1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
//-
// Copyright 2017 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Support for strategies producing fixed-length arrays.
//!
//! An array of strategies (but only length 1 to 32 for now) is itself a
//! strategy which generates arrays of that size drawing elements from the
//! corresponding input strategies.
//!
//! See also [`UniformArrayStrategy`](struct.UniformArrayStrategy.html) for
//! easily making a strategy for an array drawn from one strategy.
//!
//! General implementations are available for sizes 1 through 32.
use core::marker::PhantomData;
use crate::strategy::*;
use crate::test_runner::*;
/// A `Strategy` which generates fixed-size arrays containing values drawn from
/// an inner strategy.
///
/// `T` must be an array type of length 1 to 32 whose values are produced by
/// strategy `S`. Instances of this type are normally created by the various
/// `uniformXX` functions in this module.
///
/// This is mainly useful when the inner strategy is not `Copy`, precluding
/// expressing the strategy as `[myStrategy; 32]`, for example.
///
/// ## Example
///
/// ```
/// use proptest::prelude::*;
///
/// proptest! {
/// #[test]
/// fn test_something(a in prop::array::uniform32(1u32..)) {
/// let unexpected = [0u32;32];
/// // `a` is also a [u32;32], so we can compare them directly
/// assert_ne!(unexpected, a);
/// }
/// }
/// # fn main() { }
/// ```
#[must_use = "strategies do nothing unless used"]
#[derive(Clone, Copy, Debug)]
pub struct UniformArrayStrategy<S, T> {
strategy: S,
_marker: PhantomData<T>,
}
impl<S, T> UniformArrayStrategy<S, T> {
/// Directly create a `UniformArrayStrategy`.
///
/// This is only intended for advanced use, since the only way to specify
/// the array size is with the turbofish operator and explicitly naming the
/// type of the values in the array and the strategy itself.
///
/// Prefer the `uniformXX` functions at module-level unless something
/// precludes their use.
pub fn new(strategy: S) -> Self {
UniformArrayStrategy {
strategy,
_marker: PhantomData,
}
}
}
/// A `ValueTree` operating over a fixed-size array.
#[derive(Clone, Copy, Debug)]
pub struct ArrayValueTree<T> {
tree: T,
shrinker: usize,
last_shrinker: Option<usize>,
}
macro_rules! small_array {
($n:tt $uni:ident : $($ix:expr),*) => {
/// Create a strategy to generate fixed-length arrays.
///
/// All values within the new strategy are generated using the given
/// strategy. The length of the array corresponds to the suffix of the
/// name of this function.
///
/// See [`UniformArrayStrategy`](struct.UniformArrayStrategy.html) for
/// example usage.
pub fn $uni<S : Strategy>
(strategy: S) -> UniformArrayStrategy<S, [S::Value; $n]>
{
UniformArrayStrategy {
strategy,
_marker: PhantomData
}
}
impl<S : Strategy> Strategy for [S; $n] {
type Tree = ArrayValueTree<[S::Tree; $n]>;
type Value = [S::Value; $n];
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
Ok(ArrayValueTree {
tree: [$(self[$ix].new_tree(runner)?,)*],
shrinker: 0,
last_shrinker: None,
})
}
}
impl<S : Strategy> Strategy
for UniformArrayStrategy<S, [S::Value; $n]> {
type Tree = ArrayValueTree<[S::Tree; $n]>;
type Value = [S::Value; $n];
fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
Ok(ArrayValueTree {
tree: [$({
let _ = $ix;
self.strategy.new_tree(runner)?
},)*],
shrinker: 0,
last_shrinker: None,
})
}
}
impl<T : ValueTree> ValueTree for ArrayValueTree<[T;$n]> {
type Value = [T::Value;$n];
fn current(&self) -> [T::Value;$n] {
[$(self.tree[$ix].current(),)*]
}
fn simplify(&mut self) -> bool {
while self.shrinker < $n {
if self.tree[self.shrinker].simplify() {
self.last_shrinker = Some(self.shrinker);
return true;
} else {
self.shrinker += 1;
}
}
false
}
fn complicate(&mut self) -> bool {
if let Some(shrinker) = self.last_shrinker {
self.shrinker = shrinker;
if self.tree[shrinker].complicate() {
true
} else {
self.last_shrinker = None;
false
}
} else {
false
}
}
}
}
}
small_array!(1 uniform1:
0);
small_array!(2 uniform2:
0, 1);
small_array!(3 uniform3:
0, 1, 2);
small_array!(4 uniform4:
0, 1, 2, 3);
small_array!(5 uniform5:
0, 1, 2, 3, 4);
small_array!(6 uniform6:
0, 1, 2, 3, 4, 5);
small_array!(7 uniform7:
0, 1, 2, 3, 4, 5, 6);
small_array!(8 uniform8:
0, 1, 2, 3, 4, 5, 6, 7);
small_array!(9 uniform9:
0, 1, 2, 3, 4, 5, 6, 7, 8);
small_array!(10 uniform10:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
small_array!(11 uniform11:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
small_array!(12 uniform12:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
small_array!(13 uniform13:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);
small_array!(14 uniform14:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);
small_array!(15 uniform15:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14);
small_array!(16 uniform16:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
small_array!(17 uniform17:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
small_array!(18 uniform18:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
small_array!(19 uniform19:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18);
small_array!(20 uniform20:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19);
small_array!(21 uniform21:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20);
small_array!(22 uniform22:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21);
small_array!(23 uniform23:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22);
small_array!(24 uniform24:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23);
small_array!(25 uniform25:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24);
small_array!(26 uniform26:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25);
small_array!(27 uniform27:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26);
small_array!(28 uniform28:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27);
small_array!(29 uniform29:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28);
small_array!(30 uniform30:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29);
small_array!(31 uniform31:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30);
small_array!(32 uniform32:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31);
#[cfg(test)]
mod test {
use super::*;
#[test]
fn shrinks_fully_ltr() {
fn pass(a: [i32; 2]) -> bool {
a[0] * a[1] <= 9
}
let input = [0..32, 0..32];
let mut runner = TestRunner::deterministic();
let mut cases_tested = 0;
for _ in 0..256 {
// Find a failing test case
let mut case = input.new_tree(&mut runner).unwrap();
if pass(case.current()) {
continue;
}
loop {
if pass(case.current()) {
if !case.complicate() {
break;
}
} else {
if !case.simplify() {
break;
}
}
}
let last = case.current();
assert!(!pass(last));
// Maximally shrunken
assert!(pass([last[0] - 1, last[1]]));
assert!(pass([last[0], last[1] - 1]));
cases_tested += 1;
}
assert!(cases_tested > 32, "Didn't find enough test cases");
}
#[test]
fn test_sanity() {
check_strategy_sanity([(0i32..1000), (1i32..1000)], None);
}
}