der/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#![doc = include_str!("../README.md")]

//! # Usage
//! ## [`Decodable`] and [`Encodable`] traits
//! The [`Decodable`] and [`Encodable`] traits are the core abstractions on
//! which this crate is built and control what types can be (de)serialized
//! as ASN.1 DER.
//!
//! The traits are impl'd for the following Rust core types:
//! - `()`: ASN.1 `NULL`. See also [`Null`].
//! - [`bool`]: ASN.1 `BOOLEAN`.
//! - [`i8`], [`i16`], [`i32`], [`i64`], [`i128`]: ASN.1 `INTEGER`.
//! - [`u8`], [`u16`], [`u32`], [`u64`], [`u128`]: ASN.1 `INTEGER`.
//! - [`str`], [`String`][`alloc::string::String`]: ASN.1 `UTF8String`.
//!   `String` requires `alloc` feature. See also [`Utf8String`].
//!   Requires `alloc` feature. See also [`SetOf`].
//! - [`Option`]: ASN.1 `OPTIONAL`.
//! - [`SystemTime`][`std::time::SystemTime`]: ASN.1 `GeneralizedTime`. Requires `std` feature.
//! - [`Vec`][`alloc::vec::Vec`]: ASN.1 `SEQUENCE OF`. Requires `alloc` feature.
//! - `[T; N]`: ASN.1 `SEQUENCE OF`. See also [`SequenceOf`].
//!
//! The following ASN.1 types provided by this crate also impl these traits:
//! - [`Any`]: ASN.1 `ANY`
//! - [`BitString`]: ASN.1 `BIT STRING`
//! - [`GeneralizedTime`]: ASN.1 `GeneralizedTime`
//! - [`Ia5String`]: ASN.1 `IA5String`
//! - [`Null`]: ASN.1 `NULL`
//! - [`ObjectIdentifier`]: ASN.1 `OBJECT IDENTIFIER`
//! - [`OctetString`]: ASN.1 `OCTET STRING`
//! - [`PrintableString`]: ASN.1 `PrintableString` (ASCII subset)
//! - [`SequenceOf`]: ASN.1 `SEQUENCE OF`
//! - [`SetOf`], [`SetOfVec`]: ASN.1 `SET OF`
//! - [`UIntBytes`]: ASN.1 unsigned `INTEGER` with raw access to encoded bytes
//! - [`UtcTime`]: ASN.1 `UTCTime`
//! - [`Utf8String`]: ASN.1 `UTF8String`
//!
//! Context specific fields can be modeled using these generic types:
//! - [`ContextSpecific`]: decoder/encoder for owned context-specific fields
//! - [`ContextSpecificRef`]: encode-only type for references to context-specific fields
//!
//! ## Example
//! The following example implements X.509's `AlgorithmIdentifier` message type
//! as defined in [RFC 5280 Section 4.1.1.2].
//!
//! The ASN.1 schema for this message type is as follows:
//!
//! ```text
//! AlgorithmIdentifier  ::=  SEQUENCE  {
//!      algorithm               OBJECT IDENTIFIER,
//!      parameters              ANY DEFINED BY algorithm OPTIONAL  }
//! ```
//!
//! Structured ASN.1 messages are typically encoded as a `SEQUENCE`, which
//! this crate maps to a Rust struct using the [`Sequence`] trait. This
//! trait is bounded on the [`Decodable`] trait and provides a blanket impl
//! of the [`Encodable`] trait, so any type which impls [`Sequence`] can be
//! used for both decoding and encoding.
//!
//! The [`Decoder`] and [`Encoder`] types provide the decoding/encoding API
//! respectively, and are designed to work in conjunction with concrete ASN.1
//! types which impl the [`Decodable`] and [`Encodable`] traits, including
//! all types which impl the [`Sequence`] trait.
//!
//! The following code example shows how to define a struct which maps to the
//! above schema, as well as impl the [`Sequence`] trait for that struct:
//!
//! ```
//! # #[cfg(all(feature = "alloc", feature = "oid"))]
//! # {
//! // Note: the following example does not require the `std` feature at all.
//! // It does leverage the `alloc` feature, but also provides instructions for
//! // "heapless" usage when the `alloc` feature is disabled.
//! use der::{
//!     asn1::{Any, ObjectIdentifier},
//!     Decodable, Decoder, Encodable, Sequence
//! };
//!
//! /// X.509 `AlgorithmIdentifier`.
//! #[derive(Copy, Clone, Debug, Eq, PartialEq)]
//! pub struct AlgorithmIdentifier<'a> {
//!     /// This field contains an ASN.1 `OBJECT IDENTIFIER`, a.k.a. OID.
//!     pub algorithm: ObjectIdentifier,
//!
//!     /// This field is `OPTIONAL` and contains the ASN.1 `ANY` type, which
//!     /// in this example allows arbitrary algorithm-defined parameters.
//!     pub parameters: Option<Any<'a>>
//! }
//!
//! impl<'a> Decodable<'a> for AlgorithmIdentifier<'a> {
//!     fn decode(decoder: &mut Decoder<'a>) -> der::Result<Self> {
//!         // The `Decoder::sequence` method decodes an ASN.1 `SEQUENCE` tag
//!         // and length then calls the provided `FnOnce` with a nested
//!         // `der::Decoder` which can be used to decode it.
//!         decoder.sequence(|decoder| {
//!             // The `der::Decoder::Decode` method can be used to decode any
//!             // type which impls the `Decodable` trait, which is impl'd for
//!             // all of the ASN.1 built-in types in the `der` crate.
//!             //
//!             // Note that if your struct's fields don't contain an ASN.1
//!             // built-in type specifically, there are also helper methods
//!             // for all of the built-in types supported by this library
//!             // which can be used to select a specific type.
//!             //
//!             // For example, another way of decoding this particular field,
//!             // which contains an ASN.1 `OBJECT IDENTIFIER`, is by calling
//!             // `decoder.oid()`. Similar methods are defined for other
//!             // ASN.1 built-in types.
//!             let algorithm = decoder.decode()?;
//!
//!             // This field contains an ASN.1 `OPTIONAL` type. The `der` crate
//!             // maps this directly to Rust's `Option` type and provides
//!             // impls of the `Decodable` and `Encodable` traits for `Option`.
//!             // To explicitly request an `OPTIONAL` type be decoded, use the
//!             // `decoder.optional()` method.
//!             let parameters = decoder.decode()?;
//!
//!             // The value returned from the provided `FnOnce` will be
//!             // returned from the `any.sequence(...)` call above.
//!             // Note that the entire sequence body *MUST* be consumed
//!             // or an error will be returned.
//!             Ok(Self { algorithm, parameters })
//!         })
//!     }
//! }
//!
//! impl<'a> Sequence<'a> for AlgorithmIdentifier<'a> {
//!     // The `Sequence::fields` method is used for encoding and functions as
//!     // a visitor for all of the fields in a message.
//!     //
//!     // To implement it, you must define a slice containing `Encodable`
//!     // trait objects, then pass it to the provided `field_encoder`
//!     // function, which is implemented by the `der` crate and handles
//!     // message serialization.
//!     //
//!     // Trait objects are used because they allow for slices containing
//!     // heterogeneous field types, and a callback is used to allow for the
//!     // construction of temporary field encoder types. The latter means
//!     // that the fields of your Rust struct don't necessarily need to
//!     // impl the `Encodable` trait, but if they don't you must construct
//!     // a temporary wrapper value which does.
//!     //
//!     // Types which impl the `Sequence` trait receive blanket impls of both
//!     // the `Encodable` and `Tagged` traits (where the latter is impl'd as
//!     // `Tagged::TAG = der::Tag::Sequence`.
//!     fn fields<F, T>(&self, field_encoder: F) -> der::Result<T>
//!     where
//!         F: FnOnce(&[&dyn Encodable]) -> der::Result<T>,
//!     {
//!         field_encoder(&[&self.algorithm, &self.parameters])
//!     }
//! }
//!
//! // Example parameters value: OID for the NIST P-256 elliptic curve.
//! let parameters = "1.2.840.10045.3.1.7".parse::<ObjectIdentifier>().unwrap();
//!
//! // We need to convert `parameters` into an `Any<'a>` type, which wraps a
//! // `&'a [u8]` byte slice.
//! //
//! // To do that, we need owned DER-encoded data so that we can have
//! // `Any` borrow a reference to it, so we have to serialize the OID.
//! //
//! // When the `alloc` feature of this crate is enabled, any type that impls
//! // the `Encodable` trait including all ASN.1 built-in types and any type
//! // which impls `Sequence` can be serialized by calling `Encodable::to_vec()`.
//! //
//! // If you would prefer to avoid allocations, you can create a byte array
//! // as backing storage instead, pass that to `der::Encoder::new`, and then
//! // encode the `parameters` value using `encoder.encode(parameters)`.
//! let der_encoded_parameters = parameters.to_vec().unwrap();
//!
//! let algorithm_identifier = AlgorithmIdentifier {
//!     // OID for `id-ecPublicKey`, if you're curious
//!     algorithm: "1.2.840.10045.2.1".parse().unwrap(),
//!
//!     // `Any<'a>` impls `TryFrom<&'a [u8]>`, which parses the provided
//!     // slice as an ASN.1 DER-encoded message.
//!     parameters: Some(der_encoded_parameters.as_slice().try_into().unwrap())
//! };
//!
//! // Serialize the `AlgorithmIdentifier` created above as ASN.1 DER,
//! // allocating a `Vec<u8>` for storage.
//! //
//! // As mentioned earlier, if you don't have the `alloc` feature enabled you
//! // can create a fix-sized array instead, then call `Encoder::new` with a
//! // reference to it, then encode the message using
//! // `encoder.encode(algorithm_identifier)`, then finally `encoder.finish()`
//! // to obtain a byte slice containing the encoded message.
//! let der_encoded_algorithm_identifier = algorithm_identifier.to_vec().unwrap();
//!
//! // Deserialize the `AlgorithmIdentifier` we just serialized from ASN.1 DER
//! // using `der::Decodable::from_bytes`.
//! let decoded_algorithm_identifier = AlgorithmIdentifier::from_der(
//!     &der_encoded_algorithm_identifier
//! ).unwrap();
//!
//! // Ensure the original `AlgorithmIdentifier` is the same as the one we just
//! // decoded from ASN.1 DER.
//! assert_eq!(algorithm_identifier, decoded_algorithm_identifier);
//! # }
//! ```
//!
//! ## Custom derive support
//! When the `derive` feature of this crate is enabled, the following custom
//! derive macros are available:
//!
//! - [`Choice`]: derive for `CHOICE` enum (see [`der_derive::Choice`])
//! - [`Enumerated`]: derive for `ENUMERATED` enum (see [`der_derive::Enumerated`])
//! - [`Sequence`]: derive for `SEQUENCE` struct (see [`der_derive::Sequence`])
//!
//! ### Derive [`Sequence`] for struct
//! The following is a code example of how to use the [`Sequence`] custom derive:
//!
//! ```
//! # #[cfg(all(feature = "alloc", feature = "derive", feature = "oid"))]
//! # {
//! use der::{asn1::{Any, ObjectIdentifier}, Encodable, Decodable, Sequence};
//!
//! /// X.509 `AlgorithmIdentifier` (same as above)
//! #[derive(Copy, Clone, Debug, Eq, PartialEq, Sequence)] // NOTE: added `Sequence`
//! pub struct AlgorithmIdentifier<'a> {
//!     /// This field contains an ASN.1 `OBJECT IDENTIFIER`, a.k.a. OID.
//!     pub algorithm: ObjectIdentifier,
//!
//!     /// This field is `OPTIONAL` and contains the ASN.1 `ANY` type, which
//!     /// in this example allows arbitrary algorithm-defined parameters.
//!     pub parameters: Option<Any<'a>>
//! }
//!
//! // Example parameters value: OID for the NIST P-256 elliptic curve.
//! let parameters_oid = "1.2.840.10045.3.1.7".parse::<ObjectIdentifier>().unwrap();
//!
//! let algorithm_identifier = AlgorithmIdentifier {
//!     // OID for `id-ecPublicKey`, if you're curious
//!     algorithm: "1.2.840.10045.2.1".parse().unwrap(),
//!
//!     // `Any<'a>` impls `From<&'a ObjectIdentifier>`, allowing OID constants to
//!     // be directly converted to an `Any` type for this use case.
//!     parameters: Some(Any::from(&parameters_oid))
//! };
//!
//! // Encode
//! let der_encoded_algorithm_identifier = algorithm_identifier.to_vec().unwrap();
//!
//! // Decode
//! let decoded_algorithm_identifier = AlgorithmIdentifier::from_der(
//!     &der_encoded_algorithm_identifier
//! ).unwrap();
//!
//! assert_eq!(algorithm_identifier, decoded_algorithm_identifier);
//! # }
//! ```
//!
//! For fields which don't directly impl [`Decodable`] and [`Encodable`],
//! you can add annotations to convert to an intermediate ASN.1 type
//! first, so long as that type impls `TryFrom` and `Into` for the
//! ASN.1 type.
//!
//! For example, structs containing `&'a [u8]` fields may want them encoded
//! as either a `BIT STRING` or `OCTET STRING`. By using the
//! `#[asn1(type = "BIT STRING")]` annotation it's possible to select which
//! ASN.1 type should be used.
//!
//! Building off the above example:
//!
//! ```rust
//! # #[cfg(all(feature = "alloc", feature = "derive", feature = "oid"))]
//! # {
//! # use der::{asn1::{Any, BitString, ObjectIdentifier}, Sequence};
//! #
//! # #[derive(Copy, Clone, Debug, Eq, PartialEq, Sequence)]
//! # pub struct AlgorithmIdentifier<'a> {
//! #     pub algorithm: ObjectIdentifier,
//! #     pub parameters: Option<Any<'a>>
//! # }
//! /// X.509 `SubjectPublicKeyInfo` (SPKI)
//! #[derive(Copy, Clone, Debug, Eq, PartialEq, Sequence)]
//! pub struct SubjectPublicKeyInfo<'a> {
//!     /// X.509 `AlgorithmIdentifier`
//!     pub algorithm: AlgorithmIdentifier<'a>,
//!
//!     /// Public key data
//!     pub subject_public_key: BitString<'a>,
//! }
//! # }
//! ```
//!
//! # See also
//! For more information about ASN.1 DER we recommend the following guides:
//!
//! - [A Layman's Guide to a Subset of ASN.1, BER, and DER] (RSA Laboratories)
//! - [A Warm Welcome to ASN.1 and DER] (Let's Encrypt)
//!
//! [RFC 5280 Section 4.1.1.2]: https://tools.ietf.org/html/rfc5280#section-4.1.1.2
//! [A Layman's Guide to a Subset of ASN.1, BER, and DER]: https://luca.ntop.org/Teaching/Appunti/asn1.html
//! [A Warm Welcome to ASN.1 and DER]: https://letsencrypt.org/docs/a-warm-welcome-to-asn1-and-der/
//!
//! [`Any`]: asn1::Any
//! [`ContextSpecific`]: asn1::ContextSpecific
//! [`ContextSpecificRef`]: asn1::ContextSpecificRef
//! [`BitString`]: asn1::BitString
//! [`GeneralizedTime`]: asn1::GeneralizedTime
//! [`Ia5String`]: asn1::Ia5String
//! [`Null`]: asn1::Null
//! [`ObjectIdentifier`]: asn1::ObjectIdentifier
//! [`OctetString`]: asn1::OctetString
//! [`PrintableString`]: asn1::PrintableString
//! [`SequenceOf`]: asn1::SequenceOf
//! [`SetOf`]: asn1::SetOf
//! [`SetOfVec`]: asn1::SetOfVec
//! [`UIntBytes`]: asn1::UIntBytes
//! [`UtcTime`]: asn1::UtcTime
//! [`Utf8String`]: asn1::Utf8String

#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
    html_root_url = "https://docs.rs/der/0.5.1"
)]
#![forbid(unsafe_code, clippy::unwrap_used)]
#![warn(
    missing_docs,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications
)]

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;

pub mod asn1;

pub(crate) mod arrayvec;
mod byte_slice;
mod datetime;
mod decodable;
mod decoder;
mod encodable;
mod encoder;
mod error;
mod header;
mod length;
mod ord;
mod str_slice;
mod tag;
mod value;

#[cfg(feature = "alloc")]
mod document;

pub use crate::{
    asn1::{Any, Choice, Sequence},
    datetime::DateTime,
    decodable::Decodable,
    decoder::Decoder,
    encodable::Encodable,
    encoder::Encoder,
    error::{Error, ErrorKind, Result},
    header::Header,
    length::Length,
    ord::{DerOrd, OrdIsValueOrd, ValueOrd},
    tag::{Class, FixedTag, Tag, TagMode, TagNumber, Tagged},
    value::{DecodeValue, EncodeValue},
};

#[cfg(feature = "alloc")]
pub use document::Document;

#[cfg(feature = "bigint")]
#[cfg_attr(docsrs, doc(cfg(feature = "bigint")))]
pub use crypto_bigint as bigint;

#[cfg(feature = "derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
pub use der_derive::{Choice, Enumerated, Sequence, ValueOrd};

#[cfg(feature = "pem")]
#[cfg_attr(docsrs, doc(cfg(feature = "pem")))]
pub use pem_rfc7468 as pem;

#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
pub use time;

pub(crate) use crate::{arrayvec::ArrayVec, byte_slice::ByteSlice, str_slice::StrSlice};