libm/math/
jn.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12/*
13 * jn(n, x), yn(n, x)
14 * floating point Bessel's function of the 1st and 2nd kind
15 * of order n
16 *
17 * Special cases:
18 *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19 *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20 * Note 2. About jn(n,x), yn(n,x)
21 *      For n=0, j0(x) is called,
22 *      for n=1, j1(x) is called,
23 *      for n<=x, forward recursion is used starting
24 *      from values of j0(x) and j1(x).
25 *      for n>x, a continued fraction approximation to
26 *      j(n,x)/j(n-1,x) is evaluated and then backward
27 *      recursion is used starting from a supposed value
28 *      for j(n,x). The resulting value of j(0,x) is
29 *      compared with the actual value to correct the
30 *      supposed value of j(n,x).
31 *
32 *      yn(n,x) is similar in all respects, except
33 *      that forward recursion is used for all
34 *      values of n>1.
35 */
36
37use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
38
39const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40
41pub fn jn(n: i32, mut x: f64) -> f64 {
42    let mut ix: u32;
43    let lx: u32;
44    let nm1: i32;
45    let mut i: i32;
46    let mut sign: bool;
47    let mut a: f64;
48    let mut b: f64;
49    let mut temp: f64;
50
51    ix = get_high_word(x);
52    lx = get_low_word(x);
53    sign = (ix >> 31) != 0;
54    ix &= 0x7fffffff;
55
56    // -lx == !lx + 1
57    if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
58        /* nan */
59        return x;
60    }
61
62    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
63     * Thus, J(-n,x) = J(n,-x)
64     */
65    /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
66    if n == 0 {
67        return j0(x);
68    }
69    if n < 0 {
70        nm1 = -(n + 1);
71        x = -x;
72        sign = !sign;
73    } else {
74        nm1 = n - 1;
75    }
76    if nm1 == 0 {
77        return j1(x);
78    }
79
80    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
81    x = fabs(x);
82    if (ix | lx) == 0 || ix == 0x7ff00000 {
83        /* if x is 0 or inf */
84        b = 0.0;
85    } else if (nm1 as f64) < x {
86        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
87        if ix >= 0x52d00000 {
88            /* x > 2**302 */
89            /* (x >> n**2)
90             *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
91             *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
92             *      Let s=sin(x), c=cos(x),
93             *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
94             *
95             *             n    sin(xn)*sqt2    cos(xn)*sqt2
96             *          ----------------------------------
97             *             0     s-c             c+s
98             *             1    -s-c            -c+s
99             *             2    -s+c            -c-s
100             *             3     s+c             c-s
101             */
102            temp = match nm1 & 3 {
103                0 => -cos(x) + sin(x),
104                1 => -cos(x) - sin(x),
105                2 => cos(x) - sin(x),
106                3 | _ => cos(x) + sin(x),
107            };
108            b = INVSQRTPI * temp / sqrt(x);
109        } else {
110            a = j0(x);
111            b = j1(x);
112            i = 0;
113            while i < nm1 {
114                i += 1;
115                temp = b;
116                b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
117                a = temp;
118            }
119        }
120    } else {
121        if ix < 0x3e100000 {
122            /* x < 2**-29 */
123            /* x is tiny, return the first Taylor expansion of J(n,x)
124             * J(n,x) = 1/n!*(x/2)^n  - ...
125             */
126            if nm1 > 32 {
127                /* underflow */
128                b = 0.0;
129            } else {
130                temp = x * 0.5;
131                b = temp;
132                a = 1.0;
133                i = 2;
134                while i <= nm1 + 1 {
135                    a *= i as f64; /* a = n! */
136                    b *= temp; /* b = (x/2)^n */
137                    i += 1;
138                }
139                b = b / a;
140            }
141        } else {
142            /* use backward recurrence */
143            /*                      x      x^2      x^2
144             *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
145             *                      2n  - 2(n+1) - 2(n+2)
146             *
147             *                      1      1        1
148             *  (for large x)   =  ----  ------   ------   .....
149             *                      2n   2(n+1)   2(n+2)
150             *                      -- - ------ - ------ -
151             *                       x     x         x
152             *
153             * Let w = 2n/x and h=2/x, then the above quotient
154             * is equal to the continued fraction:
155             *                  1
156             *      = -----------------------
157             *                     1
158             *         w - -----------------
159             *                        1
160             *              w+h - ---------
161             *                     w+2h - ...
162             *
163             * To determine how many terms needed, let
164             * Q(0) = w, Q(1) = w(w+h) - 1,
165             * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
166             * When Q(k) > 1e4      good for single
167             * When Q(k) > 1e9      good for double
168             * When Q(k) > 1e17     good for quadruple
169             */
170            /* determine k */
171            let mut t: f64;
172            let mut q0: f64;
173            let mut q1: f64;
174            let mut w: f64;
175            let h: f64;
176            let mut z: f64;
177            let mut tmp: f64;
178            let nf: f64;
179
180            let mut k: i32;
181
182            nf = (nm1 as f64) + 1.0;
183            w = 2.0 * nf / x;
184            h = 2.0 / x;
185            z = w + h;
186            q0 = w;
187            q1 = w * z - 1.0;
188            k = 1;
189            while q1 < 1.0e9 {
190                k += 1;
191                z += h;
192                tmp = z * q1 - q0;
193                q0 = q1;
194                q1 = tmp;
195            }
196            t = 0.0;
197            i = k;
198            while i >= 0 {
199                t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
200                i -= 1;
201            }
202            a = t;
203            b = 1.0;
204            /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
205             *  Hence, if n*(log(2n/x)) > ...
206             *  single 8.8722839355e+01
207             *  double 7.09782712893383973096e+02
208             *  long double 1.1356523406294143949491931077970765006170e+04
209             *  then recurrent value may overflow and the result is
210             *  likely underflow to zero
211             */
212            tmp = nf * log(fabs(w));
213            if tmp < 7.09782712893383973096e+02 {
214                i = nm1;
215                while i > 0 {
216                    temp = b;
217                    b = b * (2.0 * (i as f64)) / x - a;
218                    a = temp;
219                    i -= 1;
220                }
221            } else {
222                i = nm1;
223                while i > 0 {
224                    temp = b;
225                    b = b * (2.0 * (i as f64)) / x - a;
226                    a = temp;
227                    /* scale b to avoid spurious overflow */
228                    let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
229                    if b > x1p500 {
230                        a /= b;
231                        t /= b;
232                        b = 1.0;
233                    }
234                    i -= 1;
235                }
236            }
237            z = j0(x);
238            w = j1(x);
239            if fabs(z) >= fabs(w) {
240                b = t * z / b;
241            } else {
242                b = t * w / a;
243            }
244        }
245    }
246
247    if sign {
248        -b
249    } else {
250        b
251    }
252}
253
254pub fn yn(n: i32, x: f64) -> f64 {
255    let mut ix: u32;
256    let lx: u32;
257    let mut ib: u32;
258    let nm1: i32;
259    let mut sign: bool;
260    let mut i: i32;
261    let mut a: f64;
262    let mut b: f64;
263    let mut temp: f64;
264
265    ix = get_high_word(x);
266    lx = get_low_word(x);
267    sign = (ix >> 31) != 0;
268    ix &= 0x7fffffff;
269
270    // -lx == !lx + 1
271    if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
272        /* nan */
273        return x;
274    }
275    if sign && (ix | lx) != 0 {
276        /* x < 0 */
277        return 0.0 / 0.0;
278    }
279    if ix == 0x7ff00000 {
280        return 0.0;
281    }
282
283    if n == 0 {
284        return y0(x);
285    }
286    if n < 0 {
287        nm1 = -(n + 1);
288        sign = (n & 1) != 0;
289    } else {
290        nm1 = n - 1;
291        sign = false;
292    }
293    if nm1 == 0 {
294        if sign {
295            return -y1(x);
296        } else {
297            return y1(x);
298        }
299    }
300
301    if ix >= 0x52d00000 {
302        /* x > 2**302 */
303        /* (x >> n**2)
304         *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
305         *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
306         *      Let s=sin(x), c=cos(x),
307         *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
308         *
309         *             n    sin(xn)*sqt2    cos(xn)*sqt2
310         *          ----------------------------------
311         *             0     s-c             c+s
312         *             1    -s-c            -c+s
313         *             2    -s+c            -c-s
314         *             3     s+c             c-s
315         */
316        temp = match nm1 & 3 {
317            0 => -sin(x) - cos(x),
318            1 => -sin(x) + cos(x),
319            2 => sin(x) + cos(x),
320            3 | _ => sin(x) - cos(x),
321        };
322        b = INVSQRTPI * temp / sqrt(x);
323    } else {
324        a = y0(x);
325        b = y1(x);
326        /* quit if b is -inf */
327        ib = get_high_word(b);
328        i = 0;
329        while i < nm1 && ib != 0xfff00000 {
330            i += 1;
331            temp = b;
332            b = (2.0 * (i as f64) / x) * b - a;
333            ib = get_high_word(b);
334            a = temp;
335        }
336    }
337
338    if sign {
339        -b
340    } else {
341        b
342    }
343}