1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Remove redundant collections of distinct elements from joins.
//!
//! This analysis looks for joins in which one collection contains distinct
//! elements, and it can be determined that the join would only restrict the
//! results, and that the restriction is redundant (the other results would
//! not be reduced by the join).
//!
//! This type of optimization shows up often in subqueries, where distinct
//! collections are used in decorrelation, and afterwards often distinct
//! collections are then joined against the results.
// If statements seem a bit clearer in this case. Specialized methods
// that replace simple and common alternatives frustrate developers.
#![allow(clippy::comparison_chain, clippy::filter_next)]
use std::collections::BTreeMap;
use itertools::Itertools;
use mz_expr::visit::Visit;
use mz_expr::{Id, JoinInputMapper, LocalId, MirRelationExpr, MirScalarExpr, RECURSION_LIMIT};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_ore::{assert_none, soft_panic_or_log};
use crate::{all, TransformCtx};
/// Remove redundant collections of distinct elements from joins.
#[derive(Debug)]
pub struct RedundantJoin {
recursion_guard: RecursionGuard,
}
impl Default for RedundantJoin {
fn default() -> RedundantJoin {
RedundantJoin {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for RedundantJoin {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for RedundantJoin {
fn name(&self) -> &'static str {
"RedundantJoin"
}
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "redundant_join")
)]
fn actually_perform_transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let mut ctx = ProvInfoCtx::default();
ctx.extend_uses(relation);
let result = self.action(relation, &mut ctx);
mz_repr::explain::trace_plan(&*relation);
result.map(|_| ())
}
}
impl RedundantJoin {
/// Remove redundant collections of distinct elements from joins.
///
/// This method tracks "provenance" information for each collections,
/// those being column-wise relationships to identified collections
/// (either imported collections, or let-bound collections). These
/// relationships state that when projected on to these columns, the
/// records of the one collection are contained in the records of the
/// identified collection.
///
/// This provenance information is then used for the `MirRelationExpr::Join`
/// variant to remove "redundant" joins, those that can be determined to
/// neither restrict nor augment one of the input relations. Consult the
/// `find_redundancy` method and its documentation for more detail.
pub fn action(
&self,
relation: &mut MirRelationExpr,
ctx: &mut ProvInfoCtx,
) -> Result<Vec<ProvInfo>, crate::TransformError> {
let mut result = self.checked_recur(|_| {
match relation {
MirRelationExpr::Let { id, value, body } => {
// Recursively determine provenance of the value.
let value_prov = self.action(value, ctx)?;
// Clear uses from the just visited binding definition.
ctx.remove_uses(value);
// Extend the lets context with an entry for this binding.
let prov_old = ctx.insert(*id, value_prov);
assert_none!(prov_old, "No shadowing");
// Determine provenance of the body.
let result = self.action(body, ctx)?;
ctx.remove_uses(body);
// Remove the lets entry for this binding from the context.
ctx.remove(id);
Ok(result)
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
// As a first approximation, we naively extend the `lets`
// context with the empty vec![] for each id.
for id in ids.iter() {
let prov_old = ctx.insert(*id, vec![]);
assert_none!(prov_old, "No shadowing");
}
// In other words, we don't attempt to derive additional
// provenance information for a binding from its `value`.
//
// We descend into the values and the body with the naively
// extended context.
for value in values.iter_mut() {
self.action(value, ctx)?;
}
// Clear uses from the just visited recursive binding
// definitions.
for value in values.iter_mut() {
ctx.remove_uses(value);
}
let result = self.action(body, ctx)?;
ctx.remove_uses(body);
// Remove the lets entries for all ids.
for id in ids.iter() {
ctx.remove(id);
}
Ok(result)
}
MirRelationExpr::Get { id, typ, .. } => {
if let Id::Local(id) = id {
// Extract the value provenance (this should always exist).
let mut val_info = ctx.get(id).cloned().unwrap_or_else(|| {
soft_panic_or_log!("no ctx entry for LocalId {id}");
vec![]
});
// Add information about being exactly this let binding too.
val_info.push(ProvInfo::make_leaf(Id::Local(*id), typ.arity()));
Ok(val_info)
} else {
// Add information about being exactly this GlobalId reference.
Ok(vec![ProvInfo::make_leaf(*id, typ.arity())])
}
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} => {
// This logic first applies what it has learned about its input provenance,
// and if it finds a redundant join input it removes it. In that case, it
// also fails to produce exciting provenance information, partly out of
// laziness and the challenge of ensuring it is correct. Instead, if it is
// unable to find a redundant join it produces meaningful provenance information.
// Recursively apply transformation, and determine the provenance of inputs.
let mut input_prov = Vec::new();
for i in inputs.iter_mut() {
input_prov.push(self.action(i, ctx)?);
}
// Determine useful information about the structure of the inputs.
let mut input_types = inputs.iter().map(|i| i.typ()).collect::<Vec<_>>();
let old_input_mapper = JoinInputMapper::new_from_input_types(&input_types);
// If we find an input that can be removed, we should do so!
// We only do this once per invocation to keep our sanity, but we could
// rewrite it to iterate. We can avoid looking for any relation that
// does not have keys, as it cannot be redundant in that case.
if let Some((remove_input_idx, mut bindings)) = (0..input_types.len())
.rev()
.filter(|i| !input_types[*i].keys.is_empty())
.flat_map(|i| {
find_redundancy(
i,
&input_types[i].keys,
&old_input_mapper,
equivalences,
&input_prov[..],
)
.map(|b| (i, b))
})
.next()
{
// Clear uses from the removed input.
ctx.remove_uses(&inputs[remove_input_idx]);
inputs.remove(remove_input_idx);
input_types.remove(remove_input_idx);
// Update the column offsets in the binding expressions to catch
// up with the removal of `remove_input_idx`.
for expr in bindings.iter_mut() {
expr.visit_pre_mut(|e| {
if let MirScalarExpr::Column(c) = e {
let (_local_col, input_relation) =
old_input_mapper.map_column_to_local(*c);
if input_relation > remove_input_idx {
*c -= old_input_mapper.input_arity(remove_input_idx);
}
}
});
}
// Replace column references from `remove_input_idx` with the corresponding
// binding expression. Update the offsets of the column references
// from inputs after `remove_input_idx`.
for equivalence in equivalences.iter_mut() {
for expr in equivalence.iter_mut() {
expr.visit_mut_post(&mut |e| {
if let MirScalarExpr::Column(c) = e {
let (local_col, input_relation) =
old_input_mapper.map_column_to_local(*c);
if input_relation == remove_input_idx {
*e = bindings[local_col].clone();
} else if input_relation > remove_input_idx {
*c -= old_input_mapper.input_arity(remove_input_idx);
}
}
})?;
}
}
mz_expr::canonicalize::canonicalize_equivalences(
equivalences,
input_types.iter().map(|t| &t.column_types),
);
// Build a projection that leaves the binding expressions in the same
// position as the columns of the removed join input they are replacing.
let new_input_mapper = JoinInputMapper::new_from_input_types(&input_types);
let mut projection = Vec::new();
let new_join_arity = new_input_mapper.total_columns();
for i in 0..old_input_mapper.total_inputs() {
if i != remove_input_idx {
projection.extend(
new_input_mapper.global_columns(if i < remove_input_idx {
i
} else {
i - 1
}),
);
} else {
projection.extend(new_join_arity..new_join_arity + bindings.len());
}
}
// Unset implementation, as irrevocably hosed by this transformation.
*implementation = mz_expr::JoinImplementation::Unimplemented;
*relation = relation.take_dangerous().map(bindings).project(projection);
// The projection will gum up provenance reasoning anyhow, so don't work hard.
// We will return to this expression again with the same analysis.
Ok(Vec::new())
} else {
// Provenance information should be the union of input provenance information,
// with columns updated. Because rows may be dropped in the join, all `exact`
// bits should be un-set.
let mut results = Vec::new();
for (input, input_prov) in input_prov.into_iter().enumerate() {
for mut prov in input_prov {
prov.exact = false;
let mut projection = vec![None; old_input_mapper.total_columns()];
for (local_col, global_col) in
old_input_mapper.global_columns(input).enumerate()
{
projection[global_col]
.clone_from(&prov.dereferenced_projection[local_col]);
}
prov.dereferenced_projection = projection;
results.push(prov);
}
}
Ok(results)
}
}
MirRelationExpr::Filter { input, .. } => {
// Filter may drop records, and so we unset `exact`.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
prov.exact = false;
}
Ok(result)
}
MirRelationExpr::Map { input, scalars } => {
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
for scalar in scalars.iter() {
let dereferenced_scalar = prov.strict_dereference(scalar);
prov.dereferenced_projection.push(dereferenced_scalar);
}
}
Ok(result)
}
MirRelationExpr::Union { base, inputs } => {
let mut prov = self.action(base, ctx)?;
for input in inputs {
let input_prov = self.action(input, ctx)?;
// To merge a new list of provenances, we look at the cross
// produce of things we might know about each source.
// TODO(mcsherry): this can be optimized to use datastructures
// keyed by the source identifier.
let mut new_prov = Vec::new();
for l in prov {
new_prov.extend(input_prov.iter().flat_map(|r| l.meet(r)))
}
prov = new_prov;
}
Ok(prov)
}
MirRelationExpr::Constant { .. } => Ok(Vec::new()),
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
..
} => {
// Reduce yields its first few columns as a key, and produces
// all key tuples that were present in its input.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
let mut projection = group_key
.iter()
.map(|key| prov.strict_dereference(key))
.collect_vec();
projection.extend((0..aggregates.len()).map(|_| None));
prov.dereferenced_projection = projection;
}
// TODO: For min, max aggregates, we could preserve provenance
// if the expression references a column. We would need to un-set
// the `exact` bit in that case, and so we would want to keep both
// sets of provenance information.
Ok(result)
}
MirRelationExpr::Threshold { input } => {
// Threshold may drop records, and so we unset `exact`.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
prov.exact = false;
}
Ok(result)
}
MirRelationExpr::TopK { input, .. } => {
// TopK may drop records, and so we unset `exact`.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
prov.exact = false;
}
Ok(result)
}
MirRelationExpr::Project { input, outputs } => {
// Projections re-order, drop, and duplicate columns,
// but they neither drop rows nor invent values.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
let projection = outputs
.iter()
.map(|c| prov.dereference(&MirScalarExpr::Column(*c)))
.collect_vec();
prov.dereferenced_projection = projection;
}
Ok(result)
}
MirRelationExpr::FlatMap { input, func, .. } => {
// FlatMap may drop records, and so we unset `exact`.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
prov.exact = false;
prov.dereferenced_projection
.extend((0..func.output_type().column_types.len()).map(|_| None));
}
Ok(result)
}
MirRelationExpr::Negate { input } => {
// Negate does not guarantee that the multiplicity of
// each source record it at least one. This could have
// been a problem in `Union`, where we might report
// that the union of positive and negative records is
// "exact": cancellations would make this false.
let mut result = self.action(input, ctx)?;
for prov in result.iter_mut() {
prov.exact = false;
}
Ok(result)
}
MirRelationExpr::ArrangeBy { input, .. } => self.action(input, ctx),
}
})?;
result.retain(|info| !info.is_trivial());
// Uncomment the following lines to trace the individual steps:
// println!("{}", relation.pretty());
// println!("result = {result:?}");
// println!("lets: {lets:?}");
// println!("---------------------");
Ok(result)
}
}
/// A relationship between a collections columns and some source columns.
///
/// An instance of this type indicates that some of the bearer's columns
/// derive from `id`. In particular, the non-`None` elements in
/// `dereferenced_projection` correspond to columns that can be derived
/// from `id`'s projection.
///
/// The guarantee is that projected on to these columns, the distinct values
/// of the bearer are contained in the set of distinct values of projected
/// columns of `id`. In the case that `exact` is set, the two sets are equal.
#[derive(Clone, Debug, Ord, Eq, PartialOrd, PartialEq)]
pub struct ProvInfo {
/// The Id (local or global) of the source.
id: Id,
/// The projection of the bearer written in terms of the columns projected
/// by the underlying Get operator. Set to `None` for columns that cannot
/// be expressed as scalar expression referencing only columns of the
/// underlying Get operator.
dereferenced_projection: Vec<Option<MirScalarExpr>>,
/// If true, all distinct projected source rows are present in the rows of
/// the projection of the current collection. This constraint is lost as soon
/// as a transformation may drop records.
exact: bool,
}
impl ProvInfo {
fn make_leaf(id: Id, arity: usize) -> Self {
Self {
id,
dereferenced_projection: (0..arity)
.map(|c| Some(MirScalarExpr::column(c)))
.collect::<Vec<_>>(),
exact: true,
}
}
/// Rewrite `expr` so it refers to the columns of the original source instead
/// of the columns of the projected source.
fn dereference(&self, expr: &MirScalarExpr) -> Option<MirScalarExpr> {
match expr {
MirScalarExpr::Column(c) => {
if let Some(expr) = &self.dereferenced_projection[*c] {
Some(expr.clone())
} else {
None
}
}
MirScalarExpr::CallUnary { func, expr } => self.dereference(expr).and_then(|expr| {
Some(MirScalarExpr::CallUnary {
func: func.clone(),
expr: Box::new(expr),
})
}),
MirScalarExpr::CallBinary { func, expr1, expr2 } => {
self.dereference(expr1).and_then(|expr1| {
self.dereference(expr2).and_then(|expr2| {
Some(MirScalarExpr::CallBinary {
func: func.clone(),
expr1: Box::new(expr1),
expr2: Box::new(expr2),
})
})
})
}
MirScalarExpr::CallVariadic { func, exprs } => {
let new_exprs = exprs.iter().flat_map(|e| self.dereference(e)).collect_vec();
if new_exprs.len() == exprs.len() {
Some(MirScalarExpr::CallVariadic {
func: func.clone(),
exprs: new_exprs,
})
} else {
None
}
}
MirScalarExpr::Literal(..) | MirScalarExpr::CallUnmaterializable(..) => {
Some(expr.clone())
}
MirScalarExpr::If { cond, then, els } => self.dereference(cond).and_then(|cond| {
self.dereference(then).and_then(|then| {
self.dereference(els).and_then(|els| {
Some(MirScalarExpr::If {
cond: Box::new(cond),
then: Box::new(then),
els: Box::new(els),
})
})
})
}),
}
}
/// Like `dereference` but only returns expressions that actually depend on
/// the original source.
fn strict_dereference(&self, expr: &MirScalarExpr) -> Option<MirScalarExpr> {
let derefed = self.dereference(expr);
match derefed {
Some(ref expr) if !expr.support().is_empty() => derefed,
_ => None,
}
}
/// Merge two constraints to find a constraint that satisfies both inputs.
///
/// This method returns nothing if no columns are in common (either because
/// difference sources are identified, or just no columns in common) and it
/// intersects bindings and the `exact` bit.
fn meet(&self, other: &Self) -> Option<Self> {
if self.id == other.id {
let resulting_projection = self
.dereferenced_projection
.iter()
.zip(other.dereferenced_projection.iter())
.map(|(e1, e2)| if e1 == e2 { e1.clone() } else { None })
.collect_vec();
if resulting_projection.iter().any(|e| e.is_some()) {
Some(ProvInfo {
id: self.id,
dereferenced_projection: resulting_projection,
exact: self.exact && other.exact,
})
} else {
None
}
} else {
None
}
}
/// Check if all entries of the dereferenced projection are missing.
///
/// If this is the case keeping the `ProvInfo` entry around is meaningless.
fn is_trivial(&self) -> bool {
all![
!self.dereferenced_projection.is_empty(),
self.dereferenced_projection.iter().all(|x| x.is_none()),
]
}
}
/// Attempts to find column bindings that make `input` redundant.
///
/// This method attempts to determine that `input` may be redundant by searching
/// the join structure for another relation `other` with provenance that contains some
/// provenance of `input`, and keys for `input` that are equated by the join to the
/// corresponding columns of `other` under their provenance. The `input` provenance
/// must also have its `exact` bit set.
///
/// In these circumstances, the claim is that because the key columns are equated and
/// determine non-key columns, any matches between `input` and
/// `other` will neither introduce new information to `other`, nor restrict the rows
/// of `other`, nor alter their multplicity.
fn find_redundancy(
input: usize,
keys: &[Vec<usize>],
input_mapper: &JoinInputMapper,
equivalences: &[Vec<MirScalarExpr>],
input_provs: &[Vec<ProvInfo>],
) -> Option<Vec<MirScalarExpr>> {
// Whether the `equivalence` contains an expression that only references
// `input` that leads to the same as `root_expr` once dereferenced.
let contains_equivalent_expr_from_input = |equivalence: &[MirScalarExpr],
root_expr: &MirScalarExpr,
input: usize,
provenance: &ProvInfo|
-> bool {
equivalence.iter().any(|expr| {
Some(input) == input_mapper.single_input(expr)
&& provenance
.dereference(&input_mapper.map_expr_to_local(expr.clone()))
.as_ref()
== Some(root_expr)
})
};
for input_prov in input_provs[input].iter() {
// We can only elide if the input contains all records, and binds all columns.
if input_prov.exact
&& input_prov
.dereferenced_projection
.iter()
.all(|e| e.is_some())
{
// examine all *other* inputs that have not been removed...
for other in (0..input_mapper.total_inputs()).filter(|other| other != &input) {
for other_prov in input_provs[other].iter().filter(|p| p.id == input_prov.id) {
let all_key_columns_equated = |key: &Vec<usize>| {
key.iter().all(|key_col| {
// The root expression behind the key column, ie.
// the expression re-written in terms of elements in
// the projection of the Get operator.
let root_expr =
input_prov.dereference(&MirScalarExpr::column(*key_col));
// Check if there is a join equivalence that joins
// 'input' and 'other' on expressions that lead to
// the same root expression as the key column.
root_expr.as_ref().map_or(false, |root_expr| {
equivalences.iter().any(|equivalence| {
all![
contains_equivalent_expr_from_input(
equivalence,
root_expr,
input,
input_prov,
),
contains_equivalent_expr_from_input(
equivalence,
root_expr,
other,
other_prov,
),
]
})
})
})
};
// Find an unique key for input that has all columns equated to other.
if keys.iter().any(all_key_columns_equated) {
// Find out whether we can produce input's projection strictly with
// elements in other's projection.
let expressions = input_prov
.dereferenced_projection
.iter()
.enumerate()
.flat_map(|(c, _)| {
// Check if the expression under input's 'c' column can be built
// with elements in other's projection.
input_prov.dereferenced_projection[c].as_ref().map_or(
None,
|root_expr| {
try_build_expression_using_other(
root_expr,
other,
other_prov,
input_mapper,
)
},
)
})
.collect_vec();
if expressions.len() == input_prov.dereferenced_projection.len() {
return Some(expressions);
}
}
}
}
}
}
None
}
/// Tries to build `root_expr` using elements from other's projection.
fn try_build_expression_using_other(
root_expr: &MirScalarExpr,
other: usize,
other_prov: &ProvInfo,
input_mapper: &JoinInputMapper,
) -> Option<MirScalarExpr> {
if root_expr.is_literal() {
return Some(root_expr.clone());
}
// Check if 'other' projects a column that lead to `root_expr`.
for (other_col, derefed) in other_prov.dereferenced_projection.iter().enumerate() {
if let Some(derefed) = derefed {
if derefed == root_expr {
return Some(MirScalarExpr::Column(
input_mapper.map_column_to_global(other_col, other),
));
}
}
}
// Otherwise, try to build root_expr's sub-expressions recursively
// other's projection.
match root_expr {
MirScalarExpr::Column(_) => None,
MirScalarExpr::CallUnary { func, expr } => {
try_build_expression_using_other(expr, other, other_prov, input_mapper).and_then(
|expr| {
Some(MirScalarExpr::CallUnary {
func: func.clone(),
expr: Box::new(expr),
})
},
)
}
MirScalarExpr::CallBinary { func, expr1, expr2 } => {
try_build_expression_using_other(expr1, other, other_prov, input_mapper).and_then(
|expr1| {
try_build_expression_using_other(expr2, other, other_prov, input_mapper)
.and_then(|expr2| {
Some(MirScalarExpr::CallBinary {
func: func.clone(),
expr1: Box::new(expr1),
expr2: Box::new(expr2),
})
})
},
)
}
MirScalarExpr::CallVariadic { func, exprs } => {
let new_exprs = exprs
.iter()
.flat_map(|e| try_build_expression_using_other(e, other, other_prov, input_mapper))
.collect_vec();
if new_exprs.len() == exprs.len() {
Some(MirScalarExpr::CallVariadic {
func: func.clone(),
exprs: new_exprs,
})
} else {
None
}
}
MirScalarExpr::Literal(..) | MirScalarExpr::CallUnmaterializable(..) => {
Some(root_expr.clone())
}
MirScalarExpr::If { cond, then, els } => {
try_build_expression_using_other(cond, other, other_prov, input_mapper).and_then(
|cond| {
try_build_expression_using_other(then, other, other_prov, input_mapper)
.and_then(|then| {
try_build_expression_using_other(els, other, other_prov, input_mapper)
.and_then(|els| {
Some(MirScalarExpr::If {
cond: Box::new(cond),
then: Box::new(then),
els: Box::new(els),
})
})
})
},
)
}
}
}
/// A context of `ProvInfo` vectors associated with bindings that might still be
/// referenced.
#[derive(Debug, Default)]
pub struct ProvInfoCtx {
/// [`LocalId`] references in the remaining subtree.
///
/// Entries from the `lets` map that are no longer used can be pruned.
uses: BTreeMap<LocalId, usize>,
/// [`ProvInfo`] vectors associated with let binding in scope.
lets: BTreeMap<LocalId, Vec<ProvInfo>>,
}
impl ProvInfoCtx {
/// Extend the `uses` map by the `LocalId`s used in `expr`.
pub fn extend_uses(&mut self, expr: &MirRelationExpr) {
expr.visit_pre(&mut |expr: &MirRelationExpr| match expr {
MirRelationExpr::Get {
id: Id::Local(id), ..
} => {
let count = self.uses.entry(id.clone()).or_insert(0_usize);
*count += 1;
}
_ => (),
});
}
/// Decrement `uses` entries by the `LocalId`s used in `expr` and remove
/// `lets` entries for `uses` that reset to zero.
pub fn remove_uses(&mut self, expr: &MirRelationExpr) {
let mut worklist = vec![expr];
while let Some(expr) = worklist.pop() {
if let MirRelationExpr::Get {
id: Id::Local(id), ..
} = expr
{
if let Some(count) = self.uses.get_mut(id) {
if *count > 0 {
*count -= 1;
}
if *count == 0 {
if self.lets.remove(id).is_none() {
soft_panic_or_log!("ctx.lets[{id}] should exist");
}
}
} else {
soft_panic_or_log!("ctx.uses[{id}] should exist");
}
}
match expr {
MirRelationExpr::Let { .. } | MirRelationExpr::LetRec { .. } => {
// When traversing the tree, don't descend into
// `Let`/`LetRec` sub-terms in order to avoid double
// counting (those are handled by remove_uses calls of
// RedundantJoin::action on subterms that were already
// visited because the action works bottom-up).
}
_ => {
worklist.extend(expr.children().rev());
}
}
}
}
/// Get the `ProvInfo` vector for `id` from the context.
pub fn get(&self, id: &LocalId) -> Option<&Vec<ProvInfo>> {
self.lets.get(id)
}
/// Extend the context with the `id: prov_infos` entry.
pub fn insert(&mut self, id: LocalId, prov_infos: Vec<ProvInfo>) -> Option<Vec<ProvInfo>> {
self.lets.insert(id, prov_infos)
}
/// Remove the entry identified by `id` from the context.
pub fn remove(&mut self, id: &LocalId) -> Option<Vec<ProvInfo>> {
self.lets.remove(id)
}
}