1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
use std::fmt;
use std::fs::File;
use std::future::Future;
#[cfg(feature = "multipart")]
use std::io::Cursor;
use std::io::{self, Read};
use std::mem;
use std::ptr;
use bytes::buf::UninitSlice;
use bytes::Bytes;
use crate::async_impl;
/// The body of a `Request`.
///
/// In most cases, this is not needed directly, as the
/// [`RequestBuilder.body`][builder] method uses `Into<Body>`, which allows
/// passing many things (like a string or vector of bytes).
///
/// [builder]: ./struct.RequestBuilder.html#method.body
#[derive(Debug)]
pub struct Body {
kind: Kind,
}
impl Body {
/// Instantiate a `Body` from a reader.
///
/// # Note
///
/// While allowing for many types to be used, these bodies do not have
/// a way to reset to the beginning and be reused. This means that when
/// encountering a 307 or 308 status code, instead of repeating the
/// request at the new location, the `Response` will be returned with
/// the redirect status code set.
///
/// ```rust
/// # use std::fs::File;
/// # use reqwest::blocking::Body;
/// # fn run() -> Result<(), Box<std::error::Error>> {
/// let file = File::open("national_secrets.txt")?;
/// let body = Body::new(file);
/// # Ok(())
/// # }
/// ```
///
/// If you have a set of bytes, like `String` or `Vec<u8>`, using the
/// `From` implementations for `Body` will store the data in a manner
/// it can be reused.
///
/// ```rust
/// # use reqwest::blocking::Body;
/// # fn run() -> Result<(), Box<std::error::Error>> {
/// let s = "A stringy body";
/// let body = Body::from(s);
/// # Ok(())
/// # }
/// ```
pub fn new<R: Read + Send + 'static>(reader: R) -> Body {
Body {
kind: Kind::Reader(Box::from(reader), None),
}
}
/// Create a `Body` from a `Read` where the size is known in advance
/// but the data should not be fully loaded into memory. This will
/// set the `Content-Length` header and stream from the `Read`.
///
/// ```rust
/// # use std::fs::File;
/// # use reqwest::blocking::Body;
/// # fn run() -> Result<(), Box<std::error::Error>> {
/// let file = File::open("a_large_file.txt")?;
/// let file_size = file.metadata()?.len();
/// let body = Body::sized(file, file_size);
/// # Ok(())
/// # }
/// ```
pub fn sized<R: Read + Send + 'static>(reader: R, len: u64) -> Body {
Body {
kind: Kind::Reader(Box::from(reader), Some(len)),
}
}
/// Returns the body as a byte slice if the body is already buffered in
/// memory. For streamed requests this method returns `None`.
pub fn as_bytes(&self) -> Option<&[u8]> {
match self.kind {
Kind::Reader(_, _) => None,
Kind::Bytes(ref bytes) => Some(bytes.as_ref()),
}
}
/// Converts streamed requests to their buffered equivalent and
/// returns a reference to the buffer. If the request is already
/// buffered, this has no effect.
///
/// Be aware that for large requests this method is expensive
/// and may cause your program to run out of memory.
pub fn buffer(&mut self) -> Result<&[u8], crate::Error> {
match self.kind {
Kind::Reader(ref mut reader, maybe_len) => {
let mut bytes = if let Some(len) = maybe_len {
Vec::with_capacity(len as usize)
} else {
Vec::new()
};
io::copy(reader, &mut bytes).map_err(crate::error::builder)?;
self.kind = Kind::Bytes(bytes.into());
self.buffer()
}
Kind::Bytes(ref bytes) => Ok(bytes.as_ref()),
}
}
#[cfg(feature = "multipart")]
pub(crate) fn len(&self) -> Option<u64> {
match self.kind {
Kind::Reader(_, len) => len,
Kind::Bytes(ref bytes) => Some(bytes.len() as u64),
}
}
#[cfg(feature = "multipart")]
pub(crate) fn into_reader(self) -> Reader {
match self.kind {
Kind::Reader(r, _) => Reader::Reader(r),
Kind::Bytes(b) => Reader::Bytes(Cursor::new(b)),
}
}
pub(crate) fn into_async(self) -> (Option<Sender>, async_impl::Body, Option<u64>) {
match self.kind {
Kind::Reader(read, len) => {
let (tx, rx) = hyper::Body::channel();
let tx = Sender {
body: (read, len),
tx,
};
(Some(tx), async_impl::Body::wrap(rx), len)
}
Kind::Bytes(chunk) => {
let len = chunk.len() as u64;
(None, async_impl::Body::reusable(chunk), Some(len))
}
}
}
pub(crate) fn try_clone(&self) -> Option<Body> {
self.kind.try_clone().map(|kind| Body { kind })
}
}
enum Kind {
Reader(Box<dyn Read + Send>, Option<u64>),
Bytes(Bytes),
}
impl Kind {
fn try_clone(&self) -> Option<Kind> {
match self {
Kind::Reader(..) => None,
Kind::Bytes(v) => Some(Kind::Bytes(v.clone())),
}
}
}
impl From<Vec<u8>> for Body {
#[inline]
fn from(v: Vec<u8>) -> Body {
Body {
kind: Kind::Bytes(v.into()),
}
}
}
impl From<String> for Body {
#[inline]
fn from(s: String) -> Body {
s.into_bytes().into()
}
}
impl From<&'static [u8]> for Body {
#[inline]
fn from(s: &'static [u8]) -> Body {
Body {
kind: Kind::Bytes(Bytes::from_static(s)),
}
}
}
impl From<&'static str> for Body {
#[inline]
fn from(s: &'static str) -> Body {
s.as_bytes().into()
}
}
impl From<File> for Body {
#[inline]
fn from(f: File) -> Body {
let len = f.metadata().map(|m| m.len()).ok();
Body {
kind: Kind::Reader(Box::new(f), len),
}
}
}
impl From<Bytes> for Body {
#[inline]
fn from(b: Bytes) -> Body {
Body {
kind: Kind::Bytes(b),
}
}
}
impl fmt::Debug for Kind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Kind::Reader(_, ref v) => f
.debug_struct("Reader")
.field("length", &DebugLength(v))
.finish(),
Kind::Bytes(ref v) => fmt::Debug::fmt(v, f),
}
}
}
struct DebugLength<'a>(&'a Option<u64>);
impl<'a> fmt::Debug for DebugLength<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self.0 {
Some(ref len) => fmt::Debug::fmt(len, f),
None => f.write_str("Unknown"),
}
}
}
#[cfg(feature = "multipart")]
pub(crate) enum Reader {
Reader(Box<dyn Read + Send>),
Bytes(Cursor<Bytes>),
}
#[cfg(feature = "multipart")]
impl Read for Reader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
match *self {
Reader::Reader(ref mut rdr) => rdr.read(buf),
Reader::Bytes(ref mut rdr) => rdr.read(buf),
}
}
}
pub(crate) struct Sender {
body: (Box<dyn Read + Send>, Option<u64>),
tx: hyper::body::Sender,
}
async fn send_future(sender: Sender) -> Result<(), crate::Error> {
use bytes::{BufMut, BytesMut};
use std::cmp;
let con_len = sender.body.1;
let cap = cmp::min(sender.body.1.unwrap_or(8192), 8192);
let mut written = 0;
let mut buf = BytesMut::with_capacity(cap as usize);
let mut body = sender.body.0;
// Put in an option so that it can be consumed on error to call abort()
let mut tx = Some(sender.tx);
loop {
if Some(written) == con_len {
// Written up to content-length, so stop.
return Ok(());
}
// The input stream is read only if the buffer is empty so
// that there is only one read in the buffer at any time.
//
// We need to know whether there is any data to send before
// we check the transmission channel (with poll_ready below)
// because somestimes the receiver disappears as soon as is
// considers the data is completely transmitted, which may
// be true.
//
// The use case is a web server that closes its
// input stream as soon as the data received is valid JSON.
// This behaviour is questionable, but it exists and the
// fact is that there is actually no remaining data to read.
if buf.is_empty() {
if buf.remaining_mut() == 0 {
buf.reserve(8192);
// zero out the reserved memory
let uninit = buf.chunk_mut();
unsafe {
ptr::write_bytes(uninit.as_mut_ptr(), 0, uninit.len());
}
}
let bytes = unsafe { mem::transmute::<&mut UninitSlice, &mut [u8]>(buf.chunk_mut()) };
match body.read(bytes) {
Ok(0) => {
// The buffer was empty and nothing's left to
// read. Return.
return Ok(());
}
Ok(n) => unsafe {
buf.advance_mut(n);
},
Err(e) => {
tx.take().expect("tx only taken on error").abort();
return Err(crate::error::body(e));
}
}
}
// The only way to get here is when the buffer is not empty.
// We can check the transmission channel
let buf_len = buf.len() as u64;
tx.as_mut()
.expect("tx only taken on error")
.send_data(buf.split().freeze())
.await
.map_err(crate::error::body)?;
written += buf_len;
}
}
impl Sender {
// A `Future` that may do blocking read calls.
// As a `Future`, this integrates easily with `wait::timeout`.
pub(crate) fn send(self) -> impl Future<Output = Result<(), crate::Error>> {
send_future(self)
}
}
// useful for tests, but not publicly exposed
#[cfg(test)]
pub(crate) fn read_to_string(mut body: Body) -> io::Result<String> {
let mut s = String::new();
match body.kind {
Kind::Reader(ref mut reader, _) => reader.read_to_string(&mut s),
Kind::Bytes(ref mut bytes) => (&**bytes).read_to_string(&mut s),
}
.map(|_| s)
}