1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Fuses multiple `Join` operators into one `Join` operator.
//!
//! Multiway join planning relies on a broad view of the involved relations,
//! and chains of binary joins can make this challenging to reason about.
//! Collecting multiple joins together with their constraints improves
//! our ability to plan these joins, and reason about other operators' motion
//! around them.
//!
//! Also removes unit collections from joins, and joins with fewer than two inputs.
//!
//! Unit collections have no columns and a count of one, and a join with such
//! a collection act as the identity operator on collections. Once removed,
//! we may find joins with zero or one input, which can be further simplified.
use std::collections::BTreeMap;
use mz_expr::visit::Visit;
use mz_expr::{BinaryFunc, VariadicFunc};
use mz_expr::{MapFilterProject, MirRelationExpr, MirScalarExpr};
use crate::analysis::equivalences::EquivalenceClasses;
use crate::canonicalize_mfp::CanonicalizeMfp;
use crate::predicate_pushdown::PredicatePushdown;
use crate::{TransformCtx, TransformError};
/// Fuses multiple `Join` operators into one `Join` operator.
///
/// Removes unit collections from joins, and joins with fewer than two inputs.
/// Filters on top of nested joins are lifted so the nested joins can be fused.
#[derive(Debug)]
pub struct Join;
impl crate::Transform for Join {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "join_fusion")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), TransformError> {
// We need to stick with post-order here because `action` only fuses a
// Join with its direct children. This means that we can only fuse a
// tree of Join nodes in a single pass if we work bottom-up.
let mut transformed = false;
relation.try_visit_mut_post(&mut |relation| {
transformed |= Self::action(relation)?;
Ok::<_, TransformError>(())
})?;
// If the action applied in the non-trivial case, run PredicatePushdown
// and CanonicalizeMfp in order to re-construct an equi-Join which would
// be de-constructed as a Filter + CrossJoin by the action application.
//
// TODO(database-issues#7728): This is a temporary solution which fixes the "Product
// limits" issue observed in a failed Nightly run when the PR was first
// tested (https://buildkite.com/materialize/nightly/builds/6670). We
// should re-evaluate if we need this ad-hoc re-normalization step when
// LiteralLifting is removed in favor of EquivalencePropagation.
if transformed {
PredicatePushdown::default().action(relation, &mut BTreeMap::new())?;
CanonicalizeMfp.action(relation)?
}
mz_repr::explain::trace_plan(&*relation);
Ok(())
}
}
impl Join {
/// Fuses multiple `Join` operators into one `Join` operator.
///
/// Return Ok(true) iff the action manipulated the tree after detecting the
/// most general pattern.
pub fn action(relation: &mut MirRelationExpr) -> Result<bool, TransformError> {
if let MirRelationExpr::Join {
inputs,
equivalences,
..
} = relation
{
// Local non-fusion tidying.
inputs.retain(|e| !e.is_constant_singleton());
if inputs.len() == 0 {
*relation = MirRelationExpr::constant(vec![vec![]], mz_repr::RelationType::empty())
.filter(unpack_equivalences(equivalences));
return Ok(false);
}
if inputs.len() == 1 {
*relation = inputs
.pop()
.unwrap()
.filter(unpack_equivalences(equivalences));
return Ok(false);
}
// Bail early if no children are MFPs around a Join
if inputs.iter().any(|mut expr| {
let mut result = None;
while result.is_none() {
match expr {
MirRelationExpr::Map { input, .. }
| MirRelationExpr::Filter { input, .. }
| MirRelationExpr::Project { input, .. } => {
expr = &**input;
}
MirRelationExpr::Join { .. } => {
result = Some(true);
}
_ => {
result = Some(false);
}
}
}
result.unwrap()
}) {
// Each input is either an MFP around a Join, or just an expression.
let children = inputs
.iter()
.map(|expr| {
let (mfp, inner) = MapFilterProject::extract_from_expression(expr);
if let MirRelationExpr::Join {
inputs,
equivalences,
..
} = inner
{
Ok((mfp, (inputs, equivalences)))
} else {
Err((mfp.projection.len(), expr))
}
})
.collect::<Vec<_>>();
// Our plan is to append all subjoin inputs, and non-join expressions.
// Each join will lift its MFP to act on the whole product (via arity).
// The final join will also be wrapped with `equivalences` as predicates.
let mut outer_arity = children
.iter()
.map(|child| match child {
Ok((mfp, _)) => mfp.input_arity,
Err((arity, _)) => *arity,
})
.sum();
// We will accumulate the lifted transformations here.
let mut outer_mfp = MapFilterProject::new(outer_arity);
let mut arity_so_far = 0;
let mut new_inputs = Vec::new();
for child in children.into_iter() {
match child {
Ok((mut mfp, (inputs, equivalences))) => {
// Add the join inputs to the new join inputs.
new_inputs.extend(inputs.iter().cloned());
mfp.optimize();
let (mut map, mut filter, mut project) = mfp.as_map_filter_project();
filter.extend(unpack_equivalences(equivalences));
// We need to rewrite column references in map and filter.
// the applied map elements will be at the end, starting at `outer_arity`.
for expr in map.iter_mut() {
expr.visit_pre_mut(|e| {
if let MirScalarExpr::Column(c) = e {
if *c >= mfp.input_arity {
*c -= mfp.input_arity;
*c += outer_arity;
} else {
*c += arity_so_far;
}
}
});
}
for expr in filter.iter_mut() {
expr.visit_pre_mut(|e| {
if let MirScalarExpr::Column(c) = e {
if *c >= mfp.input_arity {
*c -= mfp.input_arity;
*c += outer_arity;
} else {
*c += arity_so_far;
}
}
});
}
for c in project.iter_mut() {
if *c >= mfp.input_arity {
*c -= mfp.input_arity;
*c += outer_arity;
} else {
*c += arity_so_far;
}
}
outer_mfp = outer_mfp.map(map.clone());
outer_mfp = outer_mfp.filter(filter);
let projection = (0..arity_so_far)
.chain(project.clone())
.chain(arity_so_far + mfp.input_arity..outer_arity)
.collect::<Vec<_>>();
outer_mfp = outer_mfp.project(projection);
outer_arity += project.len();
outer_arity -= mfp.input_arity;
arity_so_far += project.len();
}
Err((arity, expr)) => {
new_inputs.push((*expr).clone());
arity_so_far += arity;
}
}
}
new_inputs.retain(|e| !e.is_constant_singleton());
outer_mfp = outer_mfp.filter(unpack_equivalences(equivalences));
outer_mfp.optimize();
let (map, filter, project) = outer_mfp.as_map_filter_project();
*relation = match new_inputs.len() {
0 => MirRelationExpr::constant(vec![vec![]], mz_repr::RelationType::empty()),
1 => new_inputs.pop().unwrap(),
_ => MirRelationExpr::join(new_inputs, Vec::new()),
}
.map(map)
.filter(filter)
.project(project);
return Ok(true);
}
}
Ok(false)
}
}
/// Unpacks multiple equivalence classes into conjuncts that should all be true, essentially
/// turning join equivalences into a Filter.
///
/// Note that a join equivalence treats null equal to null, while an `=` in a Filter does not.
/// This function is mindful of this.
fn unpack_equivalences(equivalences: &Vec<Vec<MirScalarExpr>>) -> Vec<MirScalarExpr> {
let mut result = Vec::new();
for mut class in equivalences.iter().cloned() {
// Let's put the simplest expression at the beginning of `class`, because all the
// expressions will involve `class[0]`. For example, without sorting, we can get stuff like
// `Filter (#0 = 5) AND (#0 = #1)`.
// With sorting, this comes out as
// `Filter (#0 = 5) AND (#1 = 5)`.
// TODO: In the long term, we might want to call the entire `EquivalenceClasses::minimize`.
class.sort_by(EquivalenceClasses::mir_scalar_expr_complexity);
for expr in class[1..].iter() {
result.push(MirScalarExpr::CallVariadic {
func: VariadicFunc::Or,
exprs: vec![
MirScalarExpr::CallBinary {
func: BinaryFunc::Eq,
expr1: Box::new(class[0].clone()),
expr2: Box::new(expr.clone()),
},
MirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs: vec![class[0].clone().call_is_null(), expr.clone().call_is_null()],
},
],
});
}
}
result
}