, Arc::new(2000i32..3000i32)),
)),
None,
);
}
/// Test that unions work even if local filtering causes errors.
#[test]
fn test_filter_union_sanity() {
let filter_strategy = (0u32..256).prop_filter("!%5", |&v| 0 != v % 5);
check_strategy_sanity(
Union::new(vec![filter_strategy; 8]),
Some(filter_sanity_options()),
);
}
/// Test that tuple unions work even if local filtering causes errors.
#[test]
fn test_filter_tuple_union_sanity() {
let filter_strategy = (0u32..256).prop_filter("!%5", |&v| 0 != v % 5);
check_strategy_sanity(
TupleUnion::new((
(1, Arc::new(filter_strategy.clone())),
(1, Arc::new(filter_strategy.clone())),
(1, Arc::new(filter_strategy.clone())),
(1, Arc::new(filter_strategy.clone())),
)),
Some(filter_sanity_options()),
);
}
fn filter_sanity_options() -> CheckStrategySanityOptions {
CheckStrategySanityOptions {
// Due to internal rejection sampling, `simplify()` can
// converge back to what `complicate()` would do.
strict_complicate_after_simplify: false,
// Make failed filters return errors to test edge cases.
error_on_local_rejects: true,
..CheckStrategySanityOptions::default()
}
}
}