differential_dataflow/trace/implementations/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
//! Implementations of `Trace` and associated traits.
//!
//! The `Trace` trait provides access to an ordered collection of `(key, val, time, diff)` tuples, but
//! there is substantial flexibility in implementations of this trait. Depending on characteristics of
//! the data, we may wish to represent the data in different ways. This module contains several of these
//! implementations, and combiners for merging the results of different traces.
//!
//! As examples of implementations,
//!
//! *  The `trie` module is meant to represent general update tuples, with no particular assumptions made
//!    about their contents. It organizes the data first by key, then by val, and then leaves the rest
//!    in an unordered pile.
//!
//! *  The `keys` module is meant for collections whose value type is `()`, which is to say there is no
//!    (key, val) structure on the records; all of them are just viewed as "keys".
//!
//! *  The `time` module is meant for collections with a single time value. This can remove repetition
//!    from the representation, at the cost of requiring more instances and run-time merging.
//!
//! *  The `base` module is meant for collections with a single time value equivalent to the least time.
//!    These collections must always accumulate to non-negative collections, and as such we can indicate
//!    the frequency of an element by its multiplicity. This removes both the time and weight from the
//!    representation, but is only appropriate for a subset (often substantial) of the data.
//!
//! Each of these representations is best suited for different data, but they can be combined to get the
//! benefits of each, as appropriate. There are several `Cursor` combiners, `CursorList` and `CursorPair`,
//! for homogeneous and inhomogeneous cursors, respectively.
//!
//! #Musings
//!
//! What is less clear is how to transfer updates between the representations at merge time in a tasteful
//! way. Perhaps we could put an ordering on the representations, each pair with a dominant representation,
//! and part of merging the latter filters updates into the former. Although back and forth might be
//! appealing, more thinking is required to negotiate all of these policies.
//!
//! One option would be to require the layer builder to handle these smarts. Merging is currently done by
//! the layer as part of custom code, but we could make it simply be "iterate through cursor, push results
//! into 'ordered builder'". Then the builder would be bright enough to emit a "batch" for the composite
//! trace, rather than just a batch of the type merged.

pub mod spine_fueled;

pub mod merge_batcher;
pub mod merge_batcher_col;
pub mod merge_batcher_flat;
pub mod ord_neu;
pub mod rhh;
pub mod huffman_container;
pub mod chunker;

// Opinionated takes on default spines.
pub use self::ord_neu::OrdValSpine as ValSpine;
pub use self::ord_neu::OrdKeySpine as KeySpine;

use std::borrow::{ToOwned};
use std::convert::TryInto;

use serde::{Deserialize, Serialize};

use timely::Container;
use timely::container::columnation::{Columnation, TimelyStack};
use timely::container::PushInto;
use timely::progress::Timestamp;
use crate::lattice::Lattice;
use crate::difference::Semigroup;

/// A type that names constituent update types.
pub trait Update {
    /// Key by which data are grouped.
    type Key: Ord + Clone + 'static;
    /// Values associated with the key.
    type Val: Ord + Clone + 'static;
    /// Time at which updates occur.
    type Time: Ord + Clone + Lattice + timely::progress::Timestamp;
    /// Way in which updates occur.
    type Diff: Ord + Semigroup + 'static;
}

impl<K,V,T,R> Update for ((K, V), T, R)
where
    K: Ord+Clone+'static,
    V: Ord+Clone+'static,
    T: Ord+Clone+Lattice+timely::progress::Timestamp,
    R: Ord+Semigroup+'static,
{
    type Key = K;
    type Val = V;
    type Time = T;
    type Diff = R;
}

/// A type with opinions on how updates should be laid out.
pub trait Layout {
    /// The represented update.
    type Target: Update + ?Sized;
    /// Container for update keys.
    // NB: The `PushInto` constraint is only required by `rhh.rs` to push default values.
    type KeyContainer: BatchContainer + PushInto<<Self::Target as Update>::Key>;
    /// Container for update vals.
    type ValContainer: BatchContainer;
    /// Container for times.
    type TimeContainer: BatchContainer<Owned = <Self::Target as Update>::Time> + PushInto<<Self::Target as Update>::Time>;
    /// Container for diffs.
    type DiffContainer: BatchContainer<Owned = <Self::Target as Update>::Diff> + PushInto<<Self::Target as Update>::Diff>;
    /// Container for offsets.
    type OffsetContainer: for<'a> BatchContainer<ReadItem<'a> = usize>;
}

/// A layout that uses vectors
pub struct Vector<U: Update> {
    phantom: std::marker::PhantomData<U>,
}

impl<U: Update> Layout for Vector<U>
where
    U::Diff: Ord,
{
    type Target = U;
    type KeyContainer = Vec<U::Key>;
    type ValContainer = Vec<U::Val>;
    type TimeContainer = Vec<U::Time>;
    type DiffContainer = Vec<U::Diff>;
    type OffsetContainer = OffsetList;
}

/// A layout based on timely stacks
pub struct TStack<U: Update> {
    phantom: std::marker::PhantomData<U>,
}

impl<U: Update> Layout for TStack<U>
where
    U::Key: Columnation,
    U::Val: Columnation,
    U::Time: Columnation,
    U::Diff: Columnation + Ord,
{
    type Target = U;
    type KeyContainer = TimelyStack<U::Key>;
    type ValContainer = TimelyStack<U::Val>;
    type TimeContainer = TimelyStack<U::Time>;
    type DiffContainer = TimelyStack<U::Diff>;
    type OffsetContainer = OffsetList;
}

/// A layout based on flat containers.
pub struct FlatLayout<K, V, T, R> {
    phantom: std::marker::PhantomData<(K, V, T, R)>,
}

/// A type with a preferred container.
///
/// Examples include types that implement `Clone` who prefer
pub trait PreferredContainer : ToOwned {
    /// The preferred container for the type.
    type Container: BatchContainer + PushInto<Self::Owned>;
}

impl<T: Ord + Clone + 'static> PreferredContainer for T {
    type Container = Vec<T>;
}

impl<T: Ord + Clone + 'static> PreferredContainer for [T] {
    type Container = SliceContainer<T>;
}

/// An update and layout description based on preferred containers.
pub struct Preferred<K: ?Sized, V: ?Sized, T, D> {
    phantom: std::marker::PhantomData<(Box<K>, Box<V>, T, D)>,
}

impl<K,V,T,R> Update for Preferred<K, V, T, R>
where
    K: ToOwned + ?Sized,
    K::Owned: Ord+Clone+'static,
    V: ToOwned + ?Sized,
    V::Owned: Ord+Clone+'static,
    T: Ord+Clone+Lattice+timely::progress::Timestamp,
    R: Ord+Clone+Semigroup+'static,
{
    type Key = K::Owned;
    type Val = V::Owned;
    type Time = T;
    type Diff = R;
}

impl<K, V, T, D> Layout for Preferred<K, V, T, D>
where
    K: Ord+ToOwned+PreferredContainer + ?Sized,
    K::Owned: Ord+Clone+'static,
    V: Ord+ToOwned+PreferredContainer + ?Sized,
    V::Owned: Ord+Clone+'static,
    T: Ord+Clone+Lattice+timely::progress::Timestamp,
    D: Ord+Clone+Semigroup+'static,
{
    type Target = Preferred<K, V, T, D>;
    type KeyContainer = K::Container;
    type ValContainer = V::Container;
    type TimeContainer = Vec<T>;
    type DiffContainer = Vec<D>;
    type OffsetContainer = OffsetList;
}

/// A list of unsigned integers that uses `u32` elements as long as they are small enough, and switches to `u64` once they are not.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Serialize, Deserialize)]
pub struct OffsetList {
    /// Length of a prefix of zero elements.
    pub zero_prefix: usize,
    /// Offsets that fit within a `u32`.
    pub smol: Vec<u32>,
    /// Offsets that either do not fit in a `u32`, or are inserted after some offset that did not fit.
    pub chonk: Vec<u64>,
}

impl std::fmt::Debug for OffsetList {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_list().entries(self.into_iter()).finish()
    }
}

impl OffsetList {
    /// Allocate a new list with a specified capacity.
    pub fn with_capacity(cap: usize) -> Self {
        Self {
            zero_prefix: 0,
            smol: Vec::with_capacity(cap),
            chonk: Vec::new(),
        }
    }
    /// Inserts the offset, as a `u32` if that is still on the table.
    pub fn push(&mut self, offset: usize) {
        if self.smol.is_empty() && self.chonk.is_empty() && offset == 0 {
            self.zero_prefix += 1;
        }
        else if self.chonk.is_empty() {
            if let Ok(smol) = offset.try_into() {
                self.smol.push(smol);
            }
            else {
                self.chonk.push(offset.try_into().unwrap())
            }
        }
        else {
            self.chonk.push(offset.try_into().unwrap())
        }
    }
    /// Like `std::ops::Index`, which we cannot implement as it must return a `&usize`.
    pub fn index(&self, index: usize) -> usize {
        if index < self.zero_prefix {
            0
        }
        else if index - self.zero_prefix < self.smol.len() {
            self.smol[index - self.zero_prefix].try_into().unwrap()
        }
        else {
            self.chonk[index - self.zero_prefix - self.smol.len()].try_into().unwrap()
        }
    }
    /// The number of offsets in the list.
    pub fn len(&self) -> usize {
        self.zero_prefix + self.smol.len() + self.chonk.len()
    }
}

impl<'a> IntoIterator for &'a OffsetList {
    type Item = usize;
    type IntoIter = OffsetListIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        OffsetListIter {list: self, index: 0 }
    }
}

/// An iterator for [`OffsetList`].
pub struct OffsetListIter<'a> {
    list: &'a OffsetList,
    index: usize,
}

impl<'a> Iterator for OffsetListIter<'a> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        if self.index < self.list.len() {
            let res = Some(self.list.index(self.index));
            self.index += 1;
            res
        } else {
            None
        }
    }
}

impl PushInto<usize> for OffsetList {
    fn push_into(&mut self, item: usize) {
        self.push(item);
    }
}

impl BatchContainer for OffsetList {
    type Owned = usize;
    type ReadItem<'a> = usize;

    fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> { item }

    fn with_capacity(size: usize) -> Self {
        Self::with_capacity(size)
    }

    fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {
        Self::with_capacity(cont1.len() + cont2.len())
    }

    fn index(&self, index: usize) -> Self::ReadItem<'_> {
        self.index(index)
    }

    fn len(&self) -> usize {
        self.len()
    }
}

/// Behavior to split an update into principal components.
pub trait BuilderInput<K: BatchContainer, V: BatchContainer>: Container {
    /// Key portion
    type Key<'a>: Ord;
    /// Value portion
    type Val<'a>: Ord;
    /// Time
    type Time;
    /// Diff
    type Diff;

    /// Split an item into separate parts.
    fn into_parts<'a>(item: Self::Item<'a>) -> (Self::Key<'a>, Self::Val<'a>, Self::Time, Self::Diff);

    /// Test that the key equals a key in the layout's key container.
    fn key_eq(this: &Self::Key<'_>, other: K::ReadItem<'_>) -> bool;

    /// Test that the value equals a key in the layout's value container.
    fn val_eq(this: &Self::Val<'_>, other: V::ReadItem<'_>) -> bool;
}

impl<K,KBC,V,VBC,T,R> BuilderInput<KBC, VBC> for Vec<((K, V), T, R)>
where
    K: Ord + Clone + 'static,
    KBC: BatchContainer,
    for<'a> KBC::ReadItem<'a>: PartialEq<&'a K>,
    V: Ord + Clone + 'static,
    VBC: BatchContainer,
    for<'a> VBC::ReadItem<'a>: PartialEq<&'a V>,
    T: Timestamp + Lattice + Clone + 'static,
    R: Ord + Semigroup + 'static,
{
    type Key<'a> = K;
    type Val<'a> = V;
    type Time = T;
    type Diff = R;

    fn into_parts<'a>(((key, val), time, diff): Self::Item<'a>) -> (Self::Key<'a>, Self::Val<'a>, Self::Time, Self::Diff) {
        (key, val, time, diff)
    }

    fn key_eq(this: &K, other: KBC::ReadItem<'_>) -> bool {
        KBC::reborrow(other) == this
    }

    fn val_eq(this: &V, other: VBC::ReadItem<'_>) -> bool {
        VBC::reborrow(other) == this
    }
}

impl<K,V,T,R> BuilderInput<K, V> for TimelyStack<((K::Owned, V::Owned), T, R)>
where
    K: BatchContainer,
    for<'a> K::ReadItem<'a>: PartialEq<&'a K::Owned>,
    K::Owned: Ord + Columnation + Clone + 'static,
    V: BatchContainer,
    for<'a> V::ReadItem<'a>: PartialEq<&'a V::Owned>,
    V::Owned: Ord + Columnation + Clone + 'static,
    T: Timestamp + Lattice + Columnation + Clone + 'static,
    R: Ord + Clone + Semigroup + Columnation + 'static,
{
    type Key<'a> = &'a K::Owned;
    type Val<'a> = &'a V::Owned;
    type Time = T;
    type Diff = R;

    fn into_parts<'a>(((key, val), time, diff): Self::Item<'a>) -> (Self::Key<'a>, Self::Val<'a>, Self::Time, Self::Diff) {
        (key, val, time.clone(), diff.clone())
    }

    fn key_eq(this: &&K::Owned, other: K::ReadItem<'_>) -> bool {
        K::reborrow(other) == *this
    }

    fn val_eq(this: &&V::Owned, other: V::ReadItem<'_>) -> bool {
        V::reborrow(other) == *this
    }
}

mod flatcontainer {
    use timely::container::flatcontainer::{FlatStack, IntoOwned, Push, Region};
    use timely::container::flatcontainer::impls::tuple::{TupleABCRegion, TupleABRegion};
    use timely::progress::Timestamp;

    use crate::difference::Semigroup;
    use crate::lattice::Lattice;
    use crate::trace::implementations::{BatchContainer, BuilderInput, FlatLayout, Layout, OffsetList, Update};

    impl<K, V, T, R> Update for FlatLayout<K, V, T, R>
    where
        K: Region,
        V: Region,
        T: Region,
        R: Region,
        K::Owned: Ord + Clone + 'static,
        V::Owned: Ord + Clone + 'static,
        T::Owned: Ord + Clone + Lattice + Timestamp + 'static,
        R::Owned: Ord + Semigroup + 'static,
    {
        type Key = K::Owned;
        type Val = V::Owned;
        type Time = T::Owned;
        type Diff = R::Owned;
    }

    impl<K, V, T, R> Layout for FlatLayout<K, V, T, R>
    where
        K: Region + Push<<K as Region>::Owned> + for<'a> Push<<K as Region>::ReadItem<'a>> + 'static,
        V: Region + Push<<V as Region>::Owned> + for<'a> Push<<V as Region>::ReadItem<'a>> + 'static,
        T: Region + Push<<T as Region>::Owned> + for<'a> Push<<T as Region>::ReadItem<'a>> + 'static,
        R: Region + Push<<R as Region>::Owned> + for<'a> Push<<R as Region>::ReadItem<'a>> + 'static,
        K::Owned: Ord + Clone + 'static,
        V::Owned: Ord + Clone + 'static,
        T::Owned: Ord + Clone + Lattice + Timestamp + 'static,
        R::Owned: Ord + Semigroup + 'static,
        for<'a> K::ReadItem<'a>: Copy + Ord,
        for<'a> V::ReadItem<'a>: Copy + Ord,
        for<'a> T::ReadItem<'a>: Copy + Ord,
        for<'a> R::ReadItem<'a>: Copy + Ord,
    {
        type Target = Self;
        type KeyContainer = FlatStack<K>;
        type ValContainer = FlatStack<V>;
        type TimeContainer = FlatStack<T>;
        type DiffContainer = FlatStack<R>;
        type OffsetContainer = OffsetList;
    }

    impl<K,KBC,V,VBC,T,R> BuilderInput<KBC, VBC> for FlatStack<TupleABCRegion<TupleABRegion<K,V>,T,R>>
    where
        K: Region + Clone + 'static,
        V: Region + Clone + 'static,
        T: Region + Clone + 'static,
        R: Region + Clone + 'static,
        for<'a> K::ReadItem<'a>: Copy + Ord,
        for<'a> V::ReadItem<'a>: Copy + Ord,
        for<'a> T::ReadItem<'a>: Copy + Ord,
        for<'a> R::ReadItem<'a>: Copy + Ord,
        KBC: BatchContainer,
        VBC: BatchContainer,
        for<'a> KBC::ReadItem<'a>: PartialEq<K::ReadItem<'a>>,
        for<'a> VBC::ReadItem<'a>: PartialEq<V::ReadItem<'a>>,
    {
        type Key<'a> = K::ReadItem<'a>;
        type Val<'a> = V::ReadItem<'a>;
        type Time = T::Owned;
        type Diff = R::Owned;

        fn into_parts<'a>(((key, val), time, diff): Self::Item<'a>) -> (Self::Key<'a>, Self::Val<'a>, Self::Time, Self::Diff) {
            (key, val, time.into_owned(), diff.into_owned())
        }

        fn key_eq(this: &Self::Key<'_>, other: KBC::ReadItem<'_>) -> bool {
            KBC::reborrow(other) == K::reborrow(*this)
        }

        fn val_eq(this: &Self::Val<'_>, other: VBC::ReadItem<'_>) -> bool {
            VBC::reborrow(other) == V::reborrow(*this)
        }
    }
}

pub use self::containers::{BatchContainer, SliceContainer};

/// Containers for data that resemble `Vec<T>`, with leaner implementations.
pub mod containers {

    use timely::container::columnation::{Columnation, TimelyStack};
    use timely::container::PushInto;
    use crate::trace::IntoOwned;

    /// A general-purpose container resembling `Vec<T>`.
    pub trait BatchContainer: for<'a> PushInto<Self::ReadItem<'a>> + 'static {
        /// An owned instance of `Self::ReadItem<'_>`.
        type Owned;

        /// The type that can be read back out of the container.
        type ReadItem<'a>: Copy + Ord + IntoOwned<'a, Owned = Self::Owned>;

        /// Push an item into this container
        fn push<D>(&mut self, item: D) where Self: PushInto<D> {
            self.push_into(item);
        }
        /// Creates a new container with sufficient capacity.
        fn with_capacity(size: usize) -> Self;
        /// Creates a new container with sufficient capacity.
        fn merge_capacity(cont1: &Self, cont2: &Self) -> Self;

        /// Converts a read item into one with a narrower lifetime.
        fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b>;

        /// Reference to the element at this position.
        fn index(&self, index: usize) -> Self::ReadItem<'_>;
        /// Number of contained elements
        fn len(&self) -> usize;
        /// Returns the last item if the container is non-empty.
        fn last(&self) -> Option<Self::ReadItem<'_>> {
            if self.len() > 0 {
                Some(self.index(self.len()-1))
            }
            else {
                None
            }
        }
        /// Indicates if the length is zero.
        fn is_empty(&self) -> bool { self.len() == 0 }

        /// Reports the number of elements satisfying the predicate.
        ///
        /// This methods *relies strongly* on the assumption that the predicate
        /// stays false once it becomes false, a joint property of the predicate
        /// and the layout of `Self. This allows `advance` to use exponential search to
        /// count the number of elements in time logarithmic in the result.
        fn advance<F: for<'a> Fn(Self::ReadItem<'a>)->bool>(&self, start: usize, end: usize, function: F) -> usize {

            let small_limit = 8;

            // Exponential search if the answer isn't within `small_limit`.
            if end > start + small_limit && function(self.index(start + small_limit)) {

                // start with no advance
                let mut index = small_limit + 1;
                if start + index < end && function(self.index(start + index)) {

                    // advance in exponentially growing steps.
                    let mut step = 1;
                    while start + index + step < end && function(self.index(start + index + step)) {
                        index += step;
                        step <<= 1;
                    }

                    // advance in exponentially shrinking steps.
                    step >>= 1;
                    while step > 0 {
                        if start + index + step < end && function(self.index(start + index + step)) {
                            index += step;
                        }
                        step >>= 1;
                    }

                    index += 1;
                }

                index
            }
            else {
                let limit = std::cmp::min(end, start + small_limit);
                (start .. limit).filter(|x| function(self.index(*x))).count()
            }
        }
    }

    // All `T: Clone` also implement `ToOwned<Owned = T>`, but without the constraint Rust
    // struggles to understand why the owned type must be `T` (i.e. the one blanket impl).
    impl<T: Ord + Clone + 'static> BatchContainer for Vec<T> {
        type Owned = T;
        type ReadItem<'a> = &'a T;

        fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> { item }

        fn with_capacity(size: usize) -> Self {
            Vec::with_capacity(size)
        }
        fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {
            Vec::with_capacity(cont1.len() + cont2.len())
        }
        fn index(&self, index: usize) -> Self::ReadItem<'_> {
            &self[index]
        }
        fn len(&self) -> usize {
            self[..].len()
        }
    }

    // The `ToOwned` requirement exists to satisfy `self.reserve_items`, who must for now
    // be presented with the actual contained type, rather than a type that borrows into it.
    impl<T: Clone + Ord + Columnation + 'static> BatchContainer for TimelyStack<T> {
        type Owned = T;
        type ReadItem<'a> = &'a T;

        fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> { item }

        fn with_capacity(size: usize) -> Self {
            Self::with_capacity(size)
        }
        fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {
            let mut new = Self::default();
            new.reserve_regions(std::iter::once(cont1).chain(std::iter::once(cont2)));
            new
        }
        fn index(&self, index: usize) -> Self::ReadItem<'_> {
            &self[index]
        }
        fn len(&self) -> usize {
            self[..].len()
        }
    }

    mod flatcontainer {
        use timely::container::flatcontainer::{FlatStack, Push, Region};
        use crate::trace::implementations::BatchContainer;

        impl<R> BatchContainer for FlatStack<R>
        where
            for<'a> R: Region + Push<<R as Region>::ReadItem<'a>> + 'static,
            for<'a> R::ReadItem<'a>: Copy + Ord,
        {
            type Owned = R::Owned;
            type ReadItem<'a> = R::ReadItem<'a>;

            fn with_capacity(size: usize) -> Self {
                Self::with_capacity(size)
            }

            fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {
                Self::merge_capacity([cont1, cont2].into_iter())
            }

            fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> {
                R::reborrow(item)
            }

            fn index(&self, index: usize) -> Self::ReadItem<'_> {
                self.get(index)
            }

            fn len(&self) -> usize {
                self.len()
            }
        }
    }

    /// A container that accepts slices `[B::Item]`.
    pub struct SliceContainer<B> {
        /// Offsets that bound each contained slice.
        ///
        /// The length will be one greater than the number of contained slices,
        /// starting with zero and ending with `self.inner.len()`.
        offsets: Vec<usize>,
        /// An inner container for sequences of `B` that dereferences to a slice.
        inner: Vec<B>,
    }

    impl<B: Ord + Clone + 'static> PushInto<&[B]> for SliceContainer<B> {
        fn push_into(&mut self, item: &[B]) {
            for x in item.iter() {
                self.inner.push_into(x);
            }
            self.offsets.push(self.inner.len());
        }
    }

    impl<B: Ord + Clone + 'static> PushInto<&Vec<B>> for SliceContainer<B> {
        fn push_into(&mut self, item: &Vec<B>) {
            self.push_into(&item[..]);
        }
    }

    impl<B> PushInto<Vec<B>> for SliceContainer<B> {
        fn push_into(&mut self, item: Vec<B>) {
            for x in item.into_iter() {
                self.inner.push(x);
            }
            self.offsets.push(self.inner.len());
        }
    }

    impl<B> BatchContainer for SliceContainer<B>
    where
        B: Ord + Clone + Sized + 'static,
    {
        type Owned = Vec<B>;
        type ReadItem<'a> = &'a [B];

        fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> { item }

        fn with_capacity(size: usize) -> Self {
            let mut offsets = Vec::with_capacity(size + 1);
            offsets.push(0);
            Self {
                offsets,
                inner: Vec::with_capacity(size),
            }
        }
        fn merge_capacity(cont1: &Self, cont2: &Self) -> Self {
            let mut offsets = Vec::with_capacity(cont1.inner.len() + cont2.inner.len() + 1);
            offsets.push(0);
            Self {
                offsets,
                inner: Vec::with_capacity(cont1.inner.len() + cont2.inner.len()),
            }
        }
        fn index(&self, index: usize) -> Self::ReadItem<'_> {
            let lower = self.offsets[index];
            let upper = self.offsets[index+1];
            &self.inner[lower .. upper]
        }
        fn len(&self) -> usize {
            self.offsets.len() - 1
        }
    }

    /// Default implementation introduces a first offset.
    impl<B> Default for SliceContainer<B> {
        fn default() -> Self {
            Self {
                offsets: vec![0],
                inner: Default::default(),
            }
        }
    }
}