rayon/slice/
quicksort.rs

1//! Parallel quicksort.
2//!
3//! This implementation is copied verbatim from `std::slice::sort_unstable` and then parallelized.
4//! The only difference from the original is that calls to `recurse` are executed in parallel using
5//! `rayon_core::join`.
6
7use std::cmp;
8use std::mem;
9use std::ptr;
10
11/// When dropped, takes the value out of `Option` and writes it into `dest`.
12///
13/// This allows us to safely read the pivot into a stack-allocated variable for efficiency, and
14/// write it back into the slice after partitioning. This way we ensure that the write happens
15/// even if `is_less` panics in the meantime.
16struct WriteOnDrop<T> {
17    value: Option<T>,
18    dest: *mut T,
19}
20
21impl<T> Drop for WriteOnDrop<T> {
22    fn drop(&mut self) {
23        unsafe {
24            ptr::write(self.dest, self.value.take().unwrap());
25        }
26    }
27}
28
29/// Holds a value, but never drops it.
30struct NoDrop<T> {
31    value: Option<T>,
32}
33
34impl<T> Drop for NoDrop<T> {
35    fn drop(&mut self) {
36        mem::forget(self.value.take());
37    }
38}
39
40/// When dropped, copies from `src` into `dest`.
41struct CopyOnDrop<T> {
42    src: *mut T,
43    dest: *mut T,
44}
45
46impl<T> Drop for CopyOnDrop<T> {
47    fn drop(&mut self) {
48        unsafe {
49            ptr::copy_nonoverlapping(self.src, self.dest, 1);
50        }
51    }
52}
53
54/// Shifts the first element to the right until it encounters a greater or equal element.
55fn shift_head<T, F>(v: &mut [T], is_less: &F)
56where
57    F: Fn(&T, &T) -> bool,
58{
59    let len = v.len();
60    unsafe {
61        // If the first two elements are out-of-order...
62        if len >= 2 && is_less(v.get_unchecked(1), v.get_unchecked(0)) {
63            // Read the first element into a stack-allocated variable. If a following comparison
64            // operation panics, `hole` will get dropped and automatically write the element back
65            // into the slice.
66            let mut tmp = NoDrop {
67                value: Some(ptr::read(v.get_unchecked(0))),
68            };
69            let mut hole = CopyOnDrop {
70                src: tmp.value.as_mut().unwrap(),
71                dest: v.get_unchecked_mut(1),
72            };
73            ptr::copy_nonoverlapping(v.get_unchecked(1), v.get_unchecked_mut(0), 1);
74
75            for i in 2..len {
76                if !is_less(v.get_unchecked(i), tmp.value.as_ref().unwrap()) {
77                    break;
78                }
79
80                // Move `i`-th element one place to the left, thus shifting the hole to the right.
81                ptr::copy_nonoverlapping(v.get_unchecked(i), v.get_unchecked_mut(i - 1), 1);
82                hole.dest = v.get_unchecked_mut(i);
83            }
84            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
85        }
86    }
87}
88
89/// Shifts the last element to the left until it encounters a smaller or equal element.
90fn shift_tail<T, F>(v: &mut [T], is_less: &F)
91where
92    F: Fn(&T, &T) -> bool,
93{
94    let len = v.len();
95    unsafe {
96        // If the last two elements are out-of-order...
97        if len >= 2 && is_less(v.get_unchecked(len - 1), v.get_unchecked(len - 2)) {
98            // Read the last element into a stack-allocated variable. If a following comparison
99            // operation panics, `hole` will get dropped and automatically write the element back
100            // into the slice.
101            let mut tmp = NoDrop {
102                value: Some(ptr::read(v.get_unchecked(len - 1))),
103            };
104            let mut hole = CopyOnDrop {
105                src: tmp.value.as_mut().unwrap(),
106                dest: v.get_unchecked_mut(len - 2),
107            };
108            ptr::copy_nonoverlapping(v.get_unchecked(len - 2), v.get_unchecked_mut(len - 1), 1);
109
110            for i in (0..len - 2).rev() {
111                if !is_less(&tmp.value.as_ref().unwrap(), v.get_unchecked(i)) {
112                    break;
113                }
114
115                // Move `i`-th element one place to the right, thus shifting the hole to the left.
116                ptr::copy_nonoverlapping(v.get_unchecked(i), v.get_unchecked_mut(i + 1), 1);
117                hole.dest = v.get_unchecked_mut(i);
118            }
119            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
120        }
121    }
122}
123
124/// Partially sorts a slice by shifting several out-of-order elements around.
125///
126/// Returns `true` if the slice is sorted at the end. This function is `O(n)` worst-case.
127#[cold]
128fn partial_insertion_sort<T, F>(v: &mut [T], is_less: &F) -> bool
129where
130    F: Fn(&T, &T) -> bool,
131{
132    // Maximum number of adjacent out-of-order pairs that will get shifted.
133    const MAX_STEPS: usize = 5;
134    // If the slice is shorter than this, don't shift any elements.
135    const SHORTEST_SHIFTING: usize = 50;
136
137    let len = v.len();
138    let mut i = 1;
139
140    for _ in 0..MAX_STEPS {
141        unsafe {
142            // Find the next pair of adjacent out-of-order elements.
143            while i < len && !is_less(v.get_unchecked(i), v.get_unchecked(i - 1)) {
144                i += 1;
145            }
146        }
147
148        // Are we done?
149        if i == len {
150            return true;
151        }
152
153        // Don't shift elements on short arrays, that has a performance cost.
154        if len < SHORTEST_SHIFTING {
155            return false;
156        }
157
158        // Swap the found pair of elements. This puts them in correct order.
159        v.swap(i - 1, i);
160
161        // Shift the smaller element to the left.
162        shift_tail(&mut v[..i], is_less);
163        // Shift the greater element to the right.
164        shift_head(&mut v[i..], is_less);
165    }
166
167    // Didn't manage to sort the slice in the limited number of steps.
168    false
169}
170
171/// Sorts a slice using insertion sort, which is `O(n^2)` worst-case.
172fn insertion_sort<T, F>(v: &mut [T], is_less: &F)
173where
174    F: Fn(&T, &T) -> bool,
175{
176    for i in 1..v.len() {
177        shift_tail(&mut v[..=i], is_less);
178    }
179}
180
181/// Sorts `v` using heapsort, which guarantees `O(n log n)` worst-case.
182#[cold]
183fn heapsort<T, F>(v: &mut [T], is_less: &F)
184where
185    F: Fn(&T, &T) -> bool,
186{
187    // This binary heap respects the invariant `parent >= child`.
188    let sift_down = |v: &mut [T], mut node| {
189        loop {
190            // Children of `node`:
191            let left = 2 * node + 1;
192            let right = 2 * node + 2;
193
194            // Choose the greater child.
195            let greater = if right < v.len() && is_less(&v[left], &v[right]) {
196                right
197            } else {
198                left
199            };
200
201            // Stop if the invariant holds at `node`.
202            if greater >= v.len() || !is_less(&v[node], &v[greater]) {
203                break;
204            }
205
206            // Swap `node` with the greater child, move one step down, and continue sifting.
207            v.swap(node, greater);
208            node = greater;
209        }
210    };
211
212    // Build the heap in linear time.
213    for i in (0..v.len() / 2).rev() {
214        sift_down(v, i);
215    }
216
217    // Pop maximal elements from the heap.
218    for i in (1..v.len()).rev() {
219        v.swap(0, i);
220        sift_down(&mut v[..i], 0);
221    }
222}
223
224/// Partitions `v` into elements smaller than `pivot`, followed by elements greater than or equal
225/// to `pivot`.
226///
227/// Returns the number of elements smaller than `pivot`.
228///
229/// Partitioning is performed block-by-block in order to minimize the cost of branching operations.
230/// This idea is presented in the [BlockQuicksort][pdf] paper.
231///
232/// [pdf]: https://drops.dagstuhl.de/opus/volltexte/2016/6389/pdf/LIPIcs-ESA-2016-38.pdf
233fn partition_in_blocks<T, F>(v: &mut [T], pivot: &T, is_less: &F) -> usize
234where
235    F: Fn(&T, &T) -> bool,
236{
237    // Number of elements in a typical block.
238    const BLOCK: usize = 128;
239
240    // The partitioning algorithm repeats the following steps until completion:
241    //
242    // 1. Trace a block from the left side to identify elements greater than or equal to the pivot.
243    // 2. Trace a block from the right side to identify elements smaller than the pivot.
244    // 3. Exchange the identified elements between the left and right side.
245    //
246    // We keep the following variables for a block of elements:
247    //
248    // 1. `block` - Number of elements in the block.
249    // 2. `start` - Start pointer into the `offsets` array.
250    // 3. `end` - End pointer into the `offsets` array.
251    // 4. `offsets - Indices of out-of-order elements within the block.
252
253    // The current block on the left side (from `l` to `l.offset(block_l)`).
254    let mut l = v.as_mut_ptr();
255    let mut block_l = BLOCK;
256    let mut start_l = ptr::null_mut();
257    let mut end_l = ptr::null_mut();
258    let mut offsets_l = [0u8; BLOCK];
259
260    // The current block on the right side (from `r.offset(-block_r)` to `r`).
261    let mut r = unsafe { l.add(v.len()) };
262    let mut block_r = BLOCK;
263    let mut start_r = ptr::null_mut();
264    let mut end_r = ptr::null_mut();
265    let mut offsets_r = [0u8; BLOCK];
266
267    // Returns the number of elements between pointers `l` (inclusive) and `r` (exclusive).
268    fn width<T>(l: *mut T, r: *mut T) -> usize {
269        assert!(mem::size_of::<T>() > 0);
270        (r as usize - l as usize) / mem::size_of::<T>()
271    }
272
273    loop {
274        // We are done with partitioning block-by-block when `l` and `r` get very close. Then we do
275        // some patch-up work in order to partition the remaining elements in between.
276        let is_done = width(l, r) <= 2 * BLOCK;
277
278        if is_done {
279            // Number of remaining elements (still not compared to the pivot).
280            let mut rem = width(l, r);
281            if start_l < end_l || start_r < end_r {
282                rem -= BLOCK;
283            }
284
285            // Adjust block sizes so that the left and right block don't overlap, but get perfectly
286            // aligned to cover the whole remaining gap.
287            if start_l < end_l {
288                block_r = rem;
289            } else if start_r < end_r {
290                block_l = rem;
291            } else {
292                block_l = rem / 2;
293                block_r = rem - block_l;
294            }
295            debug_assert!(block_l <= BLOCK && block_r <= BLOCK);
296            debug_assert!(width(l, r) == block_l + block_r);
297        }
298
299        if start_l == end_l {
300            // Trace `block_l` elements from the left side.
301            start_l = offsets_l.as_mut_ptr();
302            end_l = offsets_l.as_mut_ptr();
303            let mut elem = l;
304
305            for i in 0..block_l {
306                unsafe {
307                    // Branchless comparison.
308                    *end_l = i as u8;
309                    end_l = end_l.offset(!is_less(&*elem, pivot) as isize);
310                    elem = elem.offset(1);
311                }
312            }
313        }
314
315        if start_r == end_r {
316            // Trace `block_r` elements from the right side.
317            start_r = offsets_r.as_mut_ptr();
318            end_r = offsets_r.as_mut_ptr();
319            let mut elem = r;
320
321            for i in 0..block_r {
322                unsafe {
323                    // Branchless comparison.
324                    elem = elem.offset(-1);
325                    *end_r = i as u8;
326                    end_r = end_r.offset(is_less(&*elem, pivot) as isize);
327                }
328            }
329        }
330
331        // Number of out-of-order elements to swap between the left and right side.
332        let count = cmp::min(width(start_l, end_l), width(start_r, end_r));
333
334        if count > 0 {
335            macro_rules! left {
336                () => {
337                    l.offset(*start_l as isize)
338                };
339            }
340            macro_rules! right {
341                () => {
342                    r.offset(-(*start_r as isize) - 1)
343                };
344            }
345
346            // Instead of swapping one pair at the time, it is more efficient to perform a cyclic
347            // permutation. This is not strictly equivalent to swapping, but produces a similar
348            // result using fewer memory operations.
349            unsafe {
350                let tmp = ptr::read(left!());
351                ptr::copy_nonoverlapping(right!(), left!(), 1);
352
353                for _ in 1..count {
354                    start_l = start_l.offset(1);
355                    ptr::copy_nonoverlapping(left!(), right!(), 1);
356                    start_r = start_r.offset(1);
357                    ptr::copy_nonoverlapping(right!(), left!(), 1);
358                }
359
360                ptr::copy_nonoverlapping(&tmp, right!(), 1);
361                mem::forget(tmp);
362                start_l = start_l.offset(1);
363                start_r = start_r.offset(1);
364            }
365        }
366
367        if start_l == end_l {
368            // All out-of-order elements in the left block were moved. Move to the next block.
369            l = unsafe { l.add(block_l) };
370        }
371
372        if start_r == end_r {
373            // All out-of-order elements in the right block were moved. Move to the previous block.
374            r = unsafe { r.sub(block_r) };
375        }
376
377        if is_done {
378            break;
379        }
380    }
381
382    // All that remains now is at most one block (either the left or the right) with out-of-order
383    // elements that need to be moved. Such remaining elements can be simply shifted to the end
384    // within their block.
385
386    if start_l < end_l {
387        // The left block remains.
388        // Move it's remaining out-of-order elements to the far right.
389        debug_assert_eq!(width(l, r), block_l);
390        while start_l < end_l {
391            unsafe {
392                end_l = end_l.offset(-1);
393                ptr::swap(l.offset(*end_l as isize), r.offset(-1));
394                r = r.offset(-1);
395            }
396        }
397        width(v.as_mut_ptr(), r)
398    } else if start_r < end_r {
399        // The right block remains.
400        // Move it's remaining out-of-order elements to the far left.
401        debug_assert_eq!(width(l, r), block_r);
402        while start_r < end_r {
403            unsafe {
404                end_r = end_r.offset(-1);
405                ptr::swap(l, r.offset(-(*end_r as isize) - 1));
406                l = l.offset(1);
407            }
408        }
409        width(v.as_mut_ptr(), l)
410    } else {
411        // Nothing else to do, we're done.
412        width(v.as_mut_ptr(), l)
413    }
414}
415
416/// Partitions `v` into elements smaller than `v[pivot]`, followed by elements greater than or
417/// equal to `v[pivot]`.
418///
419/// Returns a tuple of:
420///
421/// 1. Number of elements smaller than `v[pivot]`.
422/// 2. True if `v` was already partitioned.
423fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> (usize, bool)
424where
425    F: Fn(&T, &T) -> bool,
426{
427    let (mid, was_partitioned) = {
428        // Place the pivot at the beginning of slice.
429        v.swap(0, pivot);
430        let (pivot, v) = v.split_at_mut(1);
431        let pivot = &mut pivot[0];
432
433        // Read the pivot into a stack-allocated variable for efficiency. If a following comparison
434        // operation panics, the pivot will be automatically written back into the slice.
435        let write_on_drop = WriteOnDrop {
436            value: unsafe { Some(ptr::read(pivot)) },
437            dest: pivot,
438        };
439        let pivot = write_on_drop.value.as_ref().unwrap();
440
441        // Find the first pair of out-of-order elements.
442        let mut l = 0;
443        let mut r = v.len();
444        unsafe {
445            // Find the first element greater then or equal to the pivot.
446            while l < r && is_less(v.get_unchecked(l), pivot) {
447                l += 1;
448            }
449
450            // Find the last element smaller that the pivot.
451            while l < r && !is_less(v.get_unchecked(r - 1), pivot) {
452                r -= 1;
453            }
454        }
455
456        (
457            l + partition_in_blocks(&mut v[l..r], pivot, is_less),
458            l >= r,
459        )
460
461        // `write_on_drop` goes out of scope and writes the pivot (which is a stack-allocated
462        // variable) back into the slice where it originally was. This step is critical in ensuring
463        // safety!
464    };
465
466    // Place the pivot between the two partitions.
467    v.swap(0, mid);
468
469    (mid, was_partitioned)
470}
471
472/// Partitions `v` into elements equal to `v[pivot]` followed by elements greater than `v[pivot]`.
473///
474/// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain
475/// elements smaller than the pivot.
476fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> usize
477where
478    F: Fn(&T, &T) -> bool,
479{
480    // Place the pivot at the beginning of slice.
481    v.swap(0, pivot);
482    let (pivot, v) = v.split_at_mut(1);
483    let pivot = &mut pivot[0];
484
485    // Read the pivot into a stack-allocated variable for efficiency. If a following comparison
486    // operation panics, the pivot will be automatically written back into the slice.
487    let write_on_drop = WriteOnDrop {
488        value: unsafe { Some(ptr::read(pivot)) },
489        dest: pivot,
490    };
491    let pivot = write_on_drop.value.as_ref().unwrap();
492
493    // Now partition the slice.
494    let mut l = 0;
495    let mut r = v.len();
496    loop {
497        unsafe {
498            // Find the first element greater that the pivot.
499            while l < r && !is_less(pivot, v.get_unchecked(l)) {
500                l += 1;
501            }
502
503            // Find the last element equal to the pivot.
504            while l < r && is_less(pivot, v.get_unchecked(r - 1)) {
505                r -= 1;
506            }
507
508            // Are we done?
509            if l >= r {
510                break;
511            }
512
513            // Swap the found pair of out-of-order elements.
514            r -= 1;
515            ptr::swap(v.get_unchecked_mut(l), v.get_unchecked_mut(r));
516            l += 1;
517        }
518    }
519
520    // We found `l` elements equal to the pivot. Add 1 to account for the pivot itself.
521    l + 1
522
523    // `write_on_drop` goes out of scope and writes the pivot (which is a stack-allocated variable)
524    // back into the slice where it originally was. This step is critical in ensuring safety!
525}
526
527/// Scatters some elements around in an attempt to break patterns that might cause imbalanced
528/// partitions in quicksort.
529#[cold]
530fn break_patterns<T>(v: &mut [T]) {
531    let len = v.len();
532    if len >= 8 {
533        // Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia.
534        let mut random = len as u32;
535        let mut gen_u32 = || {
536            random ^= random << 13;
537            random ^= random >> 17;
538            random ^= random << 5;
539            random
540        };
541        let mut gen_usize = || {
542            if mem::size_of::<usize>() <= 4 {
543                gen_u32() as usize
544            } else {
545                ((u64::from(gen_u32()) << 32) | u64::from(gen_u32())) as usize
546            }
547        };
548
549        // Take random numbers modulo this number.
550        // The number fits into `usize` because `len` is not greater than `isize::MAX`.
551        let modulus = len.next_power_of_two();
552
553        // Some pivot candidates will be in the nearby of this index. Let's randomize them.
554        let pos = len / 4 * 2;
555
556        for i in 0..3 {
557            // Generate a random number modulo `len`. However, in order to avoid costly operations
558            // we first take it modulo a power of two, and then decrease by `len` until it fits
559            // into the range `[0, len - 1]`.
560            let mut other = gen_usize() & (modulus - 1);
561
562            // `other` is guaranteed to be less than `2 * len`.
563            if other >= len {
564                other -= len;
565            }
566
567            v.swap(pos - 1 + i, other);
568        }
569    }
570}
571
572/// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted.
573///
574/// Elements in `v` might be reordered in the process.
575fn choose_pivot<T, F>(v: &mut [T], is_less: &F) -> (usize, bool)
576where
577    F: Fn(&T, &T) -> bool,
578{
579    // Minimum length to choose the median-of-medians method.
580    // Shorter slices use the simple median-of-three method.
581    const SHORTEST_MEDIAN_OF_MEDIANS: usize = 50;
582    // Maximum number of swaps that can be performed in this function.
583    const MAX_SWAPS: usize = 4 * 3;
584
585    let len = v.len();
586
587    // Three indices near which we are going to choose a pivot.
588    let mut a = len / 4 * 1;
589    let mut b = len / 4 * 2;
590    let mut c = len / 4 * 3;
591
592    // Counts the total number of swaps we are about to perform while sorting indices.
593    let mut swaps = 0;
594
595    if len >= 8 {
596        // Swaps indices so that `v[a] <= v[b]`.
597        let mut sort2 = |a: &mut usize, b: &mut usize| unsafe {
598            if is_less(v.get_unchecked(*b), v.get_unchecked(*a)) {
599                ptr::swap(a, b);
600                swaps += 1;
601            }
602        };
603
604        // Swaps indices so that `v[a] <= v[b] <= v[c]`.
605        let mut sort3 = |a: &mut usize, b: &mut usize, c: &mut usize| {
606            sort2(a, b);
607            sort2(b, c);
608            sort2(a, b);
609        };
610
611        if len >= SHORTEST_MEDIAN_OF_MEDIANS {
612            // Finds the median of `v[a - 1], v[a], v[a + 1]` and stores the index into `a`.
613            let mut sort_adjacent = |a: &mut usize| {
614                let tmp = *a;
615                sort3(&mut (tmp - 1), a, &mut (tmp + 1));
616            };
617
618            // Find medians in the neighborhoods of `a`, `b`, and `c`.
619            sort_adjacent(&mut a);
620            sort_adjacent(&mut b);
621            sort_adjacent(&mut c);
622        }
623
624        // Find the median among `a`, `b`, and `c`.
625        sort3(&mut a, &mut b, &mut c);
626    }
627
628    if swaps < MAX_SWAPS {
629        (b, swaps == 0)
630    } else {
631        // The maximum number of swaps was performed. Chances are the slice is descending or mostly
632        // descending, so reversing will probably help sort it faster.
633        v.reverse();
634        (len - 1 - b, true)
635    }
636}
637
638/// Sorts `v` recursively.
639///
640/// If the slice had a predecessor in the original array, it is specified as `pred`.
641///
642/// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero,
643/// this function will immediately switch to heapsort.
644fn recurse<'a, T, F>(mut v: &'a mut [T], is_less: &F, mut pred: Option<&'a mut T>, mut limit: usize)
645where
646    T: Send,
647    F: Fn(&T, &T) -> bool + Sync,
648{
649    // Slices of up to this length get sorted using insertion sort.
650    const MAX_INSERTION: usize = 20;
651    // If both partitions are up to this length, we continue sequentially. This number is as small
652    // as possible but so that the overhead of Rayon's task scheduling is still negligible.
653    const MAX_SEQUENTIAL: usize = 2000;
654
655    // True if the last partitioning was reasonably balanced.
656    let mut was_balanced = true;
657    // True if the last partitioning didn't shuffle elements (the slice was already partitioned).
658    let mut was_partitioned = true;
659
660    loop {
661        let len = v.len();
662
663        // Very short slices get sorted using insertion sort.
664        if len <= MAX_INSERTION {
665            insertion_sort(v, is_less);
666            return;
667        }
668
669        // If too many bad pivot choices were made, simply fall back to heapsort in order to
670        // guarantee `O(n log n)` worst-case.
671        if limit == 0 {
672            heapsort(v, is_less);
673            return;
674        }
675
676        // If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
677        // some elements around. Hopefully we'll choose a better pivot this time.
678        if !was_balanced {
679            break_patterns(v);
680            limit -= 1;
681        }
682
683        // Choose a pivot and try guessing whether the slice is already sorted.
684        let (pivot, likely_sorted) = choose_pivot(v, is_less);
685
686        // If the last partitioning was decently balanced and didn't shuffle elements, and if pivot
687        // selection predicts the slice is likely already sorted...
688        if was_balanced && was_partitioned && likely_sorted {
689            // Try identifying several out-of-order elements and shifting them to correct
690            // positions. If the slice ends up being completely sorted, we're done.
691            if partial_insertion_sort(v, is_less) {
692                return;
693            }
694        }
695
696        // If the chosen pivot is equal to the predecessor, then it's the smallest element in the
697        // slice. Partition the slice into elements equal to and elements greater than the pivot.
698        // This case is usually hit when the slice contains many duplicate elements.
699        if let Some(ref p) = pred {
700            if !is_less(p, &v[pivot]) {
701                let mid = partition_equal(v, pivot, is_less);
702
703                // Continue sorting elements greater than the pivot.
704                v = &mut { v }[mid..];
705                continue;
706            }
707        }
708
709        // Partition the slice.
710        let (mid, was_p) = partition(v, pivot, is_less);
711        was_balanced = cmp::min(mid, len - mid) >= len / 8;
712        was_partitioned = was_p;
713
714        // Split the slice into `left`, `pivot`, and `right`.
715        let (left, right) = { v }.split_at_mut(mid);
716        let (pivot, right) = right.split_at_mut(1);
717        let pivot = &mut pivot[0];
718
719        if cmp::max(left.len(), right.len()) <= MAX_SEQUENTIAL {
720            // Recurse into the shorter side only in order to minimize the total number of recursive
721            // calls and consume less stack space. Then just continue with the longer side (this is
722            // akin to tail recursion).
723            if left.len() < right.len() {
724                recurse(left, is_less, pred, limit);
725                v = right;
726                pred = Some(pivot);
727            } else {
728                recurse(right, is_less, Some(pivot), limit);
729                v = left;
730            }
731        } else {
732            // Sort the left and right half in parallel.
733            rayon_core::join(
734                || recurse(left, is_less, pred, limit),
735                || recurse(right, is_less, Some(pivot), limit),
736            );
737            break;
738        }
739    }
740}
741
742/// Sorts `v` using pattern-defeating quicksort in parallel.
743///
744/// The algorithm is unstable, in-place, and `O(n log n)` worst-case.
745pub(super) fn par_quicksort<T, F>(v: &mut [T], is_less: F)
746where
747    T: Send,
748    F: Fn(&T, &T) -> bool + Sync,
749{
750    // Sorting has no meaningful behavior on zero-sized types.
751    if mem::size_of::<T>() == 0 {
752        return;
753    }
754
755    // Limit the number of imbalanced partitions to `floor(log2(len)) + 1`.
756    let limit = mem::size_of::<usize>() * 8 - v.len().leading_zeros() as usize;
757
758    recurse(v, &is_less, None, limit);
759}
760
761#[cfg(test)]
762mod tests {
763    use super::heapsort;
764    use rand::distributions::Uniform;
765    use rand::{thread_rng, Rng};
766
767    #[test]
768    fn test_heapsort() {
769        let ref mut rng = thread_rng();
770
771        for len in (0..25).chain(500..501) {
772            for &modulus in &[5, 10, 100] {
773                let dist = Uniform::new(0, modulus);
774                for _ in 0..100 {
775                    let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();
776
777                    // Test heapsort using `<` operator.
778                    let mut tmp = v.clone();
779                    heapsort(&mut tmp, &|a, b| a < b);
780                    assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
781
782                    // Test heapsort using `>` operator.
783                    let mut tmp = v.clone();
784                    heapsort(&mut tmp, &|a, b| a > b);
785                    assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
786                }
787            }
788        }
789
790        // Sort using a completely random comparison function.
791        // This will reorder the elements *somehow*, but won't panic.
792        let mut v: Vec<_> = (0..100).collect();
793        heapsort(&mut v, &|_, _| thread_rng().gen());
794        heapsort(&mut v, &|a, b| a < b);
795
796        for i in 0..v.len() {
797            assert_eq!(v[i], i);
798        }
799    }
800}