h2/
server.rs

1//! Server implementation of the HTTP/2 protocol.
2//!
3//! # Getting started
4//!
5//! Running an HTTP/2 server requires the caller to manage accepting the
6//! connections as well as getting the connections to a state that is ready to
7//! begin the HTTP/2 handshake. See [here](../index.html#handshake) for more
8//! details.
9//!
10//! This could be as basic as using Tokio's [`TcpListener`] to accept
11//! connections, but usually it means using either ALPN or HTTP/1.1 protocol
12//! upgrades.
13//!
14//! Once a connection is obtained, it is passed to [`handshake`],
15//! which will begin the [HTTP/2 handshake]. This returns a future that
16//! completes once the handshake process is performed and HTTP/2 streams may
17//! be received.
18//!
19//! [`handshake`] uses default configuration values. There are a number of
20//! settings that can be changed by using [`Builder`] instead.
21//!
22//! # Inbound streams
23//!
24//! The [`Connection`] instance is used to accept inbound HTTP/2 streams. It
25//! does this by implementing [`futures::Stream`]. When a new stream is
26//! received, a call to [`Connection::accept`] will return `(request, response)`.
27//! The `request` handle (of type [`http::Request<RecvStream>`]) contains the
28//! HTTP request head as well as provides a way to receive the inbound data
29//! stream and the trailers. The `response` handle (of type [`SendResponse`])
30//! allows responding to the request, stream the response payload, send
31//! trailers, and send push promises.
32//!
33//! The send ([`SendStream`]) and receive ([`RecvStream`]) halves of the stream
34//! can be operated independently.
35//!
36//! # Managing the connection
37//!
38//! The [`Connection`] instance is used to manage connection state. The caller
39//! is required to call either [`Connection::accept`] or
40//! [`Connection::poll_close`] in order to advance the connection state. Simply
41//! operating on [`SendStream`] or [`RecvStream`] will have no effect unless the
42//! connection state is advanced.
43//!
44//! It is not required to call **both** [`Connection::accept`] and
45//! [`Connection::poll_close`]. If the caller is ready to accept a new stream,
46//! then only [`Connection::accept`] should be called. When the caller **does
47//! not** want to accept a new stream, [`Connection::poll_close`] should be
48//! called.
49//!
50//! The [`Connection`] instance should only be dropped once
51//! [`Connection::poll_close`] returns `Ready`. Once [`Connection::accept`]
52//! returns `Ready(None)`, there will no longer be any more inbound streams. At
53//! this point, only [`Connection::poll_close`] should be called.
54//!
55//! # Shutting down the server
56//!
57//! Graceful shutdown of the server is [not yet
58//! implemented](https://github.com/hyperium/h2/issues/69).
59//!
60//! # Example
61//!
62//! A basic HTTP/2 server example that runs over TCP and assumes [prior
63//! knowledge], i.e. both the client and the server assume that the TCP socket
64//! will use the HTTP/2 protocol without prior negotiation.
65//!
66//! ```no_run
67//! use h2::server;
68//! use http::{Response, StatusCode};
69//! use tokio::net::TcpListener;
70//!
71//! #[tokio::main]
72//! pub async fn main() {
73//!     let mut listener = TcpListener::bind("127.0.0.1:5928").await.unwrap();
74//!
75//!     // Accept all incoming TCP connections.
76//!     loop {
77//!         if let Ok((socket, _peer_addr)) = listener.accept().await {
78//!             // Spawn a new task to process each connection.
79//!             tokio::spawn(async {
80//!                 // Start the HTTP/2 connection handshake
81//!                 let mut h2 = server::handshake(socket).await.unwrap();
82//!                 // Accept all inbound HTTP/2 streams sent over the
83//!                 // connection.
84//!                 while let Some(request) = h2.accept().await {
85//!                     let (request, mut respond) = request.unwrap();
86//!                     println!("Received request: {:?}", request);
87//!
88//!                     // Build a response with no body
89//!                     let response = Response::builder()
90//!                         .status(StatusCode::OK)
91//!                         .body(())
92//!                         .unwrap();
93//!
94//!                     // Send the response back to the client
95//!                     respond.send_response(response, true)
96//!                         .unwrap();
97//!                 }
98//!
99//!             });
100//!         }
101//!     }
102//! }
103//! ```
104//!
105//! [prior knowledge]: http://httpwg.org/specs/rfc7540.html#known-http
106//! [`handshake`]: fn.handshake.html
107//! [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
108//! [`Builder`]: struct.Builder.html
109//! [`Connection`]: struct.Connection.html
110//! [`Connection::poll`]: struct.Connection.html#method.poll
111//! [`Connection::poll_close`]: struct.Connection.html#method.poll_close
112//! [`futures::Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
113//! [`http::Request<RecvStream>`]: ../struct.RecvStream.html
114//! [`RecvStream`]: ../struct.RecvStream.html
115//! [`SendStream`]: ../struct.SendStream.html
116//! [`TcpListener`]: https://docs.rs/tokio-core/0.1/tokio_core/net/struct.TcpListener.html
117
118use crate::codec::{Codec, UserError};
119use crate::frame::{self, Pseudo, PushPromiseHeaderError, Reason, Settings, StreamId};
120use crate::proto::{self, Config, Error, Prioritized};
121use crate::{FlowControl, PingPong, RecvStream, SendStream};
122
123use bytes::{Buf, Bytes};
124use http::{HeaderMap, Method, Request, Response};
125use std::future::Future;
126use std::pin::Pin;
127use std::task::{Context, Poll};
128use std::time::Duration;
129use std::{fmt, io};
130use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
131use tracing::instrument::{Instrument, Instrumented};
132
133/// In progress HTTP/2 connection handshake future.
134///
135/// This type implements `Future`, yielding a `Connection` instance once the
136/// handshake has completed.
137///
138/// The handshake is completed once the connection preface is fully received
139/// from the client **and** the initial settings frame is sent to the client.
140///
141/// The handshake future does not wait for the initial settings frame from the
142/// client.
143///
144/// See [module] level docs for more details.
145///
146/// [module]: index.html
147#[must_use = "futures do nothing unless polled"]
148pub struct Handshake<T, B: Buf = Bytes> {
149    /// The config to pass to Connection::new after handshake succeeds.
150    builder: Builder,
151    /// The current state of the handshake.
152    state: Handshaking<T, B>,
153    /// Span tracking the handshake
154    span: tracing::Span,
155}
156
157/// Accepts inbound HTTP/2 streams on a connection.
158///
159/// A `Connection` is backed by an I/O resource (usually a TCP socket) and
160/// implements the HTTP/2 server logic for that connection. It is responsible
161/// for receiving inbound streams initiated by the client as well as driving the
162/// internal state forward.
163///
164/// `Connection` values are created by calling [`handshake`]. Once a
165/// `Connection` value is obtained, the caller must call [`poll`] or
166/// [`poll_close`] in order to drive the internal connection state forward.
167///
168/// See [module level] documentation for more details
169///
170/// [module level]: index.html
171/// [`handshake`]: struct.Connection.html#method.handshake
172/// [`poll`]: struct.Connection.html#method.poll
173/// [`poll_close`]: struct.Connection.html#method.poll_close
174///
175/// # Examples
176///
177/// ```
178/// # use tokio::io::{AsyncRead, AsyncWrite};
179/// # use h2::server;
180/// # use h2::server::*;
181/// #
182/// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T) {
183/// let mut server = server::handshake(my_io).await.unwrap();
184/// while let Some(request) = server.accept().await {
185///     tokio::spawn(async move {
186///         let (request, respond) = request.unwrap();
187///         // Process the request and send the response back to the client
188///         // using `respond`.
189///     });
190/// }
191/// # }
192/// #
193/// # pub fn main() {}
194/// ```
195#[must_use = "streams do nothing unless polled"]
196pub struct Connection<T, B: Buf> {
197    connection: proto::Connection<T, Peer, B>,
198}
199
200/// Builds server connections with custom configuration values.
201///
202/// Methods can be chained in order to set the configuration values.
203///
204/// The server is constructed by calling [`handshake`] and passing the I/O
205/// handle that will back the HTTP/2 server.
206///
207/// New instances of `Builder` are obtained via [`Builder::new`].
208///
209/// See function level documentation for details on the various server
210/// configuration settings.
211///
212/// [`Builder::new`]: struct.Builder.html#method.new
213/// [`handshake`]: struct.Builder.html#method.handshake
214///
215/// # Examples
216///
217/// ```
218/// # use tokio::io::{AsyncRead, AsyncWrite};
219/// # use h2::server::*;
220/// #
221/// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
222/// # -> Handshake<T>
223/// # {
224/// // `server_fut` is a future representing the completion of the HTTP/2
225/// // handshake.
226/// let server_fut = Builder::new()
227///     .initial_window_size(1_000_000)
228///     .max_concurrent_streams(1000)
229///     .handshake(my_io);
230/// # server_fut
231/// # }
232/// #
233/// # pub fn main() {}
234/// ```
235#[derive(Clone, Debug)]
236pub struct Builder {
237    /// Time to keep locally reset streams around before reaping.
238    reset_stream_duration: Duration,
239
240    /// Maximum number of locally reset streams to keep at a time.
241    reset_stream_max: usize,
242
243    /// Maximum number of remotely reset streams to allow in the pending
244    /// accept queue.
245    pending_accept_reset_stream_max: usize,
246
247    /// Initial `Settings` frame to send as part of the handshake.
248    settings: Settings,
249
250    /// Initial target window size for new connections.
251    initial_target_connection_window_size: Option<u32>,
252
253    /// Maximum amount of bytes to "buffer" for writing per stream.
254    max_send_buffer_size: usize,
255
256    /// Maximum number of locally reset streams due to protocol error across
257    /// the lifetime of the connection.
258    ///
259    /// When this gets exceeded, we issue GOAWAYs.
260    local_max_error_reset_streams: Option<usize>,
261}
262
263/// Send a response back to the client
264///
265/// A `SendResponse` instance is provided when receiving a request and is used
266/// to send the associated response back to the client. It is also used to
267/// explicitly reset the stream with a custom reason.
268///
269/// It will also be used to initiate push promises linked with the associated
270/// stream.
271///
272/// If the `SendResponse` instance is dropped without sending a response, then
273/// the HTTP/2 stream will be reset.
274///
275/// See [module] level docs for more details.
276///
277/// [module]: index.html
278#[derive(Debug)]
279pub struct SendResponse<B: Buf> {
280    inner: proto::StreamRef<B>,
281}
282
283/// Send a response to a promised request
284///
285/// A `SendPushedResponse` instance is provided when promising a request and is used
286/// to send the associated response to the client. It is also used to
287/// explicitly reset the stream with a custom reason.
288///
289/// It can not be used to initiate push promises.
290///
291/// If the `SendPushedResponse` instance is dropped without sending a response, then
292/// the HTTP/2 stream will be reset.
293///
294/// See [module] level docs for more details.
295///
296/// [module]: index.html
297pub struct SendPushedResponse<B: Buf> {
298    inner: SendResponse<B>,
299}
300
301// Manual implementation necessary because of rust-lang/rust#26925
302impl<B: Buf + fmt::Debug> fmt::Debug for SendPushedResponse<B> {
303    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
304        write!(f, "SendPushedResponse {{ {:?} }}", self.inner)
305    }
306}
307
308/// Stages of an in-progress handshake.
309enum Handshaking<T, B: Buf> {
310    /// State 1. Connection is flushing pending SETTINGS frame.
311    Flushing(Instrumented<Flush<T, Prioritized<B>>>),
312    /// State 2. Connection is waiting for the client preface.
313    ReadingPreface(Instrumented<ReadPreface<T, Prioritized<B>>>),
314    /// State 3. Handshake is done, polling again would panic.
315    Done,
316}
317
318/// Flush a Sink
319struct Flush<T, B> {
320    codec: Option<Codec<T, B>>,
321}
322
323/// Read the client connection preface
324struct ReadPreface<T, B> {
325    codec: Option<Codec<T, B>>,
326    pos: usize,
327}
328
329#[derive(Debug)]
330pub(crate) struct Peer;
331
332const PREFACE: [u8; 24] = *b"PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n";
333
334/// Creates a new configured HTTP/2 server with default configuration
335/// values backed by `io`.
336///
337/// It is expected that `io` already be in an appropriate state to commence
338/// the [HTTP/2 handshake]. See [Handshake] for more details.
339///
340/// Returns a future which resolves to the [`Connection`] instance once the
341/// HTTP/2 handshake has been completed. The returned [`Connection`]
342/// instance will be using default configuration values. Use [`Builder`] to
343/// customize the configuration values used by a [`Connection`] instance.
344///
345/// [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
346/// [Handshake]: ../index.html#handshake
347/// [`Connection`]: struct.Connection.html
348///
349/// # Examples
350///
351/// ```
352/// # use tokio::io::{AsyncRead, AsyncWrite};
353/// # use h2::server;
354/// # use h2::server::*;
355/// #
356/// # async fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
357/// # {
358/// let connection = server::handshake(my_io).await.unwrap();
359/// // The HTTP/2 handshake has completed, now use `connection` to
360/// // accept inbound HTTP/2 streams.
361/// # }
362/// #
363/// # pub fn main() {}
364/// ```
365pub fn handshake<T>(io: T) -> Handshake<T, Bytes>
366where
367    T: AsyncRead + AsyncWrite + Unpin,
368{
369    Builder::new().handshake(io)
370}
371
372// ===== impl Connection =====
373
374impl<T, B> Connection<T, B>
375where
376    T: AsyncRead + AsyncWrite + Unpin,
377    B: Buf,
378{
379    fn handshake2(io: T, builder: Builder) -> Handshake<T, B> {
380        let span = tracing::trace_span!("server_handshake");
381        let entered = span.enter();
382
383        // Create the codec.
384        let mut codec = Codec::new(io);
385
386        if let Some(max) = builder.settings.max_frame_size() {
387            codec.set_max_recv_frame_size(max as usize);
388        }
389
390        if let Some(max) = builder.settings.max_header_list_size() {
391            codec.set_max_recv_header_list_size(max as usize);
392        }
393
394        // Send initial settings frame.
395        codec
396            .buffer(builder.settings.clone().into())
397            .expect("invalid SETTINGS frame");
398
399        // Create the handshake future.
400        let state =
401            Handshaking::Flushing(Flush::new(codec).instrument(tracing::trace_span!("flush")));
402
403        drop(entered);
404
405        Handshake {
406            builder,
407            state,
408            span,
409        }
410    }
411
412    /// Accept the next incoming request on this connection.
413    pub async fn accept(
414        &mut self,
415    ) -> Option<Result<(Request<RecvStream>, SendResponse<B>), crate::Error>> {
416        crate::poll_fn(move |cx| self.poll_accept(cx)).await
417    }
418
419    #[doc(hidden)]
420    pub fn poll_accept(
421        &mut self,
422        cx: &mut Context<'_>,
423    ) -> Poll<Option<Result<(Request<RecvStream>, SendResponse<B>), crate::Error>>> {
424        // Always try to advance the internal state. Getting Pending also is
425        // needed to allow this function to return Pending.
426        if self.poll_closed(cx)?.is_ready() {
427            // If the socket is closed, don't return anything
428            // TODO: drop any pending streams
429            return Poll::Ready(None);
430        }
431
432        if let Some(inner) = self.connection.next_incoming() {
433            tracing::trace!("received incoming");
434            let (head, _) = inner.take_request().into_parts();
435            let body = RecvStream::new(FlowControl::new(inner.clone_to_opaque()));
436
437            let request = Request::from_parts(head, body);
438            let respond = SendResponse { inner };
439
440            return Poll::Ready(Some(Ok((request, respond))));
441        }
442
443        Poll::Pending
444    }
445
446    /// Sets the target window size for the whole connection.
447    ///
448    /// If `size` is greater than the current value, then a `WINDOW_UPDATE`
449    /// frame will be immediately sent to the remote, increasing the connection
450    /// level window by `size - current_value`.
451    ///
452    /// If `size` is less than the current value, nothing will happen
453    /// immediately. However, as window capacity is released by
454    /// [`FlowControl`] instances, no `WINDOW_UPDATE` frames will be sent
455    /// out until the number of "in flight" bytes drops below `size`.
456    ///
457    /// The default value is 65,535.
458    ///
459    /// See [`FlowControl`] documentation for more details.
460    ///
461    /// [`FlowControl`]: ../struct.FlowControl.html
462    /// [library level]: ../index.html#flow-control
463    pub fn set_target_window_size(&mut self, size: u32) {
464        assert!(size <= proto::MAX_WINDOW_SIZE);
465        self.connection.set_target_window_size(size);
466    }
467
468    /// Set a new `INITIAL_WINDOW_SIZE` setting (in octets) for stream-level
469    /// flow control for received data.
470    ///
471    /// The `SETTINGS` will be sent to the remote, and only applied once the
472    /// remote acknowledges the change.
473    ///
474    /// This can be used to increase or decrease the window size for existing
475    /// streams.
476    ///
477    /// # Errors
478    ///
479    /// Returns an error if a previous call is still pending acknowledgement
480    /// from the remote endpoint.
481    pub fn set_initial_window_size(&mut self, size: u32) -> Result<(), crate::Error> {
482        assert!(size <= proto::MAX_WINDOW_SIZE);
483        self.connection.set_initial_window_size(size)?;
484        Ok(())
485    }
486
487    /// Enables the [extended CONNECT protocol].
488    ///
489    /// [extended CONNECT protocol]: https://datatracker.ietf.org/doc/html/rfc8441#section-4
490    ///
491    /// # Errors
492    ///
493    /// Returns an error if a previous call is still pending acknowledgement
494    /// from the remote endpoint.
495    pub fn enable_connect_protocol(&mut self) -> Result<(), crate::Error> {
496        self.connection.set_enable_connect_protocol()?;
497        Ok(())
498    }
499
500    /// Returns `Ready` when the underlying connection has closed.
501    ///
502    /// If any new inbound streams are received during a call to `poll_closed`,
503    /// they will be queued and returned on the next call to [`poll_accept`].
504    ///
505    /// This function will advance the internal connection state, driving
506    /// progress on all the other handles (e.g. [`RecvStream`] and [`SendStream`]).
507    ///
508    /// See [here](index.html#managing-the-connection) for more details.
509    ///
510    /// [`poll_accept`]: struct.Connection.html#method.poll_accept
511    /// [`RecvStream`]: ../struct.RecvStream.html
512    /// [`SendStream`]: ../struct.SendStream.html
513    pub fn poll_closed(&mut self, cx: &mut Context) -> Poll<Result<(), crate::Error>> {
514        self.connection.poll(cx).map_err(Into::into)
515    }
516
517    /// Sets the connection to a GOAWAY state.
518    ///
519    /// Does not terminate the connection. Must continue being polled to close
520    /// connection.
521    ///
522    /// After flushing the GOAWAY frame, the connection is closed. Any
523    /// outstanding streams do not prevent the connection from closing. This
524    /// should usually be reserved for shutting down when something bad
525    /// external to `h2` has happened, and open streams cannot be properly
526    /// handled.
527    ///
528    /// For graceful shutdowns, see [`graceful_shutdown`](Connection::graceful_shutdown).
529    pub fn abrupt_shutdown(&mut self, reason: Reason) {
530        self.connection.go_away_from_user(reason);
531    }
532
533    /// Starts a [graceful shutdown][1] process.
534    ///
535    /// Must continue being polled to close connection.
536    ///
537    /// It's possible to receive more requests after calling this method, since
538    /// they might have been in-flight from the client already. After about
539    /// 1 RTT, no new requests should be accepted. Once all active streams
540    /// have completed, the connection is closed.
541    ///
542    /// [1]: http://httpwg.org/specs/rfc7540.html#GOAWAY
543    pub fn graceful_shutdown(&mut self) {
544        self.connection.go_away_gracefully();
545    }
546
547    /// Takes a `PingPong` instance from the connection.
548    ///
549    /// # Note
550    ///
551    /// This may only be called once. Calling multiple times will return `None`.
552    pub fn ping_pong(&mut self) -> Option<PingPong> {
553        self.connection.take_user_pings().map(PingPong::new)
554    }
555
556    /// Returns the maximum number of concurrent streams that may be initiated
557    /// by the server on this connection.
558    ///
559    /// This limit is configured by the client peer by sending the
560    /// [`SETTINGS_MAX_CONCURRENT_STREAMS` parameter][1] in a `SETTINGS` frame.
561    /// This method returns the currently acknowledged value received from the
562    /// remote.
563    ///
564    /// [1]: https://tools.ietf.org/html/rfc7540#section-5.1.2
565    pub fn max_concurrent_send_streams(&self) -> usize {
566        self.connection.max_send_streams()
567    }
568
569    /// Returns the maximum number of concurrent streams that may be initiated
570    /// by the client on this connection.
571    ///
572    /// This returns the value of the [`SETTINGS_MAX_CONCURRENT_STREAMS`
573    /// parameter][1] sent in a `SETTINGS` frame that has been
574    /// acknowledged by the remote peer. The value to be sent is configured by
575    /// the [`Builder::max_concurrent_streams`][2] method before handshaking
576    /// with the remote peer.
577    ///
578    /// [1]: https://tools.ietf.org/html/rfc7540#section-5.1.2
579    /// [2]: ../struct.Builder.html#method.max_concurrent_streams
580    pub fn max_concurrent_recv_streams(&self) -> usize {
581        self.connection.max_recv_streams()
582    }
583
584    // Could disappear at anytime.
585    #[doc(hidden)]
586    #[cfg(feature = "unstable")]
587    pub fn num_wired_streams(&self) -> usize {
588        self.connection.num_wired_streams()
589    }
590}
591
592#[cfg(feature = "stream")]
593impl<T, B> futures_core::Stream for Connection<T, B>
594where
595    T: AsyncRead + AsyncWrite + Unpin,
596    B: Buf,
597{
598    type Item = Result<(Request<RecvStream>, SendResponse<B>), crate::Error>;
599
600    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
601        self.poll_accept(cx)
602    }
603}
604
605impl<T, B> fmt::Debug for Connection<T, B>
606where
607    T: fmt::Debug,
608    B: fmt::Debug + Buf,
609{
610    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
611        fmt.debug_struct("Connection")
612            .field("connection", &self.connection)
613            .finish()
614    }
615}
616
617// ===== impl Builder =====
618
619impl Builder {
620    /// Returns a new server builder instance initialized with default
621    /// configuration values.
622    ///
623    /// Configuration methods can be chained on the return value.
624    ///
625    /// # Examples
626    ///
627    /// ```
628    /// # use tokio::io::{AsyncRead, AsyncWrite};
629    /// # use h2::server::*;
630    /// #
631    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
632    /// # -> Handshake<T>
633    /// # {
634    /// // `server_fut` is a future representing the completion of the HTTP/2
635    /// // handshake.
636    /// let server_fut = Builder::new()
637    ///     .initial_window_size(1_000_000)
638    ///     .max_concurrent_streams(1000)
639    ///     .handshake(my_io);
640    /// # server_fut
641    /// # }
642    /// #
643    /// # pub fn main() {}
644    /// ```
645    pub fn new() -> Builder {
646        Builder {
647            reset_stream_duration: Duration::from_secs(proto::DEFAULT_RESET_STREAM_SECS),
648            reset_stream_max: proto::DEFAULT_RESET_STREAM_MAX,
649            pending_accept_reset_stream_max: proto::DEFAULT_REMOTE_RESET_STREAM_MAX,
650            settings: Settings::default(),
651            initial_target_connection_window_size: None,
652            max_send_buffer_size: proto::DEFAULT_MAX_SEND_BUFFER_SIZE,
653
654            local_max_error_reset_streams: Some(proto::DEFAULT_LOCAL_RESET_COUNT_MAX),
655        }
656    }
657
658    /// Indicates the initial window size (in octets) for stream-level
659    /// flow control for received data.
660    ///
661    /// The initial window of a stream is used as part of flow control. For more
662    /// details, see [`FlowControl`].
663    ///
664    /// The default value is 65,535.
665    ///
666    /// [`FlowControl`]: ../struct.FlowControl.html
667    ///
668    /// # Examples
669    ///
670    /// ```
671    /// # use tokio::io::{AsyncRead, AsyncWrite};
672    /// # use h2::server::*;
673    /// #
674    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
675    /// # -> Handshake<T>
676    /// # {
677    /// // `server_fut` is a future representing the completion of the HTTP/2
678    /// // handshake.
679    /// let server_fut = Builder::new()
680    ///     .initial_window_size(1_000_000)
681    ///     .handshake(my_io);
682    /// # server_fut
683    /// # }
684    /// #
685    /// # pub fn main() {}
686    /// ```
687    pub fn initial_window_size(&mut self, size: u32) -> &mut Self {
688        self.settings.set_initial_window_size(Some(size));
689        self
690    }
691
692    /// Indicates the initial window size (in octets) for connection-level flow control
693    /// for received data.
694    ///
695    /// The initial window of a connection is used as part of flow control. For more details,
696    /// see [`FlowControl`].
697    ///
698    /// The default value is 65,535.
699    ///
700    /// [`FlowControl`]: ../struct.FlowControl.html
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// # use tokio::io::{AsyncRead, AsyncWrite};
706    /// # use h2::server::*;
707    /// #
708    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
709    /// # -> Handshake<T>
710    /// # {
711    /// // `server_fut` is a future representing the completion of the HTTP/2
712    /// // handshake.
713    /// let server_fut = Builder::new()
714    ///     .initial_connection_window_size(1_000_000)
715    ///     .handshake(my_io);
716    /// # server_fut
717    /// # }
718    /// #
719    /// # pub fn main() {}
720    /// ```
721    pub fn initial_connection_window_size(&mut self, size: u32) -> &mut Self {
722        self.initial_target_connection_window_size = Some(size);
723        self
724    }
725
726    /// Indicates the size (in octets) of the largest HTTP/2 frame payload that the
727    /// configured server is able to accept.
728    ///
729    /// The sender may send data frames that are **smaller** than this value,
730    /// but any data larger than `max` will be broken up into multiple `DATA`
731    /// frames.
732    ///
733    /// The value **must** be between 16,384 and 16,777,215. The default value is 16,384.
734    ///
735    /// # Examples
736    ///
737    /// ```
738    /// # use tokio::io::{AsyncRead, AsyncWrite};
739    /// # use h2::server::*;
740    /// #
741    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
742    /// # -> Handshake<T>
743    /// # {
744    /// // `server_fut` is a future representing the completion of the HTTP/2
745    /// // handshake.
746    /// let server_fut = Builder::new()
747    ///     .max_frame_size(1_000_000)
748    ///     .handshake(my_io);
749    /// # server_fut
750    /// # }
751    /// #
752    /// # pub fn main() {}
753    /// ```
754    ///
755    /// # Panics
756    ///
757    /// This function panics if `max` is not within the legal range specified
758    /// above.
759    pub fn max_frame_size(&mut self, max: u32) -> &mut Self {
760        self.settings.set_max_frame_size(Some(max));
761        self
762    }
763
764    /// Sets the max size of received header frames.
765    ///
766    /// This advisory setting informs a peer of the maximum size of header list
767    /// that the sender is prepared to accept, in octets. The value is based on
768    /// the uncompressed size of header fields, including the length of the name
769    /// and value in octets plus an overhead of 32 octets for each header field.
770    ///
771    /// This setting is also used to limit the maximum amount of data that is
772    /// buffered to decode HEADERS frames.
773    ///
774    /// # Examples
775    ///
776    /// ```
777    /// # use tokio::io::{AsyncRead, AsyncWrite};
778    /// # use h2::server::*;
779    /// #
780    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
781    /// # -> Handshake<T>
782    /// # {
783    /// // `server_fut` is a future representing the completion of the HTTP/2
784    /// // handshake.
785    /// let server_fut = Builder::new()
786    ///     .max_header_list_size(16 * 1024)
787    ///     .handshake(my_io);
788    /// # server_fut
789    /// # }
790    /// #
791    /// # pub fn main() {}
792    /// ```
793    pub fn max_header_list_size(&mut self, max: u32) -> &mut Self {
794        self.settings.set_max_header_list_size(Some(max));
795        self
796    }
797
798    /// Sets the maximum number of concurrent streams.
799    ///
800    /// The maximum concurrent streams setting only controls the maximum number
801    /// of streams that can be initiated by the remote peer. In other words,
802    /// when this setting is set to 100, this does not limit the number of
803    /// concurrent streams that can be created by the caller.
804    ///
805    /// It is recommended that this value be no smaller than 100, so as to not
806    /// unnecessarily limit parallelism. However, any value is legal, including
807    /// 0. If `max` is set to 0, then the remote will not be permitted to
808    /// initiate streams.
809    ///
810    /// Note that streams in the reserved state, i.e., push promises that have
811    /// been reserved but the stream has not started, do not count against this
812    /// setting.
813    ///
814    /// Also note that if the remote *does* exceed the value set here, it is not
815    /// a protocol level error. Instead, the `h2` library will immediately reset
816    /// the stream.
817    ///
818    /// See [Section 5.1.2] in the HTTP/2 spec for more details.
819    ///
820    /// [Section 5.1.2]: https://http2.github.io/http2-spec/#rfc.section.5.1.2
821    ///
822    /// # Examples
823    ///
824    /// ```
825    /// # use tokio::io::{AsyncRead, AsyncWrite};
826    /// # use h2::server::*;
827    /// #
828    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
829    /// # -> Handshake<T>
830    /// # {
831    /// // `server_fut` is a future representing the completion of the HTTP/2
832    /// // handshake.
833    /// let server_fut = Builder::new()
834    ///     .max_concurrent_streams(1000)
835    ///     .handshake(my_io);
836    /// # server_fut
837    /// # }
838    /// #
839    /// # pub fn main() {}
840    /// ```
841    pub fn max_concurrent_streams(&mut self, max: u32) -> &mut Self {
842        self.settings.set_max_concurrent_streams(Some(max));
843        self
844    }
845
846    /// Sets the maximum number of concurrent locally reset streams.
847    ///
848    /// When a stream is explicitly reset by either calling
849    /// [`SendResponse::send_reset`] or by dropping a [`SendResponse`] instance
850    /// before completing the stream, the HTTP/2 specification requires that
851    /// any further frames received for that stream must be ignored for "some
852    /// time".
853    ///
854    /// In order to satisfy the specification, internal state must be maintained
855    /// to implement the behavior. This state grows linearly with the number of
856    /// streams that are locally reset.
857    ///
858    /// The `max_concurrent_reset_streams` setting configures sets an upper
859    /// bound on the amount of state that is maintained. When this max value is
860    /// reached, the oldest reset stream is purged from memory.
861    ///
862    /// Once the stream has been fully purged from memory, any additional frames
863    /// received for that stream will result in a connection level protocol
864    /// error, forcing the connection to terminate.
865    ///
866    /// The default value is 10.
867    ///
868    /// # Examples
869    ///
870    /// ```
871    /// # use tokio::io::{AsyncRead, AsyncWrite};
872    /// # use h2::server::*;
873    /// #
874    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
875    /// # -> Handshake<T>
876    /// # {
877    /// // `server_fut` is a future representing the completion of the HTTP/2
878    /// // handshake.
879    /// let server_fut = Builder::new()
880    ///     .max_concurrent_reset_streams(1000)
881    ///     .handshake(my_io);
882    /// # server_fut
883    /// # }
884    /// #
885    /// # pub fn main() {}
886    /// ```
887    pub fn max_concurrent_reset_streams(&mut self, max: usize) -> &mut Self {
888        self.reset_stream_max = max;
889        self
890    }
891
892    /// Sets the maximum number of local resets due to protocol errors made by the remote end.
893    ///
894    /// Invalid frames and many other protocol errors will lead to resets being generated for those streams.
895    /// Too many of these often indicate a malicious client, and there are attacks which can abuse this to DOS servers.
896    /// This limit protects against these DOS attacks by limiting the amount of resets we can be forced to generate.
897    ///
898    /// When the number of local resets exceeds this threshold, the server will issue GOAWAYs with an error code of
899    /// `ENHANCE_YOUR_CALM` to the client.
900    ///
901    /// If you really want to disable this, supply [`Option::None`] here.
902    /// Disabling this is not recommended and may expose you to DOS attacks.
903    ///
904    /// The default value is currently 1024, but could change.
905    pub fn max_local_error_reset_streams(&mut self, max: Option<usize>) -> &mut Self {
906        self.local_max_error_reset_streams = max;
907        self
908    }
909
910    /// Sets the maximum number of pending-accept remotely-reset streams.
911    ///
912    /// Streams that have been received by the peer, but not accepted by the
913    /// user, can also receive a RST_STREAM. This is a legitimate pattern: one
914    /// could send a request and then shortly after, realize it is not needed,
915    /// sending a CANCEL.
916    ///
917    /// However, since those streams are now "closed", they don't count towards
918    /// the max concurrent streams. So, they will sit in the accept queue,
919    /// using memory.
920    ///
921    /// When the number of remotely-reset streams sitting in the pending-accept
922    /// queue reaches this maximum value, a connection error with the code of
923    /// `ENHANCE_YOUR_CALM` will be sent to the peer, and returned by the
924    /// `Future`.
925    ///
926    /// The default value is currently 20, but could change.
927    ///
928    /// # Examples
929    ///
930    ///
931    /// ```
932    /// # use tokio::io::{AsyncRead, AsyncWrite};
933    /// # use h2::server::*;
934    /// #
935    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
936    /// # -> Handshake<T>
937    /// # {
938    /// // `server_fut` is a future representing the completion of the HTTP/2
939    /// // handshake.
940    /// let server_fut = Builder::new()
941    ///     .max_pending_accept_reset_streams(100)
942    ///     .handshake(my_io);
943    /// # server_fut
944    /// # }
945    /// #
946    /// # pub fn main() {}
947    /// ```
948    pub fn max_pending_accept_reset_streams(&mut self, max: usize) -> &mut Self {
949        self.pending_accept_reset_stream_max = max;
950        self
951    }
952
953    /// Sets the maximum send buffer size per stream.
954    ///
955    /// Once a stream has buffered up to (or over) the maximum, the stream's
956    /// flow control will not "poll" additional capacity. Once bytes for the
957    /// stream have been written to the connection, the send buffer capacity
958    /// will be freed up again.
959    ///
960    /// The default is currently ~400KB, but may change.
961    ///
962    /// # Panics
963    ///
964    /// This function panics if `max` is larger than `u32::MAX`.
965    pub fn max_send_buffer_size(&mut self, max: usize) -> &mut Self {
966        assert!(max <= std::u32::MAX as usize);
967        self.max_send_buffer_size = max;
968        self
969    }
970
971    /// Sets the maximum number of concurrent locally reset streams.
972    ///
973    /// When a stream is explicitly reset by either calling
974    /// [`SendResponse::send_reset`] or by dropping a [`SendResponse`] instance
975    /// before completing the stream, the HTTP/2 specification requires that
976    /// any further frames received for that stream must be ignored for "some
977    /// time".
978    ///
979    /// In order to satisfy the specification, internal state must be maintained
980    /// to implement the behavior. This state grows linearly with the number of
981    /// streams that are locally reset.
982    ///
983    /// The `reset_stream_duration` setting configures the max amount of time
984    /// this state will be maintained in memory. Once the duration elapses, the
985    /// stream state is purged from memory.
986    ///
987    /// Once the stream has been fully purged from memory, any additional frames
988    /// received for that stream will result in a connection level protocol
989    /// error, forcing the connection to terminate.
990    ///
991    /// The default value is 30 seconds.
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// # use tokio::io::{AsyncRead, AsyncWrite};
997    /// # use h2::server::*;
998    /// # use std::time::Duration;
999    /// #
1000    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1001    /// # -> Handshake<T>
1002    /// # {
1003    /// // `server_fut` is a future representing the completion of the HTTP/2
1004    /// // handshake.
1005    /// let server_fut = Builder::new()
1006    ///     .reset_stream_duration(Duration::from_secs(10))
1007    ///     .handshake(my_io);
1008    /// # server_fut
1009    /// # }
1010    /// #
1011    /// # pub fn main() {}
1012    /// ```
1013    pub fn reset_stream_duration(&mut self, dur: Duration) -> &mut Self {
1014        self.reset_stream_duration = dur;
1015        self
1016    }
1017
1018    /// Enables the [extended CONNECT protocol].
1019    ///
1020    /// [extended CONNECT protocol]: https://datatracker.ietf.org/doc/html/rfc8441#section-4
1021    pub fn enable_connect_protocol(&mut self) -> &mut Self {
1022        self.settings.set_enable_connect_protocol(Some(1));
1023        self
1024    }
1025
1026    /// Creates a new configured HTTP/2 server backed by `io`.
1027    ///
1028    /// It is expected that `io` already be in an appropriate state to commence
1029    /// the [HTTP/2 handshake]. See [Handshake] for more details.
1030    ///
1031    /// Returns a future which resolves to the [`Connection`] instance once the
1032    /// HTTP/2 handshake has been completed.
1033    ///
1034    /// This function also allows the caller to configure the send payload data
1035    /// type. See [Outbound data type] for more details.
1036    ///
1037    /// [HTTP/2 handshake]: http://httpwg.org/specs/rfc7540.html#ConnectionHeader
1038    /// [Handshake]: ../index.html#handshake
1039    /// [`Connection`]: struct.Connection.html
1040    /// [Outbound data type]: ../index.html#outbound-data-type.
1041    ///
1042    /// # Examples
1043    ///
1044    /// Basic usage:
1045    ///
1046    /// ```
1047    /// # use tokio::io::{AsyncRead, AsyncWrite};
1048    /// # use h2::server::*;
1049    /// #
1050    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1051    /// # -> Handshake<T>
1052    /// # {
1053    /// // `server_fut` is a future representing the completion of the HTTP/2
1054    /// // handshake.
1055    /// let server_fut = Builder::new()
1056    ///     .handshake(my_io);
1057    /// # server_fut
1058    /// # }
1059    /// #
1060    /// # pub fn main() {}
1061    /// ```
1062    ///
1063    /// Configures the send-payload data type. In this case, the outbound data
1064    /// type will be `&'static [u8]`.
1065    ///
1066    /// ```
1067    /// # use tokio::io::{AsyncRead, AsyncWrite};
1068    /// # use h2::server::*;
1069    /// #
1070    /// # fn doc<T: AsyncRead + AsyncWrite + Unpin>(my_io: T)
1071    /// # -> Handshake<T, &'static [u8]>
1072    /// # {
1073    /// // `server_fut` is a future representing the completion of the HTTP/2
1074    /// // handshake.
1075    /// let server_fut: Handshake<_, &'static [u8]> = Builder::new()
1076    ///     .handshake(my_io);
1077    /// # server_fut
1078    /// # }
1079    /// #
1080    /// # pub fn main() {}
1081    /// ```
1082    pub fn handshake<T, B>(&self, io: T) -> Handshake<T, B>
1083    where
1084        T: AsyncRead + AsyncWrite + Unpin,
1085        B: Buf,
1086    {
1087        Connection::handshake2(io, self.clone())
1088    }
1089}
1090
1091impl Default for Builder {
1092    fn default() -> Builder {
1093        Builder::new()
1094    }
1095}
1096
1097// ===== impl SendResponse =====
1098
1099impl<B: Buf> SendResponse<B> {
1100    /// Send a response to a client request.
1101    ///
1102    /// On success, a [`SendStream`] instance is returned. This instance can be
1103    /// used to stream the response body and send trailers.
1104    ///
1105    /// If a body or trailers will be sent on the returned [`SendStream`]
1106    /// instance, then `end_of_stream` must be set to `false` when calling this
1107    /// function.
1108    ///
1109    /// The [`SendResponse`] instance is already associated with a received
1110    /// request.  This function may only be called once per instance and only if
1111    /// [`send_reset`] has not been previously called.
1112    ///
1113    /// [`SendResponse`]: #
1114    /// [`SendStream`]: ../struct.SendStream.html
1115    /// [`send_reset`]: #method.send_reset
1116    pub fn send_response(
1117        &mut self,
1118        response: Response<()>,
1119        end_of_stream: bool,
1120    ) -> Result<SendStream<B>, crate::Error> {
1121        self.inner
1122            .send_response(response, end_of_stream)
1123            .map(|_| SendStream::new(self.inner.clone()))
1124            .map_err(Into::into)
1125    }
1126
1127    /// Push a request and response to the client
1128    ///
1129    /// On success, a [`SendResponse`] instance is returned.
1130    ///
1131    /// [`SendResponse`]: #
1132    pub fn push_request(
1133        &mut self,
1134        request: Request<()>,
1135    ) -> Result<SendPushedResponse<B>, crate::Error> {
1136        self.inner
1137            .send_push_promise(request)
1138            .map(|inner| SendPushedResponse {
1139                inner: SendResponse { inner },
1140            })
1141            .map_err(Into::into)
1142    }
1143
1144    /// Send a stream reset to the peer.
1145    ///
1146    /// This essentially cancels the stream, including any inbound or outbound
1147    /// data streams.
1148    ///
1149    /// If this function is called before [`send_response`], a call to
1150    /// [`send_response`] will result in an error.
1151    ///
1152    /// If this function is called while a [`SendStream`] instance is active,
1153    /// any further use of the instance will result in an error.
1154    ///
1155    /// This function should only be called once.
1156    ///
1157    /// [`send_response`]: #method.send_response
1158    /// [`SendStream`]: ../struct.SendStream.html
1159    pub fn send_reset(&mut self, reason: Reason) {
1160        self.inner.send_reset(reason)
1161    }
1162
1163    /// Polls to be notified when the client resets this stream.
1164    ///
1165    /// If stream is still open, this returns `Poll::Pending`, and
1166    /// registers the task to be notified if a `RST_STREAM` is received.
1167    ///
1168    /// If a `RST_STREAM` frame is received for this stream, calling this
1169    /// method will yield the `Reason` for the reset.
1170    ///
1171    /// # Error
1172    ///
1173    /// Calling this method after having called `send_response` will return
1174    /// a user error.
1175    pub fn poll_reset(&mut self, cx: &mut Context) -> Poll<Result<Reason, crate::Error>> {
1176        self.inner.poll_reset(cx, proto::PollReset::AwaitingHeaders)
1177    }
1178
1179    /// Returns the stream ID of the response stream.
1180    ///
1181    /// # Panics
1182    ///
1183    /// If the lock on the stream store has been poisoned.
1184    pub fn stream_id(&self) -> crate::StreamId {
1185        crate::StreamId::from_internal(self.inner.stream_id())
1186    }
1187}
1188
1189// ===== impl SendPushedResponse =====
1190
1191impl<B: Buf> SendPushedResponse<B> {
1192    /// Send a response to a promised request.
1193    ///
1194    /// On success, a [`SendStream`] instance is returned. This instance can be
1195    /// used to stream the response body and send trailers.
1196    ///
1197    /// If a body or trailers will be sent on the returned [`SendStream`]
1198    /// instance, then `end_of_stream` must be set to `false` when calling this
1199    /// function.
1200    ///
1201    /// The [`SendPushedResponse`] instance is associated with a promised
1202    /// request.  This function may only be called once per instance and only if
1203    /// [`send_reset`] has not been previously called.
1204    ///
1205    /// [`SendPushedResponse`]: #
1206    /// [`SendStream`]: ../struct.SendStream.html
1207    /// [`send_reset`]: #method.send_reset
1208    pub fn send_response(
1209        &mut self,
1210        response: Response<()>,
1211        end_of_stream: bool,
1212    ) -> Result<SendStream<B>, crate::Error> {
1213        self.inner.send_response(response, end_of_stream)
1214    }
1215
1216    /// Send a stream reset to the peer.
1217    ///
1218    /// This essentially cancels the stream, including any inbound or outbound
1219    /// data streams.
1220    ///
1221    /// If this function is called before [`send_response`], a call to
1222    /// [`send_response`] will result in an error.
1223    ///
1224    /// If this function is called while a [`SendStream`] instance is active,
1225    /// any further use of the instance will result in an error.
1226    ///
1227    /// This function should only be called once.
1228    ///
1229    /// [`send_response`]: #method.send_response
1230    /// [`SendStream`]: ../struct.SendStream.html
1231    pub fn send_reset(&mut self, reason: Reason) {
1232        self.inner.send_reset(reason)
1233    }
1234
1235    /// Polls to be notified when the client resets this stream.
1236    ///
1237    /// If stream is still open, this returns `Poll::Pending`, and
1238    /// registers the task to be notified if a `RST_STREAM` is received.
1239    ///
1240    /// If a `RST_STREAM` frame is received for this stream, calling this
1241    /// method will yield the `Reason` for the reset.
1242    ///
1243    /// # Error
1244    ///
1245    /// Calling this method after having called `send_response` will return
1246    /// a user error.
1247    pub fn poll_reset(&mut self, cx: &mut Context) -> Poll<Result<Reason, crate::Error>> {
1248        self.inner.poll_reset(cx)
1249    }
1250
1251    /// Returns the stream ID of the response stream.
1252    ///
1253    /// # Panics
1254    ///
1255    /// If the lock on the stream store has been poisoned.
1256    pub fn stream_id(&self) -> crate::StreamId {
1257        self.inner.stream_id()
1258    }
1259}
1260
1261// ===== impl Flush =====
1262
1263impl<T, B: Buf> Flush<T, B> {
1264    fn new(codec: Codec<T, B>) -> Self {
1265        Flush { codec: Some(codec) }
1266    }
1267}
1268
1269impl<T, B> Future for Flush<T, B>
1270where
1271    T: AsyncWrite + Unpin,
1272    B: Buf,
1273{
1274    type Output = Result<Codec<T, B>, crate::Error>;
1275
1276    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1277        // Flush the codec
1278        ready!(self.codec.as_mut().unwrap().flush(cx)).map_err(crate::Error::from_io)?;
1279
1280        // Return the codec
1281        Poll::Ready(Ok(self.codec.take().unwrap()))
1282    }
1283}
1284
1285impl<T, B: Buf> ReadPreface<T, B> {
1286    fn new(codec: Codec<T, B>) -> Self {
1287        ReadPreface {
1288            codec: Some(codec),
1289            pos: 0,
1290        }
1291    }
1292
1293    fn inner_mut(&mut self) -> &mut T {
1294        self.codec.as_mut().unwrap().get_mut()
1295    }
1296}
1297
1298impl<T, B> Future for ReadPreface<T, B>
1299where
1300    T: AsyncRead + Unpin,
1301    B: Buf,
1302{
1303    type Output = Result<Codec<T, B>, crate::Error>;
1304
1305    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1306        let mut buf = [0; 24];
1307        let mut rem = PREFACE.len() - self.pos;
1308
1309        while rem > 0 {
1310            let mut buf = ReadBuf::new(&mut buf[..rem]);
1311            ready!(Pin::new(self.inner_mut()).poll_read(cx, &mut buf))
1312                .map_err(crate::Error::from_io)?;
1313            let n = buf.filled().len();
1314            if n == 0 {
1315                return Poll::Ready(Err(crate::Error::from_io(io::Error::new(
1316                    io::ErrorKind::UnexpectedEof,
1317                    "connection closed before reading preface",
1318                ))));
1319            }
1320
1321            if &PREFACE[self.pos..self.pos + n] != buf.filled() {
1322                proto_err!(conn: "read_preface: invalid preface");
1323                // TODO: Should this just write the GO_AWAY frame directly?
1324                return Poll::Ready(Err(Error::library_go_away(Reason::PROTOCOL_ERROR).into()));
1325            }
1326
1327            self.pos += n;
1328            rem -= n; // TODO test
1329        }
1330
1331        Poll::Ready(Ok(self.codec.take().unwrap()))
1332    }
1333}
1334
1335// ===== impl Handshake =====
1336
1337impl<T, B: Buf> Future for Handshake<T, B>
1338where
1339    T: AsyncRead + AsyncWrite + Unpin,
1340    B: Buf,
1341{
1342    type Output = Result<Connection<T, B>, crate::Error>;
1343
1344    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
1345        let span = self.span.clone(); // XXX(eliza): T_T
1346        let _e = span.enter();
1347        tracing::trace!(state = ?self.state);
1348
1349        loop {
1350            match &mut self.state {
1351                Handshaking::Flushing(flush) => {
1352                    // We're currently flushing a pending SETTINGS frame. Poll the
1353                    // flush future, and, if it's completed, advance our state to wait
1354                    // for the client preface.
1355                    let codec = match Pin::new(flush).poll(cx)? {
1356                        Poll::Pending => {
1357                            tracing::trace!(flush.poll = %"Pending");
1358                            return Poll::Pending;
1359                        }
1360                        Poll::Ready(flushed) => {
1361                            tracing::trace!(flush.poll = %"Ready");
1362                            flushed
1363                        }
1364                    };
1365                    self.state = Handshaking::ReadingPreface(
1366                        ReadPreface::new(codec).instrument(tracing::trace_span!("read_preface")),
1367                    );
1368                }
1369                Handshaking::ReadingPreface(read) => {
1370                    let codec = ready!(Pin::new(read).poll(cx)?);
1371
1372                    self.state = Handshaking::Done;
1373
1374                    let connection = proto::Connection::new(
1375                        codec,
1376                        Config {
1377                            next_stream_id: 2.into(),
1378                            // Server does not need to locally initiate any streams
1379                            initial_max_send_streams: 0,
1380                            max_send_buffer_size: self.builder.max_send_buffer_size,
1381                            reset_stream_duration: self.builder.reset_stream_duration,
1382                            reset_stream_max: self.builder.reset_stream_max,
1383                            remote_reset_stream_max: self.builder.pending_accept_reset_stream_max,
1384                            local_error_reset_streams_max: self
1385                                .builder
1386                                .local_max_error_reset_streams,
1387                            settings: self.builder.settings.clone(),
1388                        },
1389                    );
1390
1391                    tracing::trace!("connection established!");
1392                    let mut c = Connection { connection };
1393                    if let Some(sz) = self.builder.initial_target_connection_window_size {
1394                        c.set_target_window_size(sz);
1395                    }
1396
1397                    return Poll::Ready(Ok(c));
1398                }
1399                Handshaking::Done => {
1400                    panic!("Handshaking::poll() called again after handshaking was complete")
1401                }
1402            }
1403        }
1404    }
1405}
1406
1407impl<T, B> fmt::Debug for Handshake<T, B>
1408where
1409    T: AsyncRead + AsyncWrite + fmt::Debug,
1410    B: fmt::Debug + Buf,
1411{
1412    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
1413        write!(fmt, "server::Handshake")
1414    }
1415}
1416
1417impl Peer {
1418    pub fn convert_send_message(
1419        id: StreamId,
1420        response: Response<()>,
1421        end_of_stream: bool,
1422    ) -> frame::Headers {
1423        use http::response::Parts;
1424
1425        // Extract the components of the HTTP request
1426        let (
1427            Parts {
1428                status, headers, ..
1429            },
1430            _,
1431        ) = response.into_parts();
1432
1433        // Build the set pseudo header set. All requests will include `method`
1434        // and `path`.
1435        let pseudo = Pseudo::response(status);
1436
1437        // Create the HEADERS frame
1438        let mut frame = frame::Headers::new(id, pseudo, headers);
1439
1440        if end_of_stream {
1441            frame.set_end_stream()
1442        }
1443
1444        frame
1445    }
1446
1447    pub fn convert_push_message(
1448        stream_id: StreamId,
1449        promised_id: StreamId,
1450        request: Request<()>,
1451    ) -> Result<frame::PushPromise, UserError> {
1452        use http::request::Parts;
1453
1454        if let Err(e) = frame::PushPromise::validate_request(&request) {
1455            use PushPromiseHeaderError::*;
1456            match e {
1457                NotSafeAndCacheable => tracing::debug!(
1458                    ?promised_id,
1459                    "convert_push_message: method {} is not safe and cacheable",
1460                    request.method(),
1461                ),
1462                InvalidContentLength(e) => tracing::debug!(
1463                    ?promised_id,
1464                    "convert_push_message; promised request has invalid content-length {:?}",
1465                    e,
1466                ),
1467            }
1468            return Err(UserError::MalformedHeaders);
1469        }
1470
1471        // Extract the components of the HTTP request
1472        let (
1473            Parts {
1474                method,
1475                uri,
1476                headers,
1477                ..
1478            },
1479            _,
1480        ) = request.into_parts();
1481
1482        let pseudo = Pseudo::request(method, uri, None);
1483
1484        Ok(frame::PushPromise::new(
1485            stream_id,
1486            promised_id,
1487            pseudo,
1488            headers,
1489        ))
1490    }
1491}
1492
1493impl proto::Peer for Peer {
1494    type Poll = Request<()>;
1495
1496    const NAME: &'static str = "Server";
1497
1498    /*
1499    fn is_server() -> bool {
1500        true
1501    }
1502    */
1503
1504    fn r#dyn() -> proto::DynPeer {
1505        proto::DynPeer::Server
1506    }
1507
1508    fn convert_poll_message(
1509        pseudo: Pseudo,
1510        fields: HeaderMap,
1511        stream_id: StreamId,
1512    ) -> Result<Self::Poll, Error> {
1513        use http::{uri, Version};
1514
1515        let mut b = Request::builder();
1516
1517        macro_rules! malformed {
1518            ($($arg:tt)*) => {{
1519                tracing::debug!($($arg)*);
1520                return Err(Error::library_reset(stream_id, Reason::PROTOCOL_ERROR));
1521            }}
1522        }
1523
1524        b = b.version(Version::HTTP_2);
1525
1526        let is_connect;
1527        if let Some(method) = pseudo.method {
1528            is_connect = method == Method::CONNECT;
1529            b = b.method(method);
1530        } else {
1531            malformed!("malformed headers: missing method");
1532        }
1533
1534        let has_protocol = pseudo.protocol.is_some();
1535        if has_protocol {
1536            if is_connect {
1537                // Assert that we have the right type.
1538                b = b.extension::<crate::ext::Protocol>(pseudo.protocol.unwrap());
1539            } else {
1540                malformed!("malformed headers: :protocol on non-CONNECT request");
1541            }
1542        }
1543
1544        if pseudo.status.is_some() {
1545            malformed!("malformed headers: :status field on request");
1546        }
1547
1548        // Convert the URI
1549        let mut parts = uri::Parts::default();
1550
1551        // A request translated from HTTP/1 must not include the :authority
1552        // header
1553        if let Some(authority) = pseudo.authority {
1554            let maybe_authority = uri::Authority::from_maybe_shared(authority.clone().into_inner());
1555            parts.authority = Some(maybe_authority.or_else(|why| {
1556                malformed!(
1557                    "malformed headers: malformed authority ({:?}): {}",
1558                    authority,
1559                    why,
1560                )
1561            })?);
1562        }
1563
1564        // A :scheme is required, except CONNECT.
1565        if let Some(scheme) = pseudo.scheme {
1566            if is_connect && !has_protocol {
1567                malformed!("malformed headers: :scheme in CONNECT");
1568            }
1569            let maybe_scheme = scheme.parse();
1570            let scheme = maybe_scheme.or_else(|why| {
1571                malformed!(
1572                    "malformed headers: malformed scheme ({:?}): {}",
1573                    scheme,
1574                    why,
1575                )
1576            })?;
1577
1578            // It's not possible to build an `Uri` from a scheme and path. So,
1579            // after validating is was a valid scheme, we just have to drop it
1580            // if there isn't an :authority.
1581            if parts.authority.is_some() {
1582                parts.scheme = Some(scheme);
1583            }
1584        } else if !is_connect || has_protocol {
1585            malformed!("malformed headers: missing scheme");
1586        }
1587
1588        if let Some(path) = pseudo.path {
1589            if is_connect && !has_protocol {
1590                malformed!("malformed headers: :path in CONNECT");
1591            }
1592
1593            // This cannot be empty
1594            if path.is_empty() {
1595                malformed!("malformed headers: missing path");
1596            }
1597
1598            let maybe_path = uri::PathAndQuery::from_maybe_shared(path.clone().into_inner());
1599            parts.path_and_query = Some(maybe_path.or_else(|why| {
1600                malformed!("malformed headers: malformed path ({:?}): {}", path, why,)
1601            })?);
1602        } else if is_connect && has_protocol {
1603            malformed!("malformed headers: missing path in extended CONNECT");
1604        }
1605
1606        b = b.uri(parts);
1607
1608        let mut request = match b.body(()) {
1609            Ok(request) => request,
1610            Err(e) => {
1611                // TODO: Should there be more specialized handling for different
1612                // kinds of errors
1613                proto_err!(stream: "error building request: {}; stream={:?}", e, stream_id);
1614                return Err(Error::library_reset(stream_id, Reason::PROTOCOL_ERROR));
1615            }
1616        };
1617
1618        *request.headers_mut() = fields;
1619
1620        Ok(request)
1621    }
1622}
1623
1624// ===== impl Handshaking =====
1625
1626impl<T, B> fmt::Debug for Handshaking<T, B>
1627where
1628    B: Buf,
1629{
1630    #[inline]
1631    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
1632        match *self {
1633            Handshaking::Flushing(_) => f.write_str("Flushing(_)"),
1634            Handshaking::ReadingPreface(_) => f.write_str("ReadingPreface(_)"),
1635            Handshaking::Done => f.write_str("Done"),
1636        }
1637    }
1638}