mz_compute/server.rs
1// Copyright Materialize, Inc. and contributors. All rights reserved.
2//
3// Use of this software is governed by the Business Source License
4// included in the LICENSE file.
5//
6// As of the Change Date specified in that file, in accordance with
7// the Business Source License, use of this software will be governed
8// by the Apache License, Version 2.0.
9
10//! An interactive dataflow server.
11
12use std::cell::RefCell;
13use std::cmp::Ordering;
14use std::collections::{BTreeMap, BTreeSet};
15use std::convert::Infallible;
16use std::fmt::Debug;
17use std::path::PathBuf;
18use std::rc::Rc;
19use std::sync::Arc;
20use std::thread;
21use std::time::{Duration, Instant};
22
23use anyhow::Error;
24use crossbeam_channel::SendError;
25use mz_cluster::client::{ClusterClient, ClusterSpec};
26use mz_compute_client::protocol::command::ComputeCommand;
27use mz_compute_client::protocol::history::ComputeCommandHistory;
28use mz_compute_client::protocol::response::ComputeResponse;
29use mz_compute_client::service::ComputeClient;
30use mz_ore::halt;
31use mz_ore::metrics::MetricsRegistry;
32use mz_ore::tracing::TracingHandle;
33use mz_persist_client::cache::PersistClientCache;
34use mz_storage_types::connections::ConnectionContext;
35use mz_txn_wal::operator::TxnsContext;
36use timely::communication::Allocate;
37use timely::progress::Antichain;
38use timely::worker::Worker as TimelyWorker;
39use tokio::sync::mpsc;
40use tracing::{info, trace, warn};
41
42use crate::command_channel;
43use crate::compute_state::{ActiveComputeState, ComputeState, ReportedFrontier};
44use crate::metrics::{ComputeMetrics, WorkerMetrics};
45
46/// Caller-provided configuration for compute.
47#[derive(Clone, Debug)]
48pub struct ComputeInstanceContext {
49 /// A directory that can be used for scratch work.
50 pub scratch_directory: Option<PathBuf>,
51 /// Whether to set core affinity for Timely workers.
52 pub worker_core_affinity: bool,
53 /// Context required to connect to an external sink from compute,
54 /// like the `CopyToS3OneshotSink` compute sink.
55 pub connection_context: ConnectionContext,
56}
57
58/// Configures the server with compute-specific metrics.
59#[derive(Debug, Clone)]
60struct Config {
61 /// `persist` client cache.
62 pub persist_clients: Arc<PersistClientCache>,
63 /// Context necessary for rendering txn-wal operators.
64 pub txns_ctx: TxnsContext,
65 /// A process-global handle to tracing configuration.
66 pub tracing_handle: Arc<TracingHandle>,
67 /// Metrics exposed by compute replicas.
68 pub metrics: ComputeMetrics,
69 /// Other configuration for compute.
70 pub context: ComputeInstanceContext,
71}
72
73/// Initiates a timely dataflow computation, processing compute commands.
74pub fn serve(
75 metrics_registry: &MetricsRegistry,
76 persist_clients: Arc<PersistClientCache>,
77 txns_ctx: TxnsContext,
78 tracing_handle: Arc<TracingHandle>,
79 context: ComputeInstanceContext,
80) -> Result<impl Fn() -> Box<dyn ComputeClient> + use<>, Error> {
81 let config = Config {
82 persist_clients,
83 txns_ctx,
84 tracing_handle,
85 metrics: ComputeMetrics::register_with(metrics_registry),
86 context,
87 };
88 let tokio_executor = tokio::runtime::Handle::current();
89 let timely_container = Arc::new(tokio::sync::Mutex::new(None));
90
91 let client_builder = move || {
92 let client = ClusterClient::new(
93 Arc::clone(&timely_container),
94 tokio_executor.clone(),
95 config.clone(),
96 );
97 let client: Box<dyn ComputeClient> = Box::new(client);
98 client
99 };
100
101 Ok(client_builder)
102}
103
104/// Error type returned on connection epoch changes.
105///
106/// An epoch change informs workers that subsequent commands come a from a new client connection
107/// and therefore require reconciliation.
108struct EpochChange(u64);
109
110/// Endpoint used by workers to receive compute commands.
111///
112/// Observes epoch changes in the command stream and converts them into receive errors.
113struct CommandReceiver {
114 /// The channel supplying commands.
115 inner: command_channel::Receiver,
116 /// The ID of the Timely worker.
117 worker_id: usize,
118 /// The epoch identifying the current cluster protocol incarnation.
119 epoch: Option<u64>,
120 /// A stash to enable peeking the next command, used in `try_recv`.
121 stashed_command: Option<ComputeCommand>,
122}
123
124impl CommandReceiver {
125 fn new(inner: command_channel::Receiver, worker_id: usize) -> Self {
126 Self {
127 inner,
128 worker_id,
129 epoch: None,
130 stashed_command: None,
131 }
132 }
133
134 /// Receive the next pending command, if any.
135 ///
136 /// If the next command is at a different epoch, this method instead returns an `Err`
137 /// containing the new epoch.
138 fn try_recv(&mut self) -> Result<Option<ComputeCommand>, EpochChange> {
139 if let Some(command) = self.stashed_command.take() {
140 return Ok(Some(command));
141 }
142 let Some((command, epoch)) = self.inner.try_recv() else {
143 return Ok(None);
144 };
145
146 trace!(worker = self.worker_id, %epoch, ?command, "received command");
147
148 match self.epoch.cmp(&Some(epoch)) {
149 Ordering::Less => {
150 self.epoch = Some(epoch);
151 self.stashed_command = Some(command);
152 Err(EpochChange(epoch))
153 }
154 Ordering::Equal => Ok(Some(command)),
155 Ordering::Greater => panic!("epoch regression: {epoch} < {}", self.epoch.unwrap()),
156 }
157 }
158}
159
160/// Endpoint used by workers to send sending compute responses.
161///
162/// Tags responses with the current epoch, allowing receivers to filter out responses intended for
163/// previous client connections.
164pub(crate) struct ResponseSender {
165 /// The channel consuming responses.
166 inner: crossbeam_channel::Sender<(ComputeResponse, u64)>,
167 /// The ID of the Timely worker.
168 worker_id: usize,
169 /// The epoch identifying the current cluster protocol incarnation.
170 epoch: Option<u64>,
171}
172
173impl ResponseSender {
174 fn new(inner: crossbeam_channel::Sender<(ComputeResponse, u64)>, worker_id: usize) -> Self {
175 Self {
176 inner,
177 worker_id,
178 epoch: None,
179 }
180 }
181
182 /// Advance to the given epoch.
183 fn advance_epoch(&mut self, epoch: u64) {
184 assert!(
185 Some(epoch) > self.epoch,
186 "epoch regression: {epoch} <= {}",
187 self.epoch.unwrap(),
188 );
189 self.epoch = Some(epoch);
190 }
191
192 /// Send a compute response.
193 pub fn send(&self, response: ComputeResponse) -> Result<(), SendError<ComputeResponse>> {
194 let epoch = self.epoch.expect("epoch must be initialized");
195
196 trace!(worker = self.worker_id, %epoch, ?response, "sending response");
197 self.inner
198 .send((response, epoch))
199 .map_err(|SendError((resp, _))| SendError(resp))
200 }
201}
202
203/// State maintained for each worker thread.
204///
205/// Much of this state can be viewed as local variables for the worker thread,
206/// holding state that persists across function calls.
207struct Worker<'w, A: Allocate> {
208 /// The underlying Timely worker.
209 timely_worker: &'w mut TimelyWorker<A>,
210 /// The channel over which commands are received.
211 command_rx: CommandReceiver,
212 /// The channel over which responses are sent.
213 response_tx: ResponseSender,
214 compute_state: Option<ComputeState>,
215 /// Compute metrics.
216 metrics: WorkerMetrics,
217 /// A process-global cache of (blob_uri, consensus_uri) -> PersistClient.
218 /// This is intentionally shared between workers
219 persist_clients: Arc<PersistClientCache>,
220 /// Context necessary for rendering txn-wal operators.
221 txns_ctx: TxnsContext,
222 /// A process-global handle to tracing configuration.
223 tracing_handle: Arc<TracingHandle>,
224 context: ComputeInstanceContext,
225}
226
227impl ClusterSpec for Config {
228 type Command = ComputeCommand;
229 type Response = ComputeResponse;
230
231 fn run_worker<A: Allocate + 'static>(
232 &self,
233 timely_worker: &mut TimelyWorker<A>,
234 client_rx: crossbeam_channel::Receiver<(
235 crossbeam_channel::Receiver<ComputeCommand>,
236 mpsc::UnboundedSender<ComputeResponse>,
237 )>,
238 ) {
239 if self.context.worker_core_affinity {
240 set_core_affinity(timely_worker.index());
241 }
242
243 let worker_id = timely_worker.index();
244 let metrics = self.metrics.for_worker(worker_id);
245
246 // Create the command channel that broadcasts commands from worker 0 to other workers. We
247 // reuse this channel between client connections, to avoid bugs where different workers end
248 // up creating incompatible sides of the channel dataflow after reconnects.
249 // See database-issues#8964.
250 let (cmd_tx, cmd_rx) = command_channel::render(timely_worker);
251 let (resp_tx, resp_rx) = crossbeam_channel::unbounded();
252
253 spawn_channel_adapter(client_rx, cmd_tx, resp_rx, worker_id);
254
255 Worker {
256 timely_worker,
257 command_rx: CommandReceiver::new(cmd_rx, worker_id),
258 response_tx: ResponseSender::new(resp_tx, worker_id),
259 metrics,
260 context: self.context.clone(),
261 persist_clients: Arc::clone(&self.persist_clients),
262 txns_ctx: self.txns_ctx.clone(),
263 compute_state: None,
264 tracing_handle: Arc::clone(&self.tracing_handle),
265 }
266 .run()
267 }
268}
269
270/// Set the current thread's core affinity, based on the given `worker_id`.
271#[cfg(not(target_os = "macos"))]
272fn set_core_affinity(worker_id: usize) {
273 use tracing::error;
274
275 let Some(mut core_ids) = core_affinity::get_core_ids() else {
276 error!(worker_id, "unable to get core IDs for setting affinity");
277 return;
278 };
279
280 // The `get_core_ids` docs don't say anything about a guaranteed order of the returned Vec,
281 // so sort it just to be safe.
282 core_ids.sort_unstable_by_key(|i| i.id);
283
284 // On multi-process replicas `worker_id` might be greater than the number of available cores.
285 // However, we assume that we always have at least as many cores as there are local workers.
286 // Violating this assumption is safe but might lead to degraded performance due to skew in core
287 // utilization.
288 let idx = worker_id % core_ids.len();
289 let core_id = core_ids[idx];
290
291 if core_affinity::set_for_current(core_id) {
292 info!(
293 worker_id,
294 core_id = core_id.id,
295 "set core affinity for worker"
296 );
297 } else {
298 error!(
299 worker_id,
300 core_id = core_id.id,
301 "failed to set core affinity for worker"
302 )
303 }
304}
305
306/// Set the current thread's core affinity, based on the given `worker_id`.
307#[cfg(target_os = "macos")]
308fn set_core_affinity(_worker_id: usize) {
309 // Setting core affinity is known to not work on Apple Silicon:
310 // https://github.com/Elzair/core_affinity_rs/issues/22
311 info!("setting core affinity is not supported on macOS");
312}
313
314impl<'w, A: Allocate + 'static> Worker<'w, A> {
315 /// Runs a compute worker.
316 pub fn run(&mut self) {
317 // The command receiver is initialized without an epoch, so receiving the first command
318 // always triggers an epoch change.
319 let EpochChange(epoch) = self.recv_command().expect_err("change to first epoch");
320 self.advance_epoch(epoch);
321
322 loop {
323 let Err(EpochChange(epoch)) = self.run_client();
324 self.advance_epoch(epoch);
325 }
326 }
327
328 fn advance_epoch(&mut self, epoch: u64) {
329 self.response_tx.advance_epoch(epoch);
330 }
331
332 /// Handles commands for a client connection, returns when the epoch changes.
333 fn run_client(&mut self) -> Result<Infallible, EpochChange> {
334 self.reconcile()?;
335
336 // The last time we did periodic maintenance.
337 let mut last_maintenance = Instant::now();
338
339 // Commence normal operation.
340 loop {
341 // Get the maintenance interval, default to zero if we don't have a compute state.
342 let maintenance_interval = self
343 .compute_state
344 .as_ref()
345 .map_or(Duration::ZERO, |state| state.server_maintenance_interval);
346
347 let now = Instant::now();
348 // Determine if we need to perform maintenance, which is true if `maintenance_interval`
349 // time has passed since the last maintenance.
350 let sleep_duration;
351 if now >= last_maintenance + maintenance_interval {
352 last_maintenance = now;
353 sleep_duration = None;
354
355 // Report frontier information back the coordinator.
356 if let Some(mut compute_state) = self.activate_compute() {
357 compute_state.compute_state.traces.maintenance();
358 // Report operator hydration before frontiers, as reporting frontiers may
359 // affect hydration reporting.
360 compute_state.report_operator_hydration();
361 compute_state.report_frontiers();
362 compute_state.report_dropped_collections();
363 compute_state.report_metrics();
364 compute_state.check_expiration();
365 }
366
367 self.metrics.record_shared_row_metrics();
368 } else {
369 // We didn't perform maintenance, sleep until the next maintenance interval.
370 let next_maintenance = last_maintenance + maintenance_interval;
371 sleep_duration = Some(next_maintenance.saturating_duration_since(now))
372 };
373
374 // Step the timely worker, recording the time taken.
375 let timer = self.metrics.timely_step_duration_seconds.start_timer();
376 self.timely_worker.step_or_park(sleep_duration);
377 timer.observe_duration();
378
379 self.handle_pending_commands()?;
380
381 if let Some(mut compute_state) = self.activate_compute() {
382 compute_state.process_peeks();
383 compute_state.process_subscribes();
384 compute_state.process_copy_tos();
385 }
386 }
387 }
388
389 fn handle_pending_commands(&mut self) -> Result<(), EpochChange> {
390 while let Some(cmd) = self.command_rx.try_recv()? {
391 self.handle_command(cmd);
392 }
393 Ok(())
394 }
395
396 fn handle_command(&mut self, cmd: ComputeCommand) {
397 match &cmd {
398 ComputeCommand::CreateInstance(_) => {
399 self.compute_state = Some(ComputeState::new(
400 Arc::clone(&self.persist_clients),
401 self.txns_ctx.clone(),
402 self.metrics.clone(),
403 Arc::clone(&self.tracing_handle),
404 self.context.clone(),
405 ));
406 }
407 _ => (),
408 }
409 self.activate_compute().unwrap().handle_compute_command(cmd);
410 }
411
412 fn activate_compute(&mut self) -> Option<ActiveComputeState<'_, A>> {
413 if let Some(compute_state) = &mut self.compute_state {
414 Some(ActiveComputeState {
415 timely_worker: &mut *self.timely_worker,
416 compute_state,
417 response_tx: &mut self.response_tx,
418 })
419 } else {
420 None
421 }
422 }
423
424 /// Receive the next compute command.
425 ///
426 /// This method blocks if no command is currently available, but takes care to step the Timely
427 /// worker while doing so.
428 fn recv_command(&mut self) -> Result<ComputeCommand, EpochChange> {
429 loop {
430 if let Some(cmd) = self.command_rx.try_recv()? {
431 return Ok(cmd);
432 }
433
434 let start = Instant::now();
435 self.timely_worker.step_or_park(None);
436 self.metrics
437 .timely_step_duration_seconds
438 .observe(start.elapsed().as_secs_f64());
439 }
440 }
441
442 /// Extract commands until `InitializationComplete`, and make the worker reflect those commands.
443 ///
444 /// This method is meant to be a function of the commands received thus far (as recorded in the
445 /// compute state command history) and the new commands from `command_rx`. It should not be a
446 /// function of other characteristics, like whether the worker has managed to respond to a peek
447 /// or not. Some effort goes in to narrowing our view to only the existing commands we can be sure
448 /// are live at all other workers.
449 ///
450 /// The methodology here is to drain `command_rx` until an `InitializationComplete`, at which point
451 /// the prior commands are "reconciled" in. Reconciliation takes each goal dataflow and looks for an
452 /// existing "compatible" dataflow (per `compatible()`) it can repurpose, with some additional tests
453 /// to be sure that we can cut over from one to the other (no additional compaction, no tails/sinks).
454 /// With any connections established, old orphaned dataflows are allow to compact away, and any new
455 /// dataflows are created from scratch. "Kept" dataflows are allowed to compact up to any new `as_of`.
456 ///
457 /// Some additional tidying happens, cleaning up pending peeks, reported frontiers, and creating a new
458 /// subscribe response buffer. We will need to be vigilant with future modifications to `ComputeState` to
459 /// line up changes there with clean resets here.
460 fn reconcile(&mut self) -> Result<(), EpochChange> {
461 // To initialize the connection, we want to drain all commands until we receive a
462 // `ComputeCommand::InitializationComplete` command to form a target command state.
463 let mut new_commands = Vec::new();
464 loop {
465 match self.recv_command()? {
466 ComputeCommand::InitializationComplete => break,
467 command => new_commands.push(command),
468 }
469 }
470
471 // Commands we will need to apply before entering normal service.
472 // These commands may include dropping existing dataflows, compacting existing dataflows,
473 // and creating new dataflows, in addition to standard peek and compaction commands.
474 // The result should be the same as if dropping all dataflows and running `new_commands`.
475 let mut todo_commands = Vec::new();
476 // We only have a compute history if we are in an initialized state
477 // (i.e. after a `CreateInstance`).
478 // If this is not the case, just copy `new_commands` into `todo_commands`.
479 if let Some(compute_state) = &mut self.compute_state {
480 // Reduce the installed commands.
481 // Importantly, act as if all peeks may have been retired (as we cannot know otherwise).
482 compute_state.command_history.discard_peeks();
483 compute_state.command_history.reduce();
484
485 // At this point, we need to sort out which of the *certainly installed* dataflows are
486 // suitable replacements for the requested dataflows. A dataflow is "certainly installed"
487 // as of a frontier if its compaction allows it to go no further. We ignore peeks for this
488 // reasoning, as we cannot be certain that peeks still exist at any other worker.
489
490 // Having reduced our installed command history retaining no peeks (above), we should be able
491 // to use track down installed dataflows we can use as surrogates for requested dataflows (which
492 // have retained all of their peeks, creating a more demanding `as_of` requirement).
493 // NB: installed dataflows may still be allowed to further compact, and we should double check
494 // this before being too confident. It should be rare without peeks, but could happen with e.g.
495 // multiple outputs of a dataflow.
496
497 // The values with which a prior `CreateInstance` was called, if it was.
498 let mut old_instance_config = None;
499 // Index dataflows by `export_ids().collect()`, as this is a precondition for their compatibility.
500 let mut old_dataflows = BTreeMap::default();
501 // Maintain allowed compaction, in case installed identifiers may have been allowed to compact.
502 let mut old_frontiers = BTreeMap::default();
503 for command in compute_state.command_history.iter() {
504 match command {
505 ComputeCommand::CreateInstance(config) => {
506 old_instance_config = Some(config);
507 }
508 ComputeCommand::CreateDataflow(dataflow) => {
509 let export_ids = dataflow.export_ids().collect::<BTreeSet<_>>();
510 old_dataflows.insert(export_ids, dataflow);
511 }
512 ComputeCommand::AllowCompaction { id, frontier } => {
513 old_frontiers.insert(id, frontier);
514 }
515 _ => {
516 // Nothing to do in these cases.
517 }
518 }
519 }
520
521 // Compaction commands that can be applied to existing dataflows.
522 let mut old_compaction = BTreeMap::default();
523 // Exported identifiers from dataflows we retain.
524 let mut retain_ids = BTreeSet::default();
525
526 // Traverse new commands, sorting out what remediation we can do.
527 for command in new_commands.iter() {
528 match command {
529 ComputeCommand::CreateDataflow(dataflow) => {
530 // Attempt to find an existing match for the dataflow.
531 let as_of = dataflow.as_of.as_ref().unwrap();
532 let export_ids = dataflow.export_ids().collect::<BTreeSet<_>>();
533
534 if let Some(old_dataflow) = old_dataflows.get(&export_ids) {
535 let compatible = old_dataflow.compatible_with(dataflow);
536 let uncompacted = !export_ids
537 .iter()
538 .flat_map(|id| old_frontiers.get(id))
539 .any(|frontier| {
540 !timely::PartialOrder::less_equal(
541 *frontier,
542 dataflow.as_of.as_ref().unwrap(),
543 )
544 });
545
546 // We cannot reconcile subscriptions at the moment, because the
547 // response buffer is shared, and to a first approximation must be
548 // completely reformed.
549 let subscribe_free = dataflow.subscribe_ids().next().is_none();
550
551 // If we have replaced any dependency of this dataflow, we need to
552 // replace this dataflow, to make it use the replacement.
553 let dependencies_retained = dataflow
554 .imported_index_ids()
555 .all(|id| retain_ids.contains(&id));
556
557 if compatible && uncompacted && subscribe_free && dependencies_retained
558 {
559 // Match found; remove the match from the deletion queue,
560 // and compact its outputs to the dataflow's `as_of`.
561 old_dataflows.remove(&export_ids);
562 for id in export_ids.iter() {
563 old_compaction.insert(*id, as_of.clone());
564 }
565 retain_ids.extend(export_ids);
566 } else {
567 warn!(
568 ?export_ids,
569 ?compatible,
570 ?uncompacted,
571 ?subscribe_free,
572 ?dependencies_retained,
573 old_as_of = ?old_dataflow.as_of,
574 new_as_of = ?as_of,
575 "dataflow reconciliation failed",
576 );
577 todo_commands
578 .push(ComputeCommand::CreateDataflow(dataflow.clone()));
579 }
580
581 compute_state.metrics.record_dataflow_reconciliation(
582 compatible,
583 uncompacted,
584 subscribe_free,
585 dependencies_retained,
586 );
587 } else {
588 todo_commands.push(ComputeCommand::CreateDataflow(dataflow.clone()));
589 }
590 }
591 ComputeCommand::CreateInstance(config) => {
592 // Cluster creation should not be performed again!
593 if old_instance_config.map_or(false, |old| !old.compatible_with(config)) {
594 halt!(
595 "new instance configuration not compatible with existing instance configuration:\n{:?}\nvs\n{:?}",
596 config,
597 old_instance_config,
598 );
599 }
600 }
601 // All other commands we apply as requested.
602 command => {
603 todo_commands.push(command.clone());
604 }
605 }
606 }
607
608 // Issue compaction commands first to reclaim resources.
609 for (_, dataflow) in old_dataflows.iter() {
610 for id in dataflow.export_ids() {
611 // We want to drop anything that has not yet been dropped,
612 // and nothing that has already been dropped.
613 if old_frontiers.get(&id) != Some(&&Antichain::new()) {
614 old_compaction.insert(id, Antichain::new());
615 }
616 }
617 }
618 for (&id, frontier) in &old_compaction {
619 let frontier = frontier.clone();
620 todo_commands.insert(0, ComputeCommand::AllowCompaction { id, frontier });
621 }
622
623 // Clean up worker-local state.
624 //
625 // Various aspects of `ComputeState` need to be either uninstalled, or return to a blank slate.
626 // All dropped dataflows should clean up after themselves, as we plan to install new dataflows
627 // re-using the same identifiers.
628 // All re-used dataflows should roll back any believed communicated information (e.g. frontiers)
629 // so that they recommunicate that information as if from scratch.
630
631 // Remove all pending peeks.
632 for (_, peek) in std::mem::take(&mut compute_state.pending_peeks) {
633 // Log dropping the peek request.
634 if let Some(logger) = compute_state.compute_logger.as_mut() {
635 logger.log(&peek.as_log_event(false));
636 }
637 }
638
639 // Clear the list of dropped collections.
640 // We intended to report their dropping, but the controller does not expect to hear
641 // about them anymore.
642 compute_state.dropped_collections = Default::default();
643
644 for (&id, collection) in compute_state.collections.iter_mut() {
645 // Adjust reported frontiers:
646 // * For dataflows we continue to use, reset to ensure we report something not
647 // before the new `as_of` next.
648 // * For dataflows we drop, set to the empty frontier, to ensure we don't report
649 // anything for them.
650 let retained = retain_ids.contains(&id);
651 let compaction = old_compaction.remove(&id);
652 let new_reported_frontier = match (retained, compaction) {
653 (true, Some(new_as_of)) => ReportedFrontier::NotReported { lower: new_as_of },
654 (true, None) => {
655 unreachable!("retained dataflows are compacted to the new as_of")
656 }
657 (false, Some(new_frontier)) => {
658 assert!(new_frontier.is_empty());
659 ReportedFrontier::Reported(new_frontier)
660 }
661 (false, None) => {
662 // Logging dataflows are implicitly retained and don't have a new as_of.
663 // Reset them to the minimal frontier.
664 ReportedFrontier::new()
665 }
666 };
667
668 collection.reset_reported_frontiers(new_reported_frontier);
669
670 // Sink tokens should be retained for retained dataflows, and dropped for dropped
671 // dataflows.
672 //
673 // Dropping the tokens of active subscribes makes them place `DroppedAt` responses
674 // into the subscribe response buffer. We drop that buffer in the next step, which
675 // ensures that we don't send out `DroppedAt` responses for subscribes dropped
676 // during reconciliation.
677 if !retained {
678 collection.sink_token = None;
679 }
680 }
681
682 // We must drop the subscribe response buffer as it is global across all subscribes.
683 // If it were broken out by `GlobalId` then we could drop only those of dataflows we drop.
684 compute_state.subscribe_response_buffer = Rc::new(RefCell::new(Vec::new()));
685
686 // The controller expects the logging collections to be readable from the minimum time
687 // initially. We cannot recreate the logging arrangements without restarting the
688 // instance, but we can pad the compacted times with empty data. Doing so is sound
689 // because logging collections from different replica incarnations are considered
690 // distinct TVCs, so the controller doesn't expect any historical consistency from
691 // these collections when it reconnects to a replica.
692 //
693 // TODO(database-issues#8152): Consider resolving this with controller-side reconciliation instead.
694 if let Some(config) = old_instance_config {
695 for id in config.logging.index_logs.values() {
696 let trace = compute_state
697 .traces
698 .remove(id)
699 .expect("logging trace exists");
700 let padded = trace.into_padded();
701 compute_state.traces.set(*id, padded);
702 }
703 }
704 } else {
705 todo_commands.clone_from(&new_commands);
706 }
707
708 // Execute the commands to bring us to `new_commands`.
709 for command in todo_commands.into_iter() {
710 self.handle_command(command);
711 }
712
713 // Overwrite `self.command_history` to reflect `new_commands`.
714 // It is possible that there still isn't a compute state yet.
715 if let Some(compute_state) = &mut self.compute_state {
716 let mut command_history = ComputeCommandHistory::new(self.metrics.for_history());
717 for command in new_commands.iter() {
718 command_history.push(command.clone());
719 }
720 compute_state.command_history = command_history;
721 }
722 Ok(())
723 }
724}
725
726/// Spawn a thread to bridge between [`ClusterClient`] and [`Worker`] channels.
727///
728/// The [`Worker`] expects a pair of persistent channels, with punctuation marking reconnects,
729/// while the [`ClusterClient`] provides a new pair of channels on each reconnect.
730fn spawn_channel_adapter(
731 client_rx: crossbeam_channel::Receiver<(
732 crossbeam_channel::Receiver<ComputeCommand>,
733 mpsc::UnboundedSender<ComputeResponse>,
734 )>,
735 command_tx: command_channel::Sender,
736 response_rx: crossbeam_channel::Receiver<(ComputeResponse, u64)>,
737 worker_id: usize,
738) {
739 thread::Builder::new()
740 // "cca" stands for "compute channel adapter". We need to shorten that because Linux has a
741 // 15-character limit for thread names.
742 .name(format!("cca-{worker_id}"))
743 .spawn(move || {
744 // To make workers aware of the individual client connections, we tag forwarded
745 // commands with an epoch that increases on every new client connection. Additionally,
746 // we use the epoch to filter out responses with a different epoch, which were intended
747 // for previous clients.
748 let mut epoch = 0;
749
750 // It's possible that we receive responses with epochs from the future: Worker 0 might
751 // have increased its epoch before us and broadcasted it to our Timely cluster. When we
752 // receive a response with a future epoch, we need to wait with forwarding it until we
753 // have increased our own epoch sufficiently (by observing new client connections). We
754 // need to stash the response in the meantime.
755 let mut stashed_response = None;
756
757 while let Ok((command_rx, response_tx)) = client_rx.recv() {
758 epoch += 1;
759
760 // Wait for a new response while forwarding received commands.
761 let serve_rx_channels = || loop {
762 crossbeam_channel::select! {
763 recv(command_rx) -> msg => match msg {
764 Ok(cmd) => command_tx.send((cmd, epoch)),
765 Err(_) => return Err(()),
766 },
767 recv(response_rx) -> msg => {
768 return Ok(msg.expect("worker connected"));
769 }
770 }
771 };
772
773 // Serve this connection until we see any of the channels disconnect.
774 loop {
775 let (resp, resp_epoch) = match stashed_response.take() {
776 Some(stashed) => stashed,
777 None => match serve_rx_channels() {
778 Ok(response) => response,
779 Err(()) => break,
780 },
781 };
782
783 if resp_epoch < epoch {
784 // Response for a previous connection; discard it.
785 continue;
786 } else if resp_epoch > epoch {
787 // Response for a future connection; stash it and reconnect.
788 stashed_response = Some((resp, resp_epoch));
789 break;
790 } else {
791 // Response for the current connection; forward it.
792 if response_tx.send(resp).is_err() {
793 break;
794 }
795 }
796 }
797 }
798 })
799 .unwrap();
800}