differential_dataflow/
collection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
//! Types and traits associated with collections of data.
//!
//! The `Collection` type is differential dataflow's core abstraction for an updatable pile of data.
//!
//! Most differential dataflow programs are "collection-oriented", in the sense that they transform
//! one collection into another, using operators defined on collections. This contrasts with a more
//! imperative programming style, in which one might iterate through the contents of a collection
//! manually. The higher-level of programming allows differential dataflow to provide efficient
//! implementations, and to support efficient incremental updates to the collections.

use std::hash::Hash;

use timely::Container;
use timely::Data;
use timely::progress::Timestamp;
use timely::order::Product;
use timely::dataflow::scopes::{Child, child::Iterative};
use timely::dataflow::Scope;
use timely::dataflow::operators::*;
use timely::dataflow::StreamCore;

use crate::difference::{Semigroup, Abelian, Multiply};
use crate::lattice::Lattice;
use crate::hashable::Hashable;

/// A mutable collection of values of type `D`
///
/// The `Collection` type is the core abstraction in differential dataflow programs. As you write your
/// differential dataflow computation, you write as if the collection is a static dataset to which you
/// apply functional transformations, creating new collections. Once your computation is written, you
/// are able to mutate the collection (by inserting and removing elements); differential dataflow will
/// propagate changes through your functional computation and report the corresponding changes to the
/// output collections.
///
/// Each collection has three generic parameters. The parameter `G` is for the scope in which the
/// collection exists; as you write more complicated programs you may wish to introduce nested scopes
/// (e.g. for iteration) and this parameter tracks the scope (for timely dataflow's benefit). The `D`
/// parameter is the type of data in your collection, for example `String`, or `(u32, Vec<Option<()>>)`.
/// The `R` parameter represents the types of changes that the data undergo, and is most commonly (and
/// defaults to) `isize`, representing changes to the occurrence count of each record.
#[derive(Clone)]
pub struct Collection<G: Scope, D, R = isize, C = Vec<(D, <G as ScopeParent>::Timestamp, R)>> {
    /// The underlying timely dataflow stream.
    ///
    /// This field is exposed to support direct timely dataflow manipulation when required, but it is
    /// not intended to be the idiomatic way to work with the collection.
    pub inner: timely::dataflow::StreamCore<G, C>,
    /// Phantom data for unreferenced `D` and `R` types.
    phantom: std::marker::PhantomData<(D, R)>,
}

impl<G: Scope, D, R, C> Collection<G, D, R, C> {
    /// Creates a new Collection from a timely dataflow stream.
    ///
    /// This method seems to be rarely used, with the `as_collection` method on streams being a more
    /// idiomatic approach to convert timely streams to collections. Also, the `input::Input` trait
    /// provides a `new_collection` method which will create a new collection for you without exposing
    /// the underlying timely stream at all.
    pub fn new(stream: StreamCore<G, C>) -> Collection<G, D, R, C> {
        Collection { inner: stream, phantom: std::marker::PhantomData }
    }
}
impl<G: Scope, D, R, C: Container> Collection<G, D, R, C> {
    /// Creates a new collection accumulating the contents of the two collections.
    ///
    /// Despite the name, differential dataflow collections are unordered. This method is so named because the
    /// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
    /// two collections.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let odds = data.filter(|x| x % 2 == 1);
    ///     let evens = data.filter(|x| x % 2 == 0);
    ///
    ///     odds.concat(&evens)
    ///         .assert_eq(&data);
    /// });
    /// ```
    pub fn concat(&self, other: &Self) -> Self {
        self.inner
            .concat(&other.inner)
            .as_collection()
    }
    /// Creates a new collection accumulating the contents of the two collections.
    ///
    /// Despite the name, differential dataflow collections are unordered. This method is so named because the
    /// implementation is the concatenation of the stream of updates, but it corresponds to the addition of the
    /// two collections.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let odds = data.filter(|x| x % 2 == 1);
    ///     let evens = data.filter(|x| x % 2 == 0);
    ///
    ///     odds.concatenate(Some(evens))
    ///         .assert_eq(&data);
    /// });
    /// ```
    pub fn concatenate<I>(&self, sources: I) -> Self
    where
        I: IntoIterator<Item=Self>
    {
        self.inner
            .concatenate(sources.into_iter().map(|x| x.inner))
            .as_collection()
    }
    // Brings a Collection into a nested region.
    ///
    /// This method is a specialization of `enter` to the case where the nested scope is a region.
    /// It removes the need for an operator that adjusts the timestamp.
    pub fn enter_region<'a>(&self, child: &Child<'a, G, <G as ScopeParent>::Timestamp>) -> Collection<Child<'a, G, <G as ScopeParent>::Timestamp>, D, R, C> {
        self.inner
            .enter(child)
            .as_collection()
    }
    /// Applies a supplied function to each batch of updates.
    ///
    /// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
    /// timely dataflow capability associated with the batch of updates. The observed batching depends
    /// on how the system executes, and may vary run to run.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map_in_place(|x| *x *= 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .inspect_container(|event| println!("event: {:?}", event));
    /// });
    /// ```
    pub fn inspect_container<F>(&self, func: F) -> Self
    where F: FnMut(Result<(&G::Timestamp, &C), &[G::Timestamp]>)+'static {
        self.inner
            .inspect_container(func)
            .as_collection()
    }
    /// Attaches a timely dataflow probe to the output of a Collection.
    ///
    /// This probe is used to determine when the state of the Collection has stabilized and can
    /// be read out.
    pub fn probe(&self) -> probe::Handle<G::Timestamp> {
        self.inner
            .probe()
    }
    /// Attaches a timely dataflow probe to the output of a Collection.
    ///
    /// This probe is used to determine when the state of the Collection has stabilized and all updates observed.
    /// In addition, a probe is also often use to limit the number of rounds of input in flight at any moment; a
    /// computation can wait until the probe has caught up to the input before introducing more rounds of data, to
    /// avoid swamping the system.
    pub fn probe_with(&self, handle: &mut probe::Handle<G::Timestamp>) -> Self {
        Self::new(self.inner.probe_with(handle))
    }
    /// The scope containing the underlying timely dataflow stream.
    pub fn scope(&self) -> G {
        self.inner.scope()
    }
}

impl<G: Scope, D: Clone+'static, R: Clone+'static> Collection<G, D, R> {
    /// Creates a new collection by applying the supplied function to each input element.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x * 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .assert_empty();
    /// });
    /// ```
    pub fn map<D2, L>(&self, mut logic: L) -> Collection<G, D2, R>
    where D2: Data,
          L: FnMut(D) -> D2 + 'static
    {
        self.inner
            .map(move |(data, time, delta)| (logic(data), time, delta))
            .as_collection()
    }
    /// Creates a new collection by applying the supplied function to each input element.
    ///
    /// Although the name suggests in-place mutation, this function does not change the source collection,
    /// but rather re-uses the underlying allocations in its implementation. The method is semantically
    /// equivalent to `map`, but can be more efficient.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map_in_place(|x| *x *= 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .assert_empty();
    /// });
    /// ```
    pub fn map_in_place<L>(&self, mut logic: L) -> Collection<G, D, R>
    where L: FnMut(&mut D) + 'static {
        self.inner
            .map_in_place(move |&mut (ref mut data, _, _)| logic(data))
            .as_collection()
    }
    /// Creates a new collection by applying the supplied function to each input element and accumulating the results.
    ///
    /// This method extracts an iterator from each input element, and extracts the full contents of the iterator. Be
    /// warned that if the iterators produce substantial amounts of data, they are currently fully drained before
    /// attempting to consolidate the results.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .flat_map(|x| 0 .. x);
    /// });
    /// ```
    pub fn flat_map<I, L>(&self, mut logic: L) -> Collection<G, I::Item, R>
        where G::Timestamp: Clone,
              I: IntoIterator,
              I::Item: Data,
              L: FnMut(D) -> I + 'static {
        self.inner
            .flat_map(move |(data, time, delta)| logic(data).into_iter().map(move |x| (x, time.clone(), delta.clone())))
            .as_collection()
    }
    /// Creates a new collection containing those input records satisfying the supplied predicate.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x * 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .assert_empty();
    /// });
    /// ```
    pub fn filter<L>(&self, mut logic: L) -> Collection<G, D, R>
    where L: FnMut(&D) -> bool + 'static {
        self.inner
            .filter(move |(data, _, _)| logic(data))
            .as_collection()
    }
    /// Replaces each record with another, with a new difference type.
    ///
    /// This method is most commonly used to take records containing aggregatable data (e.g. numbers to be summed)
    /// and move the data into the difference component. This will allow differential dataflow to update in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let nums = scope.new_collection_from(0 .. 10).1;
    ///     let x1 = nums.flat_map(|x| 0 .. x);
    ///     let x2 = nums.map(|x| (x, 9 - x))
    ///                  .explode(|(x,y)| Some((x,y)));
    ///
    ///     x1.assert_eq(&x2);
    /// });
    /// ```
    pub fn explode<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
    where D2: Data,
          R2: Semigroup+Multiply<R>,
          <R2 as Multiply<R>>::Output: Semigroup+'static,
          I: IntoIterator<Item=(D2,R2)>,
          L: FnMut(D)->I+'static,
    {
        self.inner
            .flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,d2)| (x, t.clone(), d2.multiply(&d))))
            .as_collection()
    }

    /// Joins each record against a collection defined by the function `logic`.
    ///
    /// This method performs what is essentially a join with the collection of records `(x, logic(x))`.
    /// Rather than materialize this second relation, `logic` is applied to each record and the appropriate
    /// modifications made to the results, namely joining timestamps and multiplying differences.
    ///
    /// #Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     // creates `x` copies of `2*x` from time `3*x` until `4*x`,
    ///     // for x from 0 through 9.
    ///     scope.new_collection_from(0 .. 10isize).1
    ///          .join_function(|x|
    ///              //   data      time      diff
    ///              vec![(2*x, (3*x) as u64,  x),
    ///                   (2*x, (4*x) as u64, -x)]
    ///           );
    /// });
    /// ```
    pub fn join_function<D2, R2, I, L>(&self, mut logic: L) -> Collection<G, D2, <R2 as Multiply<R>>::Output>
    where G::Timestamp: Lattice,
          D2: Data,
          R2: Semigroup+Multiply<R>,
          <R2 as Multiply<R>>::Output: Semigroup+'static,
          I: IntoIterator<Item=(D2,G::Timestamp,R2)>,
          L: FnMut(D)->I+'static,
    {
        self.inner
            .flat_map(move |(x, t, d)| logic(x).into_iter().map(move |(x,t2,d2)| (x, t.join(&t2), d2.multiply(&d))))
            .as_collection()
    }

    /// Brings a Collection into a nested scope.
    ///
    /// # Examples
    ///
    /// ```
    /// use timely::dataflow::Scope;
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let result = scope.region(|child| {
    ///         data.enter(child)
    ///             .leave()
    ///     });
    ///
    ///     data.assert_eq(&result);
    /// });
    /// ```
    pub fn enter<'a, T>(&self, child: &Child<'a, G, T>) -> Collection<Child<'a, G, T>, D, R>
    where
        T: Refines<<G as ScopeParent>::Timestamp>,
    {
        self.inner
            .enter(child)
            .map(|(data, time, diff)| (data, T::to_inner(time), diff))
            .as_collection()
    }

    /// Brings a Collection into a nested scope, at varying times.
    ///
    /// The `initial` function indicates the time at which each element of the Collection should appear.
    ///
    /// # Examples
    ///
    /// ```
    /// use timely::dataflow::Scope;
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let result = scope.iterative::<u64,_,_>(|child| {
    ///         data.enter_at(child, |x| *x)
    ///             .leave()
    ///     });
    ///
    ///     data.assert_eq(&result);
    /// });
    /// ```
    pub fn enter_at<'a, T, F>(&self, child: &Iterative<'a, G, T>, mut initial: F) -> Collection<Iterative<'a, G, T>, D, R>
    where
        T: Timestamp+Hash,
        F: FnMut(&D) -> T + Clone + 'static,
        G::Timestamp: Hash,
    {
        self.inner
            .enter(child)
            .map(move |(data, time, diff)| {
                let new_time = Product::new(time, initial(&data));
                (data, new_time, diff)
            })
            .as_collection()
    }

    /// Delays each difference by a supplied function.
    ///
    /// It is assumed that `func` only advances timestamps; this is not verified, and things may go horribly
    /// wrong if that assumption is incorrect. It is also critical that `func` be monotonic: if two times are
    /// ordered, they should have the same order once `func` is applied to them (this is because we advance the
    /// timely capability with the same logic, and it must remain `less_equal` to all of the data timestamps).
    pub fn delay<F>(&self, func: F) -> Collection<G, D, R>
    where F: FnMut(&G::Timestamp) -> G::Timestamp + Clone + 'static {

        let mut func1 = func.clone();
        let mut func2 = func.clone();

        self.inner
            .delay_batch(move |x| func1(x))
            .map_in_place(move |x| x.1 = func2(&x.1))
            .as_collection()
    }
    /// Applies a supplied function to each update.
    ///
    /// This method is most commonly used to report information back to the user, often for debugging purposes.
    /// Any function can be used here, but be warned that the incremental nature of differential dataflow does
    /// not guarantee that it will be called as many times as you might expect.
    ///
    /// The `(data, time, diff)` triples indicate a change `diff` to the frequency of `data` which takes effect
    /// at the logical time `time`. When times are totally ordered (for example, `usize`), these updates reflect
    /// the changes along the sequence of collections. For partially ordered times, the mathematics are more
    /// interesting and less intuitive, unfortunately.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map_in_place(|x| *x *= 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .inspect(|x| println!("error: {:?}", x));
    /// });
    /// ```
    pub fn inspect<F>(&self, func: F) -> Collection<G, D, R>
    where F: FnMut(&(D, G::Timestamp, R))+'static {
        self.inner
            .inspect(func)
            .as_collection()
    }
    /// Applies a supplied function to each batch of updates.
    ///
    /// This method is analogous to `inspect`, but operates on batches and reveals the timestamp of the
    /// timely dataflow capability associated with the batch of updates. The observed batching depends
    /// on how the system executes, and may vary run to run.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map_in_place(|x| *x *= 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .inspect_batch(|t,xs| println!("errors @ {:?}: {:?}", t, xs));
    /// });
    /// ```
    pub fn inspect_batch<F>(&self, mut func: F) -> Collection<G, D, R>
    where F: FnMut(&G::Timestamp, &[(D, G::Timestamp, R)])+'static {
        self.inner
            .inspect_batch(move |time, data| func(time, data))
            .as_collection()
    }

    /// Assert if the collection is ever non-empty.
    ///
    /// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
    /// is not run, or not run to completion, there may be un-exercised times at which the collection could be
    /// non-empty. Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a
    /// program should indicate that this assertion never found cause to complain.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///     scope.new_collection_from(1 .. 10).1
    ///          .map(|x| x * 2)
    ///          .filter(|x| x % 2 == 1)
    ///          .assert_empty();
    /// });
    /// ```
    pub fn assert_empty(&self)
    where D: crate::ExchangeData+Hashable,
          R: crate::ExchangeData+Hashable + Semigroup,
          G::Timestamp: Lattice+Ord,
    {
        self.consolidate()
            .inspect(|x| panic!("Assertion failed: non-empty collection: {:?}", x));
    }
}

use timely::dataflow::scopes::ScopeParent;
use timely::progress::timestamp::Refines;

/// Methods requiring a nested scope.
impl<'a, G: Scope, T: Timestamp, D: Clone+'static, R: Clone+'static> Collection<Child<'a, G, T>, D, R>
where
    T: Refines<<G as ScopeParent>::Timestamp>,
{
    /// Returns the final value of a Collection from a nested scope to its containing scope.
    ///
    /// # Examples
    ///
    /// ```
    /// use timely::dataflow::Scope;
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///    let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///    let result = scope.region(|child| {
    ///         data.enter(child)
    ///             .leave()
    ///     });
    ///
    ///     data.assert_eq(&result);
    /// });
    /// ```
    pub fn leave(&self) -> Collection<G, D, R> {
        self.inner
            .leave()
            .map(|(data, time, diff)| (data, time.to_outer(), diff))
            .as_collection()
    }
}

/// Methods requiring a region as the scope.
impl<'a, G: Scope, D: Clone+'static, R: Clone+'static> Collection<Child<'a, G, G::Timestamp>, D, R>
{
    /// Returns the value of a Collection from a nested region to its containing scope.
    ///
    /// This method is a specialization of `leave` to the case that of a nested region.
    /// It removes the need for an operator that adjusts the timestamp.
    pub fn leave_region(&self) -> Collection<G, D, R> {
        self.inner
            .leave()
            .as_collection()
    }
}

/// Methods requiring an Abelian difference, to support negation.
impl<G: Scope, D: Clone+'static, R: Abelian+'static> Collection<G, D, R> where G::Timestamp: Data {
    /// Creates a new collection whose counts are the negation of those in the input.
    ///
    /// This method is most commonly used with `concat` to get those element in one collection but not another.
    /// However, differential dataflow computations are still defined for all values of the difference type `R`,
    /// including negative counts.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let odds = data.filter(|x| x % 2 == 1);
    ///     let evens = data.filter(|x| x % 2 == 0);
    ///
    ///     odds.negate()
    ///         .concat(&data)
    ///         .assert_eq(&evens);
    /// });
    /// ```
    pub fn negate(&self) -> Collection<G, D, R> {
        self.inner
            .map_in_place(|x| x.2.negate())
            .as_collection()
    }


    /// Assert if the collections are ever different.
    ///
    /// Because this is a dataflow fragment, the test is only applied as the computation is run. If the computation
    /// is not run, or not run to completion, there may be un-exercised times at which the collections could vary.
    /// Typically, a timely dataflow computation runs to completion on drop, and so clean exit from a program should
    /// indicate that this assertion never found cause to complain.
    ///
    /// # Examples
    ///
    /// ```
    /// use differential_dataflow::input::Input;
    ///
    /// ::timely::example(|scope| {
    ///
    ///     let data = scope.new_collection_from(1 .. 10).1;
    ///
    ///     let odds = data.filter(|x| x % 2 == 1);
    ///     let evens = data.filter(|x| x % 2 == 0);
    ///
    ///     odds.concat(&evens)
    ///         .assert_eq(&data);
    /// });
    /// ```
    pub fn assert_eq(&self, other: &Self)
    where D: crate::ExchangeData+Hashable,
          R: crate::ExchangeData+Hashable,
          G::Timestamp: Lattice+Ord
    {
        self.negate()
            .concat(other)
            .assert_empty();
    }
}

/// Conversion to a differential dataflow Collection.
pub trait AsCollection<G: Scope, D, R, C> {
    /// Converts the type to a differential dataflow collection.
    fn as_collection(&self) -> Collection<G, D, R, C>;
}

impl<G: Scope, D, R, C: Clone> AsCollection<G, D, R, C> for StreamCore<G, C> {
    fn as_collection(&self) -> Collection<G, D, R, C> {
        Collection::<G,D,R,C>::new(self.clone())
    }
}

/// Concatenates multiple collections.
///
/// This method has the effect of a sequence of calls to `concat`, but it does
/// so in one operator rather than a chain of many operators.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
///
/// ::timely::example(|scope| {
///
///     let data = scope.new_collection_from(1 .. 10).1;
///
///     let odds = data.filter(|x| x % 2 == 1);
///     let evens = data.filter(|x| x % 2 == 0);
///
///     differential_dataflow::collection::concatenate(scope, vec![odds, evens])
///         .assert_eq(&data);
/// });
/// ```
pub fn concatenate<G, D, R, C, I>(scope: &mut G, iterator: I) -> Collection<G, D, R, C>
where
    G: Scope,
    D: Data,
    R: Semigroup+'static,
    C: Container,
    I: IntoIterator<Item=Collection<G, D, R, C>>,
{
    scope
        .concatenate(iterator.into_iter().map(|x| x.inner))
        .as_collection()
}