1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
//! Signatures (e.g. CA signatures over SSH certificates)

use crate::{
    checked::CheckedSum, decode::Decode, encode::Encode, private, public, reader::Reader,
    writer::Writer, Algorithm, Error, MPInt, PrivateKey, PublicKey, Result,
};
use alloc::vec::Vec;
use core::fmt;
use signature::{Signer, Verifier};

#[cfg(feature = "ed25519")]
use crate::{private::Ed25519Keypair, public::Ed25519PublicKey};

#[cfg(feature = "p256")]
use crate::{
    private::{EcdsaKeypair, EcdsaPrivateKey},
    public::EcdsaPublicKey,
    EcdsaCurve,
};

#[cfg(feature = "rsa")]
use {
    crate::{private::RsaKeypair, public::RsaPublicKey, HashAlg},
    rsa::PublicKey as _,
    sha2::{Digest, Sha256, Sha512},
};

const DSA_SIGNATURE_SIZE: usize = 40;
const ED25519_SIGNATURE_SIZE: usize = 64;

/// Digital signature (e.g. DSA, ECDSA, Ed25519).
///
/// These are used as part of the OpenSSH certificate format to represent
/// signatures by certificate authorities (CAs).
///
/// From OpenSSH's [PROTOCOL.certkeys] specification:
///
/// > Signatures are computed and encoded according to the rules defined for
/// > the CA's public key algorithm ([RFC4253 section 6.6] for ssh-rsa and
/// > ssh-dss, [RFC5656] for the ECDSA types, and [RFC8032] for Ed25519).
///
/// RSA signature support is implemented using the SHA2 family extensions as
/// described in [RFC8332].
///
/// [PROTOCOL.certkeys]: https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL.certkeys?annotate=HEAD
/// [RFC4253 section 6.6]: https://datatracker.ietf.org/doc/html/rfc4253#section-6.6
/// [RFC5656]: https://datatracker.ietf.org/doc/html/rfc5656
/// [RFC8032]: https://datatracker.ietf.org/doc/html/rfc8032
/// [RFC8332]: https://datatracker.ietf.org/doc/html/rfc8332
#[derive(Clone, Eq, PartialEq, PartialOrd, Ord)]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub struct Signature {
    /// Signature algorithm.
    algorithm: Algorithm,

    /// Raw signature serialized as algorithm-specific byte encoding.
    data: Vec<u8>,
}

impl Signature {
    /// Create a new signature with the given algorithm and raw signature data.
    ///
    /// See specifications in toplevel [`Signature`] documentation for how to
    /// format the raw signature data for a given algorithm.
    ///
    /// # Returns
    /// - [`Error::Length`] if the signature is not the correct length.
    pub fn new(algorithm: Algorithm, data: impl Into<Vec<u8>>) -> Result<Self> {
        let data = data.into();

        // Validate signature is well-formed per OpensSH encoding
        match algorithm {
            Algorithm::Dsa if data.len() == DSA_SIGNATURE_SIZE => (),
            Algorithm::Ecdsa { curve } => {
                let reader = &mut data.as_slice();

                for _ in 0..2 {
                    let component = MPInt::decode(reader)?;

                    if component.as_positive_bytes().ok_or(Error::Crypto)?.len()
                        != curve.field_size()
                    {
                        return Err(Error::Length);
                    }
                }

                if !reader.is_finished() {
                    return Err(Error::Length);
                }
            }
            Algorithm::Ed25519 if data.len() == ED25519_SIGNATURE_SIZE => (),
            Algorithm::Rsa { hash: Some(_) } => (),
            _ => return Err(Error::Length),
        }

        Ok(Self { algorithm, data })
    }

    /// Placeholder signature used by the certificate builder.
    ///
    /// This is guaranteed generate an error if anything attempts to encode it.
    pub(crate) fn placeholder() -> Self {
        Self {
            algorithm: Algorithm::default(),
            data: Vec::new(),
        }
    }

    /// Check if this signature is the placeholder signature.
    pub(crate) fn is_placeholder(&self) -> bool {
        self.algorithm == Algorithm::default() && self.data.is_empty()
    }
}

impl Signature {
    /// Get the [`Algorithm`] associated with this signature.
    pub fn algorithm(&self) -> Algorithm {
        self.algorithm
    }

    /// Get the raw signature as bytes.
    pub fn as_bytes(&self) -> &[u8] {
        &self.data
    }
}

impl AsRef<[u8]> for Signature {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl Decode for Signature {
    fn decode(reader: &mut impl Reader) -> Result<Self> {
        let algorithm = Algorithm::decode(reader)?;
        let data = Vec::decode(reader)?;
        Self::new(algorithm, data)
    }
}

impl Encode for Signature {
    fn encoded_len(&self) -> Result<usize> {
        [
            self.algorithm().encoded_len()?,
            4, // signature data length prefix (uint32)
            self.as_bytes().len(),
        ]
        .checked_sum()
    }

    fn encode(&self, writer: &mut impl Writer) -> Result<()> {
        if self.is_placeholder() {
            return Err(Error::Length);
        }

        self.algorithm().encode(writer)?;
        self.as_bytes().encode(writer)
    }
}

impl signature::Signature for Signature {
    fn from_bytes(bytes: &[u8]) -> signature::Result<Self> {
        Self::try_from(bytes).map_err(|_| signature::Error::new())
    }
}

/// Decode [`Signature`] from an [`Algorithm`]-prefixed OpenSSH-encoded bytestring.
impl TryFrom<&[u8]> for Signature {
    type Error = Error;

    fn try_from(mut bytes: &[u8]) -> Result<Self> {
        Self::decode(&mut bytes)
    }
}

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "Signature {{ algorithm: {:?}, data: {:X} }}",
            self.algorithm, self
        )
    }
}

impl fmt::LowerHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_ref() {
            write!(f, "{:02x}", byte)?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Signature {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for byte in self.as_ref() {
            write!(f, "{:02X}", byte)?;
        }
        Ok(())
    }
}

impl Signer<Signature> for PrivateKey {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        self.key_data().try_sign(message)
    }
}

impl Signer<Signature> for private::KeypairData {
    #[allow(unused_variables)]
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        match self {
            #[cfg(feature = "p256")]
            Self::Ecdsa(keypair) => keypair.try_sign(message),
            #[cfg(feature = "ed25519")]
            Self::Ed25519(keypair) => keypair.try_sign(message),
            #[cfg(feature = "rsa")]
            Self::Rsa(keypair) => keypair.try_sign(message),
            _ => Err(signature::Error::new()),
        }
    }
}

impl Verifier<Signature> for PublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        self.key_data().verify(message, signature)
    }
}

impl Verifier<Signature> for public::KeyData {
    #[allow(unused_variables)]
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match self {
            #[cfg(feature = "p256")]
            Self::Ecdsa(pk) => pk.verify(message, signature),
            #[cfg(feature = "ed25519")]
            Self::Ed25519(pk) => pk.verify(message, signature),
            #[cfg(feature = "rsa")]
            Self::Rsa(pk) => pk.verify(message, signature),
            _ => Err(signature::Error::new()),
        }
    }
}

#[cfg(feature = "ed25519")]
#[cfg_attr(docsrs, doc(cfg(feature = "ed25519")))]
impl TryFrom<Signature> for ed25519_dalek::Signature {
    type Error = Error;

    fn try_from(signature: Signature) -> Result<ed25519_dalek::Signature> {
        ed25519_dalek::Signature::try_from(&signature)
    }
}

#[cfg(feature = "ed25519")]
#[cfg_attr(docsrs, doc(cfg(feature = "ed25519")))]
impl TryFrom<&Signature> for ed25519_dalek::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<ed25519_dalek::Signature> {
        match signature.algorithm {
            Algorithm::Ed25519 => Ok(ed25519_dalek::Signature::try_from(signature.as_bytes())?),
            _ => Err(Error::Algorithm),
        }
    }
}

#[cfg(feature = "ed25519")]
#[cfg_attr(docsrs, doc(cfg(feature = "ed25519")))]
impl Signer<Signature> for Ed25519Keypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        let signature = ed25519_dalek::Keypair::try_from(self)?.sign(message);

        Ok(Signature {
            algorithm: Algorithm::Ed25519,
            data: signature.as_ref().to_vec(),
        })
    }
}

#[cfg(feature = "ed25519")]
#[cfg_attr(docsrs, doc(cfg(feature = "ed25519")))]
impl Verifier<Signature> for Ed25519PublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        let signature = ed25519_dalek::Signature::try_from(signature)?;
        ed25519_dalek::PublicKey::try_from(self)?.verify(message, &signature)
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl TryFrom<p256::ecdsa::Signature> for Signature {
    type Error = Error;

    fn try_from(signature: p256::ecdsa::Signature) -> Result<Signature> {
        Signature::try_from(&signature)
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl TryFrom<&p256::ecdsa::Signature> for Signature {
    type Error = Error;

    fn try_from(signature: &p256::ecdsa::Signature) -> Result<Signature> {
        let (r, s) = signature.as_ref().split_at(32);
        let mut data = Vec::with_capacity(74); // 32 * 2 + 4 * 2 + 1 * 2
        MPInt::from_positive_bytes(r)?.encode(&mut data)?;
        MPInt::from_positive_bytes(s)?.encode(&mut data)?;

        Ok(Signature {
            algorithm: Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256,
            },
            data,
        })
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl TryFrom<Signature> for p256::ecdsa::Signature {
    type Error = Error;

    fn try_from(signature: Signature) -> Result<p256::ecdsa::Signature> {
        p256::ecdsa::Signature::try_from(&signature)
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl TryFrom<&Signature> for p256::ecdsa::Signature {
    type Error = Error;

    fn try_from(signature: &Signature) -> Result<p256::ecdsa::Signature> {
        match signature.algorithm {
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256,
            } => {
                let reader = &mut signature.as_bytes();
                let r = MPInt::decode(reader)?;
                let s = MPInt::decode(reader)?;

                match (r.as_positive_bytes(), s.as_positive_bytes()) {
                    (Some(r), Some(s)) if r.len() == 32 && s.len() == 32 => {
                        Ok(p256::ecdsa::Signature::from_scalars(
                            *p256::FieldBytes::from_slice(r),
                            *p256::FieldBytes::from_slice(s),
                        )?)
                    }
                    _ => Err(Error::Crypto),
                }
            }
            _ => Err(Error::Algorithm),
        }
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl Signer<Signature> for EcdsaKeypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        match self {
            Self::NistP256 { private, .. } => private.try_sign(message),
            _ => Err(signature::Error::new()),
        }
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl Signer<Signature> for EcdsaPrivateKey<32> {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        Ok(p256::ecdsa::SigningKey::from_bytes(self.as_ref())?
            .try_sign(message)?
            .try_into()?)
    }
}

#[cfg(feature = "p256")]
#[cfg_attr(docsrs, doc(cfg(feature = "p256")))]
impl Verifier<Signature> for EcdsaPublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        match signature.algorithm {
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256,
            } => {
                let verifying_key = p256::ecdsa::VerifyingKey::try_from(self)?;
                let signature = p256::ecdsa::Signature::try_from(signature)?;
                verifying_key.verify(message, &signature)
            }
            _ => Err(signature::Error::new()),
        }
    }
}

#[cfg(feature = "rsa")]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
impl Signer<Signature> for RsaKeypair {
    fn try_sign(&self, message: &[u8]) -> signature::Result<Signature> {
        let padding = rsa::padding::PaddingScheme::PKCS1v15Sign {
            hash: Some(rsa::hash::Hash::SHA2_512),
        };
        let digest = sha2::Sha512::digest(message);
        let data = rsa::RsaPrivateKey::try_from(self)?
            .sign(padding, digest.as_ref())
            .map_err(|_| signature::Error::new())?;

        Ok(Signature {
            algorithm: Algorithm::Rsa {
                hash: Some(HashAlg::Sha512),
            },
            data,
        })
    }
}

#[cfg(feature = "rsa")]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
impl Verifier<Signature> for RsaPublicKey {
    fn verify(&self, message: &[u8], signature: &Signature) -> signature::Result<()> {
        let key = rsa::RsaPublicKey::try_from(self)?;

        match signature.algorithm {
            Algorithm::Rsa {
                hash: Some(HashAlg::Sha256),
            } => {
                let digest = Sha256::digest(message);
                let padding = rsa::padding::PaddingScheme::PKCS1v15Sign {
                    hash: Some(rsa::hash::Hash::SHA2_256),
                };
                key.verify(padding, digest.as_ref(), signature.as_bytes())
                    .map_err(|_| signature::Error::new())
            }
            Algorithm::Rsa {
                hash: Some(HashAlg::Sha512),
            } => {
                let padding = rsa::padding::PaddingScheme::PKCS1v15Sign {
                    hash: Some(rsa::hash::Hash::SHA2_512),
                };
                let digest = Sha512::digest(message);
                key.verify(padding, digest.as_ref(), signature.as_bytes())
                    .map_err(|_| signature::Error::new())
            }
            _ => Err(signature::Error::new()),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Signature;
    use crate::{encode::Encode, Algorithm, EcdsaCurve, Error, HashAlg};
    use alloc::vec::Vec;
    use hex_literal::hex;

    #[cfg(feature = "ed25519")]
    use {
        super::Ed25519Keypair,
        signature::{Signer, Verifier},
    };

    const DSA_SIGNATURE: &[u8] = &hex!("000000077373682d6473730000002866725bf3c56100e975e21fff28a60f73717534d285ea3e1beefc2891f7189d00bd4d94627e84c55c");
    const ECDSA_SHA2_P256_SIGNATURE: &[u8] = &hex!("0000001365636473612d736861322d6e6973747032353600000048000000201298ab320720a32139cda8a40c97a13dc54ce032ea3c6f09ea9e87501e48fa1d0000002046e4ac697a6424a9870b9ef04ca1182cd741965f989bd1f1f4a26fd83cf70348");
    const ED25519_SIGNATURE: &[u8] = &hex!("0000000b7373682d65643235353139000000403d6b9906b76875aef1e7b2f1e02078a94f439aebb9a4734da1a851a81e22ce0199bbf820387a8de9c834c9c3cc778d9972dcbe70f68d53cc6bc9e26b02b46d04");
    const RSA_SHA512_SIGNATURE: &[u8] = &hex!("0000000c7273612d736861322d3531320000018085a4ad1a91a62c00c85de7bb511f38088ff2bce763d76f4786febbe55d47624f9e2cffce58a680183b9ad162c7f0191ea26cab001ac5f5055743eced58e9981789305c208fc98d2657954e38eb28c7e7f3fbe92393a14324ed77aebb772a41aa7a107b38cb9bd1d9ad79b275135d1d7e019bb1d56d74f2450be6db0771f48f6707d3fcf9789592ca2e55595acc16b6e8d0139b56c5d1360b3a1e060f4151a3d7841df2c2a8c94d6f8a1bf633165ee0bcadac5642763df0dd79d3235ae5506595145f199d8abe8f9980411bf70a16e30f273736324d047043317044c36374d6a5ed34cac251e01c6795e4578393f9090bf4ae3e74a0009275a197315fc9c62f1c9aec1ba3b2d37c3b207e5500df19e090e7097ebc038fb9c9e35aea9161479ba6b5190f48e89e1abe51e8ec0e120ef89776e129687ca52d1892c8e88e6ef062a7d96b8a87682ca6a42ff1df0cdf5815c3645aeed7267ca7093043db0565e0f109b796bf117b9d2bb6d6debc0c67a4c9fb3aae3e29b00c7bd70f6c11cf53c295ff");

    /// Example test vector for signing.
    #[cfg(feature = "ed25519")]
    const EXAMPLE_MSG: &[u8] = b"Hello, world!";

    #[test]
    fn decode_dsa() {
        let signature = Signature::try_from(DSA_SIGNATURE).unwrap();
        assert_eq!(Algorithm::Dsa, signature.algorithm());
    }

    #[test]
    fn decode_ecdsa_sha2_p256() {
        let signature = Signature::try_from(ECDSA_SHA2_P256_SIGNATURE).unwrap();
        assert_eq!(
            Algorithm::Ecdsa {
                curve: EcdsaCurve::NistP256
            },
            signature.algorithm()
        );
    }

    #[test]
    fn decode_ed25519() {
        let signature = Signature::try_from(ED25519_SIGNATURE).unwrap();
        assert_eq!(Algorithm::Ed25519, signature.algorithm());
    }

    #[test]
    fn decode_rsa() {
        let signature = Signature::try_from(RSA_SHA512_SIGNATURE).unwrap();
        assert_eq!(
            Algorithm::Rsa {
                hash: Some(HashAlg::Sha512)
            },
            signature.algorithm()
        );
    }

    #[test]
    fn encode_dsa() {
        let signature = Signature::try_from(DSA_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(DSA_SIGNATURE, &result);
    }

    #[test]
    fn encode_ecdsa_sha2_p256() {
        let signature = Signature::try_from(ECDSA_SHA2_P256_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(ECDSA_SHA2_P256_SIGNATURE, &result);
    }

    #[test]
    fn encode_ed25519() {
        let signature = Signature::try_from(ED25519_SIGNATURE).unwrap();

        let mut result = Vec::new();
        signature.encode(&mut result).unwrap();
        assert_eq!(ED25519_SIGNATURE, &result);
    }

    #[cfg(feature = "ed25519")]
    #[test]
    fn sign_and_verify_ed25519() {
        let keypair = Ed25519Keypair::from_seed(&[42; 32]);
        let signature = keypair.sign(EXAMPLE_MSG);
        assert!(keypair.public.verify(EXAMPLE_MSG, &signature).is_ok());
    }

    #[test]
    fn placeholder() {
        assert!(!Signature::try_from(ED25519_SIGNATURE)
            .unwrap()
            .is_placeholder());

        let placeholder = Signature::placeholder();
        assert!(placeholder.is_placeholder());

        let mut writer = Vec::new();
        assert_eq!(placeholder.encode(&mut writer), Err(Error::Length));
    }
}