1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Remove Threshold operators when we are certain no records have negative multiplicity.
//!
//! If we have Threshold(A - Subset(A)) and we believe that A has no negative multiplicities,
//! then we can replace this with A - Subset(A).
//!
//! The Subset(X) notation means that the collection is a multiset subset of X:
//! multiplicities of each record in Subset(X) are at most that of X.

use mz_expr::visit::{Visit, Visitor, VisitorMut};
use mz_expr::MirRelationExpr;

use crate::attribute::{DerivedAttributes, DerivedAttributesBuilder, NonNegative, SubtreeSize};
use crate::TransformCtx;

/// Remove Threshold operators that have no effect.
#[derive(Debug)]
pub struct ThresholdElision;

impl crate::Transform for ThresholdElision {
    #[mz_ore::instrument(
        target = "optimizer",
        level = "debug",
        fields(path.segment = "threshold_elision")
    )]
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        _: &mut TransformCtx,
    ) -> Result<(), crate::TransformError> {
        let mut visitor = ThresholdElisionAction::default();
        let result = relation.visit_mut(&mut visitor).map_err(From::from);
        mz_repr::explain::trace_plan(&*relation);
        result
    }
}

struct ThresholdElisionAction {
    deriver: DerivedAttributes<'static>,
}

impl Default for ThresholdElisionAction {
    fn default() -> Self {
        let mut builder = DerivedAttributesBuilder::default();
        builder.require(NonNegative::default());
        builder.require(SubtreeSize::default());
        Self {
            deriver: builder.finish(),
        }
    }
}

impl VisitorMut<MirRelationExpr> for ThresholdElisionAction {
    fn pre_visit(&mut self, expr: &mut MirRelationExpr) {
        self.deriver.pre_visit(expr);
    }

    fn post_visit(&mut self, expr: &mut MirRelationExpr) {
        self.deriver.post_visit(expr);
        self.action(expr);
    }
}

impl ThresholdElisionAction {
    /// Remove Threshold operators with no effect.
    pub fn action(&mut self, expr: &mut MirRelationExpr) {
        // The results vectors or all attributes should be equal after each step.
        debug_assert_eq!(
            self.deriver.get_results::<NonNegative>().len(),
            self.deriver.get_results::<SubtreeSize>().len()
        );

        if let MirRelationExpr::Threshold { input } = expr {
            // We look for the pattern `Union { base, Negate(Subset(base)) }`.
            let mut should_replace = false;
            if let MirRelationExpr::Union { base, inputs } = &mut **input {
                if inputs.len() == 1 {
                    if let MirRelationExpr::Negate { input } = &inputs[0] {
                        // This is somewhat convoluted way to access the non_negative result for the base:
                        // - the Threshold is at position n - 1,
                        // - the Union (i.e., the Threshold input) is n - 2,
                        // - the Union input[0] is at position n - 3 and its subtree size is m,
                        // - the Union base therefore is at position n - m - 3
                        let n = self.deriver.get_results::<NonNegative>().len();
                        let m = self.deriver.get_results::<SubtreeSize>()[n - 3];
                        if self.deriver.get_results::<NonNegative>()[n - m - 3]
                            && is_superset_of(base, &*input)
                        {
                            should_replace = true;
                        }
                    }
                }
            }
            if should_replace {
                // Replace the root Threshold with its input.
                *expr = input.take_dangerous();
                // Trim the attribute result vectors inferred so far to adjust for the above change.
                self.deriver.trim();
                // We can be a bit smarter when adjusting the NonNegative result. Since the Threshold
                // at the root can only be safely elided iff its input is non-negative, we can overwrite
                // the new last value to be `true`.
                if let Some(result) = self.deriver.get_results_mut::<NonNegative>().last_mut() {
                    *result = true;
                }
            }
        }
    }
}

/// Returns true iff `rhs` is always a subset of `lhs`.
///
/// This method is a conservative approximation and is known to miss not-hard cases.
///
/// We iteratively descend `rhs` through a few operators, looking for `lhs`.
/// In addition, we descend simultaneously through `lhs` and `rhs` if the root node
/// on both sides is identical.
pub fn is_superset_of(mut lhs: &MirRelationExpr, mut rhs: &MirRelationExpr) -> bool {
    // This implementation is iterative.
    // Before converting this implementation to recursive (e.g. to improve its accuracy)
    // make sure to use the `CheckedRecursion` struct to avoid blowing the stack.
    while lhs != rhs {
        match rhs {
            MirRelationExpr::Filter { input, .. } => rhs = &**input,
            MirRelationExpr::TopK { input, .. } => rhs = &**input,
            // Descend in both sides if the current roots are
            // projections with the same `outputs` vector.
            MirRelationExpr::Project {
                input: rhs_input,
                outputs: rhs_outputs,
            } => match lhs {
                MirRelationExpr::Project {
                    input: lhs_input,
                    outputs: lhs_outputs,
                } if lhs_outputs == rhs_outputs => {
                    rhs = &**rhs_input;
                    lhs = &**lhs_input;
                }
                _ => return false,
            },
            // Descend in both sides if the current roots are reduces with empty aggregates
            // on the same set of keys (that is, a distinct operation on those keys).
            MirRelationExpr::Reduce {
                input: rhs_input,
                group_key: rhs_group_key,
                aggregates: rhs_aggregates,
                monotonic: _,
                expected_group_size: _,
            } if rhs_aggregates.is_empty() => match lhs {
                MirRelationExpr::Reduce {
                    input: lhs_input,
                    group_key: lhs_group_key,
                    aggregates: lhs_aggregates,
                    monotonic: _,
                    expected_group_size: _,
                } if lhs_aggregates.is_empty() && lhs_group_key == rhs_group_key => {
                    rhs = &**rhs_input;
                    lhs = &**lhs_input;
                }
                _ => return false,
            },
            _ => {
                // TODO: Imagine more complex reasoning here!
                return false;
            }
        }
    }
    true
}