1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
//! A type that can be treated as a difference.
//!
//! Differential dataflow most commonly tracks the counts associated with records in a multiset, but it
//! generalizes to tracking any map from the records to an Abelian group. The most common generalization
//! is when we maintain both a count and another accumulation, for example height. The differential
//! dataflow collections would then track for each record the total of counts and heights, which allows
//! us to track something like the average.
#[deprecated]
pub use self::Abelian as Diff;
/// A type that can be an additive identity for all `Semigroup` implementations.
///
/// This method is extracted from `Semigroup` to avoid ambiguity when used.
/// It refers exclusively to the type itself, and whether it will act as the identity
/// in the course of `Semigroup<Self>::plus_equals()`.
pub trait IsZero {
/// Returns true if the element is the additive identity.
///
/// This is primarily used by differential dataflow to know when it is safe to delete an update.
/// When a difference accumulates to zero, the difference has no effect on any accumulation and can
/// be removed.
///
/// A semigroup is not obligated to have a zero element, and this method could always return
/// false in such a setting.
fn is_zero(&self) -> bool;
}
/// A type with addition and a test for zero.
///
/// These traits are currently the minimal requirements for a type to be a "difference" in differential
/// dataflow. Addition allows differential dataflow to compact multiple updates to the same data, and
/// the test for zero allows differential dataflow to retire updates that have no effect. There is no
/// requirement that the test for zero ever return true, and the zero value does not need to inhabit the
/// type.
///
/// There is a light presumption of commutativity here, in that while we will largely perform addition
/// in order of timestamps, for many types of timestamps there is no total order and consequently no
/// obvious order to respect. Non-commutative semigroups should be used with care.
pub trait Semigroup<Rhs: ?Sized = Self> : Clone + IsZero {
/// The method of `std::ops::AddAssign`, for types that do not implement `AddAssign`.
fn plus_equals(&mut self, rhs: &Rhs);
}
// Blanket implementation to support GATs of the form `&'a Diff`.
impl<'a, S, T: Semigroup<S>> Semigroup<&'a S> for T {
fn plus_equals(&mut self, rhs: &&'a S) {
self.plus_equals(&**rhs);
}
}
/// A semigroup with an explicit zero element.
pub trait Monoid : Semigroup {
/// A zero element under the semigroup addition operator.
fn zero() -> Self;
}
/// A `Monoid` with negation.
///
/// This trait extends the requirements of `Semigroup` to include a negation operator.
/// Several differential dataflow operators require negation in order to retract prior outputs, but
/// not quite as many as you might imagine.
pub trait Abelian : Monoid {
/// The method of `std::ops::Neg`, for types that do not implement `Neg`.
fn negate(&mut self);
}
/// A replacement for `std::ops::Mul` for types that do not implement it.
pub trait Multiply<Rhs = Self> {
/// Output type per the `Mul` trait.
type Output;
/// Core method per the `Mul` trait.
fn multiply(self, rhs: &Rhs) -> Self::Output;
}
/// Implementation for built-in signed integers.
macro_rules! builtin_implementation {
($t:ty) => {
impl IsZero for $t {
#[inline] fn is_zero(&self) -> bool { self == &0 }
}
impl Semigroup for $t {
#[inline] fn plus_equals(&mut self, rhs: &Self) { *self += rhs; }
}
impl Monoid for $t {
#[inline] fn zero() -> Self { 0 }
}
impl Multiply<Self> for $t {
type Output = Self;
fn multiply(self, rhs: &Self) -> Self { self * rhs}
}
};
}
macro_rules! builtin_abelian_implementation {
($t:ty) => {
impl Abelian for $t {
#[inline] fn negate(&mut self) { *self = -*self; }
}
};
}
builtin_implementation!(i8);
builtin_implementation!(i16);
builtin_implementation!(i32);
builtin_implementation!(i64);
builtin_implementation!(i128);
builtin_implementation!(isize);
builtin_implementation!(u8);
builtin_implementation!(u16);
builtin_implementation!(u32);
builtin_implementation!(u64);
builtin_implementation!(u128);
builtin_implementation!(usize);
builtin_abelian_implementation!(i8);
builtin_abelian_implementation!(i16);
builtin_abelian_implementation!(i32);
builtin_abelian_implementation!(i64);
builtin_abelian_implementation!(i128);
builtin_abelian_implementation!(isize);
/// Implementations for wrapping signed integers, which have a different zero.
macro_rules! wrapping_implementation {
($t:ty) => {
impl IsZero for $t {
#[inline] fn is_zero(&self) -> bool { self == &std::num::Wrapping(0) }
}
impl Semigroup for $t {
#[inline] fn plus_equals(&mut self, rhs: &Self) { *self += rhs; }
}
impl Monoid for $t {
#[inline] fn zero() -> Self { std::num::Wrapping(0) }
}
impl Abelian for $t {
#[inline] fn negate(&mut self) { *self = -*self; }
}
impl Multiply<Self> for $t {
type Output = Self;
fn multiply(self, rhs: &Self) -> Self { self * rhs}
}
};
}
wrapping_implementation!(std::num::Wrapping<i8>);
wrapping_implementation!(std::num::Wrapping<i16>);
wrapping_implementation!(std::num::Wrapping<i32>);
wrapping_implementation!(std::num::Wrapping<i64>);
wrapping_implementation!(std::num::Wrapping<i128>);
wrapping_implementation!(std::num::Wrapping<isize>);
pub use self::present::Present;
mod present {
use serde::{Deserialize, Serialize};
/// A zero-sized difference that indicates the presence of a record.
///
/// This difference type has no negation, and present records cannot be retracted.
/// Addition and multiplication maintain presence, and zero does not inhabit the type.
///
/// The primary feature of this type is that it has zero size, which reduces the overhead
/// of differential dataflow's representations for settings where collections either do
/// not change, or for which records are only added (for example, derived facts in Datalog).
#[derive(Copy, Ord, PartialOrd, Eq, PartialEq, Debug, Clone, Serialize, Deserialize, Hash)]
pub struct Present;
impl<T: Clone> super::Multiply<T> for Present {
type Output = T;
fn multiply(self, rhs: &T) -> T {
rhs.clone()
}
}
impl super::IsZero for Present {
fn is_zero(&self) -> bool { false }
}
impl super::Semigroup for Present {
fn plus_equals(&mut self, _rhs: &Self) { }
}
}
// Pair implementations.
mod tuples {
use super::{IsZero, Semigroup, Monoid, Abelian, Multiply};
/// Implementations for tuples. The two arguments must have the same length.
macro_rules! tuple_implementation {
( ($($name:ident)*), ($($name2:ident)*) ) => (
impl<$($name: IsZero),*> IsZero for ($($name,)*) {
#[allow(unused_mut)]
#[allow(non_snake_case)]
#[inline] fn is_zero(&self) -> bool {
let mut zero = true;
let ($(ref $name,)*) = *self;
$( zero &= $name.is_zero(); )*
zero
}
}
impl<$($name: Semigroup),*> Semigroup for ($($name,)*) {
#[allow(non_snake_case)]
#[inline] fn plus_equals(&mut self, rhs: &Self) {
let ($(ref mut $name,)*) = *self;
let ($(ref $name2,)*) = *rhs;
$($name.plus_equals($name2);)*
}
}
impl<$($name: Monoid),*> Monoid for ($($name,)*) {
#[allow(non_snake_case)]
#[inline] fn zero() -> Self {
( $($name::zero(), )* )
}
}
impl<$($name: Abelian),*> Abelian for ($($name,)*) {
#[allow(non_snake_case)]
#[inline] fn negate(&mut self) {
let ($(ref mut $name,)*) = self;
$($name.negate();)*
}
}
impl<T, $($name: Multiply<T>),*> Multiply<T> for ($($name,)*) {
type Output = ($(<$name as Multiply<T>>::Output,)*);
#[allow(unused_variables)]
#[allow(non_snake_case)]
#[inline] fn multiply(self, rhs: &T) -> Self::Output {
let ($($name,)*) = self;
( $($name.multiply(rhs), )* )
}
}
)
}
tuple_implementation!((), ());
tuple_implementation!((A1), (A2));
tuple_implementation!((A1 B1), (A2 B2));
tuple_implementation!((A1 B1 C1), (A2 B2 C2));
tuple_implementation!((A1 B1 C1 D1), (A2 B2 C2 D2));
}
// Vector implementations
mod vector {
use super::{IsZero, Semigroup, Monoid, Abelian, Multiply};
impl<R: IsZero> IsZero for Vec<R> {
fn is_zero(&self) -> bool {
self.iter().all(|x| x.is_zero())
}
}
impl<R: Semigroup> Semigroup for Vec<R> {
fn plus_equals(&mut self, rhs: &Self) {
self.plus_equals(&rhs[..])
}
}
impl<R: Semigroup> Semigroup<[R]> for Vec<R> {
fn plus_equals(&mut self, rhs: &[R]) {
// Apply all updates to existing elements
for (index, update) in rhs.iter().enumerate().take(self.len()) {
self[index].plus_equals(update);
}
// Clone leftover elements from `rhs`
while self.len() < rhs.len() {
let element = &rhs[self.len()];
self.push(element.clone());
}
}
}
#[cfg(test)]
mod tests {
use crate::difference::Semigroup;
#[test]
fn test_semigroup_vec() {
let mut a = vec![1,2,3];
a.plus_equals([1,1,1,1].as_slice());
assert_eq!(vec![2,3,4,1], a);
}
}
impl<R: Monoid> Monoid for Vec<R> {
fn zero() -> Self {
Self::new()
}
}
impl<R: Abelian> Abelian for Vec<R> {
fn negate(&mut self) {
for update in self.iter_mut() {
update.negate();
}
}
}
impl<T, R: Multiply<T>> Multiply<T> for Vec<R> {
type Output = Vec<<R as Multiply<T>>::Output>;
fn multiply(self, rhs: &T) -> Self::Output {
self.into_iter()
.map(|x| x.multiply(rhs))
.collect()
}
}
}