differential_dataflow/collection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
//! Types and traits associated with collections of data.
//!
//! The `Collection` type is differential dataflow's core abstraction for an updatable pile of data.
//!
//! Most differential dataflow programs are "collection-oriented", in the sense that they transform
//! one collection into another, using operators defined on collections. This contrasts with a more
//! imperative programming style, in which one might iterate through the contents of a collection
//! manually. The higher-level of programming allows differential dataflow to provide efficient
//! implementations, and to support efficient incremental updates to the collections.
use std::hash::Hash;
use timely::Container;
use timely::Data;
use timely::progress::Timestamp;
use timely::order::Product;
use timely::dataflow::scopes::{Child, child::Iterative};
use timely::dataflow::Scope;
use timely::dataflow::operators::*;
use timely::dataflow::StreamCore;
use crate::difference::{Semigroup, Abelian, Multiply};
use crate::lattice::Lattice;
use crate::hashable::Hashable;
/// A mutable collection of values of type `D`
///
/// The `Collection` type is the core abstraction in differential dataflow programs. As you write your
/// differential dataflow computation, you write as if the collection is a static dataset to which you
/// apply functional transformations, creating new collections. Once your computation is written, you
/// are able to mutate the collection (by inserting and removing elements); differential dataflow will
/// propagate changes through your functional computation and report the corresponding changes to the
/// output collections.
///
/// Each collection has three generic parameters. The parameter `G` is for the scope in which the
/// collection exists; as you write more complicated programs you may wish to introduce nested scopes
/// (e.g. for iteration) and this parameter tracks the scope (for timely dataflow's benefit). The `D`
/// parameter is the type of data in your collection, for example `String`, or `(u32, Vec<Option<()>>)`.
/// The `R` parameter represents the types of changes that the data undergo, and is most commonly (and
/// defaults to) `isize`, representing changes to the occurrence count of each record.
#[derive(Clone)]
pub struct Collection<G: Scope, D, R = isize, C = Vec<(D, <G as ScopeParent>::Timestamp, R)>> {
/// The underlying timely dataflow stream.
///
/// This field is exposed to support direct timely dataflow manipulation when required, but it is
/// not intended to be the idiomatic way to work with the collection.
pub inner: timely::dataflow::StreamCore<G, C>,
/// Phantom data for unreferenced `D` and `R` types.
phantom: std::marker::PhantomData<(D, R)>,
}
impl<G: Scope, D, R, C> Collection<G, D, R, C> {
/// Creates a new Collection from a timely dataflow stream.
///
/// This method seems to be rarely used, with the `as_collection` method on streams being a more
/// idiomatic approach to convert timely streams to collections. Also, the `input::Input` trait
/// provides a `new_collection` method which will create a new collection for you without exposing
/// the underlying timely stream at all.
pub fn new(stream: StreamCore<G, C>) -> Collection<G, D, R, C> {
Collection { inner: stream, phantom: std::marker::PhantomData }
}
}
impl<G: Scope, D, R, C: Container> Collection<G, D, R, C> {
/// Creates a new collection accumulating the contents of the two collections.
///
/// Despite the name, differential dataflow collections are unordered. This method is so named because the
/// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
/// two collections.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let odds = data.filter(|x| x % 2 == 1);
/// let evens = data.filter(|x| x % 2 == 0);
///
/// odds.concat(&evens)
/// .assert_eq(&data);
/// });
/// ```
pub fn concat(&self, other: &Self) -> Self {
self.inner
.concat(&other.inner)
.as_collection()
}
/// Creates a new collection accumulating the contents of the two collections.
///
/// Despite the name, differential dataflow collections are unordered. This method is so named because the
/// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
/// two collections.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let odds = data.filter(|x| x % 2 == 1);
/// let evens = data.filter(|x| x % 2 == 0);
///
/// odds.concatenate(Some(evens))
/// .assert_eq(&data);
/// });
/// ```
pub fn concatenate<I>(&self, sources: I) -> Self
where
I: IntoIterator<Item=Self>
{
self.inner
.concatenate(sources.into_iter().map(|x| x.inner))
.as_collection()
}
// Brings a Collection into a nested region.
///
/// This method is a specialization of `enter` to the case where the nested scope is a region.
/// It removes the need for an operator that adjusts the timestamp.
pub fn enter_region<'a>(&self, child: &Child<'a, G, <G as ScopeParent>::Timestamp>) -> Collection<Child<'a, G, <G as ScopeParent>::Timestamp>, D, R, C> {
self.inner
.enter(child)
.as_collection()
}
/// Applies a supplied function to each batch of updates.
///
/// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
/// timely dataflow capability associated with the batch of updates. The observed batching depends
/// on how the system executes, and may vary run to run.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map_in_place(|x| *x *= 2)
/// .filter(|x| x % 2 == 1)
/// .inspect_container(|event| println!("event: {:?}", event));
/// });
/// ```
pub fn inspect_container<F>(&self, func: F) -> Self
where F: FnMut(Result<(&G::Timestamp, &C), &[G::Timestamp]>)+'static {
self.inner
.inspect_container(func)
.as_collection()
}
/// Attaches a timely dataflow probe to the output of a Collection.
///
/// This probe is used to determine when the state of the Collection has stabilized and can
/// be read out.
pub fn probe(&self) -> probe::Handle<G::Timestamp> {
self.inner
.probe()
}
/// Attaches a timely dataflow probe to the output of a Collection.
///
/// This probe is used to determine when the state of the Collection has stabilized and all updates observed.
/// In addition, a probe is also often use to limit the number of rounds of input in flight at any moment; a
/// computation can wait until the probe has caught up to the input before introducing more rounds of data, to
/// avoid swamping the system.
pub fn probe_with(&self, handle: &mut probe::Handle<G::Timestamp>) -> Self {
Self::new(self.inner.probe_with(handle))
}
/// The scope containing the underlying timely dataflow stream.
pub fn scope(&self) -> G {
self.inner.scope()
}
}
impl<G: Scope, D: Clone+'static, R: Clone+'static> Collection<G, D, R> {
/// Creates a new collection by applying the supplied function to each input element.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map(|x| x * 2)
/// .filter(|x| x % 2 == 1)
/// .assert_empty();
/// });
/// ```
pub fn map<D2, L>(&self, mut logic: L) -> Collection<G, D2, R>
where D2: Data,
L: FnMut(D) -> D2 + 'static
{
self.inner
.map(move |(data, time, delta)| (logic(data), time, delta))
.as_collection()
}
/// Creates a new collection by applying the supplied function to each input element.
///
/// Although the name suggests in-place mutation, this function does not change the source collection,
/// but rather re-uses the underlying allocations in its implementation. The method is semantically
/// equivalent to `map`, but can be more efficient.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map_in_place(|x| *x *= 2)
/// .filter(|x| x % 2 == 1)
/// .assert_empty();
/// });
/// ```
pub fn map_in_place<L>(&self, mut logic: L) -> Collection<G, D, R>
where L: FnMut(&mut D) + 'static {
self.inner
.map_in_place(move |&mut (ref mut data, _, _)| logic(data))
.as_collection()
}
/// Creates a new collection by applying the supplied function to each input element and accumulating the results.
///
/// This method extracts an iterator from each input element, and extracts the full contents of the iterator. Be
/// warned that if the iterators produce substantial amounts of data, they are currently fully drained before
/// attempting to consolidate the results.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .flat_map(|x| 0 .. x);
/// });
/// ```
pub fn flat_map<I, L>(&self, mut logic: L) -> Collection<G, I::Item, R>
where G::Timestamp: Clone,
I: IntoIterator,
I::Item: Data,
L: FnMut(D) -> I + 'static {
self.inner
.flat_map(move |(data, time, delta)| logic(data).into_iter().map(move |x| (x, time.clone(), delta.clone())))
.as_collection()
}
/// Creates a new collection containing those input records satisfying the supplied predicate.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map(|x| x * 2)
/// .filter(|x| x % 2 == 1)
/// .assert_empty();
/// });
/// ```
pub fn filter<L>(&self, mut logic: L) -> Collection<G, D, R>
where L: FnMut(&D) -> bool + 'static {
self.inner
.filter(move |(data, _, _)| logic(data))
.as_collection()
}
/// Replaces each record with another, with a new difference type.
///
/// This method is most commonly used to take records containing aggregatable data (e.g. numbers to be summed)
/// and move the data into the difference component. This will allow differential dataflow to update in-place.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let nums = scope.new_collection_from(0 .. 10).1;
/// let x1 = nums.flat_map(|x| 0 .. x);
/// let x2 = nums.map(|x| (x, 9 - x))
/// .explode(|(x,y)| Some((x,y)));
///
/// x1.assert_eq(&x2);
/// });
/// ```
pub fn explode<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
where D2: Data,
R2: Semigroup+Multiply<R>,
<R2 as Multiply<R>>::Output: Semigroup+'static,
I: IntoIterator<Item=(D2,R2)>,
L: FnMut(D)->I+'static,
{
self.inner
.flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,d2)| (x, t.clone(), d2.multiply(&d))))
.as_collection()
}
/// Joins each record against a collection defined by the function `logic`.
///
/// This method performs what is essentially a join with the collection of records `(x, logic(x))`.
/// Rather than materialize this second relation, `logic` is applied to each record and the appropriate
/// modifications made to the results, namely joining timestamps and multiplying differences.
///
/// #Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// // creates `x` copies of `2*x` from time `3*x` until `4*x`,
/// // for x from 0 through 9.
/// scope.new_collection_from(0 .. 10isize).1
/// .join_function(|x|
/// // data time diff
/// vec![(2*x, (3*x) as u64, x),
/// (2*x, (4*x) as u64, -x)]
/// );
/// });
/// ```
pub fn join_function<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
where G::Timestamp: Lattice,
D2: Data,
R2: Semigroup+Multiply<R>,
<R2 as Multiply<R>>::Output: Semigroup+'static,
I: IntoIterator<Item=(D2,G::Timestamp,R2)>,
L: FnMut(D)->I+'static,
{
self.inner
.flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,t2,d2)| (x, t.join(&t2), d2.multiply(&d))))
.as_collection()
}
/// Brings a Collection into a nested scope.
///
/// # Examples
///
/// ```
/// use timely::dataflow::Scope;
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let result = scope.region(|child| {
/// data.enter(child)
/// .leave()
/// });
///
/// data.assert_eq(&result);
/// });
/// ```
pub fn enter<'a, T>(&self, child: &Child<'a, G, T>) -> Collection<Child<'a, G, T>, D, R>
where
T: Refines<<G as ScopeParent>::Timestamp>,
{
self.inner
.enter(child)
.map(|(data, time, diff)| (data, T::to_inner(time), diff))
.as_collection()
}
/// Brings a Collection into a nested scope, at varying times.
///
/// The `initial` function indicates the time at which each element of the Collection should appear.
///
/// # Examples
///
/// ```
/// use timely::dataflow::Scope;
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let result = scope.iterative::<u64,_,_>(|child| {
/// data.enter_at(child, |x| *x)
/// .leave()
/// });
///
/// data.assert_eq(&result);
/// });
/// ```
pub fn enter_at<'a, T, F>(&self, child: &Iterative<'a, G, T>, mut initial: F) -> Collection<Iterative<'a, G, T>, D, R>
where
T: Timestamp+Hash,
F: FnMut(&D) -> T + Clone + 'static,
G::Timestamp: Hash,
{
self.inner
.enter(child)
.map(move |(data, time, diff)| {
let new_time = Product::new(time, initial(&data));
(data, new_time, diff)
})
.as_collection()
}
/// Delays each difference by a supplied function.
///
/// It is assumed that `func` only advances timestamps; this is not verified, and things may go horribly
/// wrong if that assumption is incorrect. It is also critical that `func` be monotonic: if two times are
/// ordered, they should have the same order once `func` is applied to them (this is because we advance the
/// timely capability with the same logic, and it must remain `less_equal` to all of the data timestamps).
pub fn delay<F>(&self, func: F) -> Collection<G, D, R>
where F: FnMut(&G::Timestamp) -> G::Timestamp + Clone + 'static {
let mut func1 = func.clone();
let mut func2 = func.clone();
self.inner
.delay_batch(move |x| func1(x))
.map_in_place(move |x| x.1 = func2(&x.1))
.as_collection()
}
/// Applies a supplied function to each update.
///
/// This method is most commonly used to report information back to the user, often for debugging purposes.
/// Any function can be used here, but be warned that the incremental nature of differential dataflow does
/// not guarantee that it will be called as many times as you might expect.
///
/// The `(data, time, diff)` triples indicate a change `diff` to the frequency of `data` which takes effect
/// at the logical time `time`. When times are totally ordered (for example, `usize`), these updates reflect
/// the changes along the sequence of collections. For partially ordered times, the mathematics are more
/// interesting and less intuitive, unfortunately.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map_in_place(|x| *x *= 2)
/// .filter(|x| x % 2 == 1)
/// .inspect(|x| println!("error: {:?}", x));
/// });
/// ```
pub fn inspect<F>(&self, func: F) -> Collection<G, D, R>
where F: FnMut(&(D, G::Timestamp, R))+'static {
self.inner
.inspect(func)
.as_collection()
}
/// Applies a supplied function to each batch of updates.
///
/// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
/// timely dataflow capability associated with the batch of updates. The observed batching depends
/// on how the system executes, and may vary run to run.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map_in_place(|x| *x *= 2)
/// .filter(|x| x % 2 == 1)
/// .inspect_batch(|t,xs| println!("errors @ {:?}: {:?}", t, xs));
/// });
/// ```
pub fn inspect_batch<F>(&self, mut func: F) -> Collection<G, D, R>
where F: FnMut(&G::Timestamp, &[(D, G::Timestamp, R)])+'static {
self.inner
.inspect_batch(move |time, data| func(time, data))
.as_collection()
}
/// Assert if the collection is ever non-empty.
///
/// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
/// is not run, or not run to completion, there may be un-exercised times at which the collection could be
/// non-empty. Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a
/// program should indicate that this assertion never found cause to complain.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
/// scope.new_collection_from(1 .. 10).1
/// .map(|x| x * 2)
/// .filter(|x| x % 2 == 1)
/// .assert_empty();
/// });
/// ```
pub fn assert_empty(&self)
where D: crate::ExchangeData+Hashable,
R: crate::ExchangeData+Hashable + Semigroup,
G::Timestamp: Lattice+Ord,
{
self.consolidate()
.inspect(|x| panic!("Assertion failed: non-empty collection: {:?}", x));
}
}
use timely::dataflow::scopes::ScopeParent;
use timely::progress::timestamp::Refines;
/// Methods requiring a nested scope.
impl<'a, G: Scope, T: Timestamp, D: Clone+'static, R: Clone+'static> Collection<Child<'a, G, T>, D, R>
where
T: Refines<<G as ScopeParent>::Timestamp>,
{
/// Returns the final value of a Collection from a nested scope to its containing scope.
///
/// # Examples
///
/// ```
/// use timely::dataflow::Scope;
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let result = scope.region(|child| {
/// data.enter(child)
/// .leave()
/// });
///
/// data.assert_eq(&result);
/// });
/// ```
pub fn leave(&self) -> Collection<G, D, R> {
self.inner
.leave()
.map(|(data, time, diff)| (data, time.to_outer(), diff))
.as_collection()
}
}
/// Methods requiring a region as the scope.
impl<'a, G: Scope, D: Clone+'static, R: Clone+'static> Collection<Child<'a, G, G::Timestamp>, D, R>
{
/// Returns the value of a Collection from a nested region to its containing scope.
///
/// This method is a specialization of `leave` to the case that of a nested region.
/// It removes the need for an operator that adjusts the timestamp.
pub fn leave_region(&self) -> Collection<G, D, R> {
self.inner
.leave()
.as_collection()
}
}
/// Methods requiring an Abelian difference, to support negation.
impl<G: Scope, D: Clone+'static, R: Abelian+'static> Collection<G, D, R> where G::Timestamp: Data {
/// Creates a new collection whose counts are the negation of those in the input.
///
/// This method is most commonly used with `concat` to get those element in one collection but not another.
/// However, differential dataflow computations are still defined for all values of the difference type `R`,
/// including negative counts.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let odds = data.filter(|x| x % 2 == 1);
/// let evens = data.filter(|x| x % 2 == 0);
///
/// odds.negate()
/// .concat(&data)
/// .assert_eq(&evens);
/// });
/// ```
pub fn negate(&self) -> Collection<G, D, R> {
self.inner
.map_in_place(|x| x.2.negate())
.as_collection()
}
/// Assert if the collections are ever different.
///
/// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
/// is not run, or not run to completion, there may be un-exercised times at which the collections could vary.
/// Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a program should
/// indicate that this assertion never found cause to complain.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let odds = data.filter(|x| x % 2 == 1);
/// let evens = data.filter(|x| x % 2 == 0);
///
/// odds.concat(&evens)
/// .assert_eq(&data);
/// });
/// ```
pub fn assert_eq(&self, other: &Self)
where D: crate::ExchangeData+Hashable,
R: crate::ExchangeData+Hashable,
G::Timestamp: Lattice+Ord
{
self.negate()
.concat(other)
.assert_empty();
}
}
/// Conversion to a differential dataflow Collection.
pub trait AsCollection<G: Scope, D, R, C> {
/// Converts the type to a differential dataflow collection.
fn as_collection(&self) -> Collection<G, D, R, C>;
}
impl<G: Scope, D, R, C: Clone> AsCollection<G, D, R, C> for StreamCore<G, C> {
fn as_collection(&self) -> Collection<G, D, R, C> {
Collection::<G,D,R,C>::new(self.clone())
}
}
/// Concatenates multiple collections.
///
/// This method has the effect of a sequence of calls to `concat`, but it does
/// so in one operator rather than a chain of many operators.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
/// let data = scope.new_collection_from(1 .. 10).1;
///
/// let odds = data.filter(|x| x % 2 == 1);
/// let evens = data.filter(|x| x % 2 == 0);
///
/// differential_dataflow::collection::concatenate(scope, vec![odds, evens])
/// .assert_eq(&data);
/// });
/// ```
pub fn concatenate<G, D, R, C, I>(scope: &mut G, iterator: I) -> Collection<G, D, R, C>
where
G: Scope,
D: Data,
R: Semigroup+'static,
C: Container,
I: IntoIterator<Item=Collection<G, D, R, C>>,
{
scope
.concatenate(iterator.into_iter().map(|x| x.inner))
.as_collection()
}