differential_dataflow/consolidation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
//! Common logic for the consolidation of vectors of Semigroups.
//!
//! Often we find ourselves with collections of records with associated weights (often
//! integers) where we want to reduce the collection to the point that each record occurs
//! at most once, with the accumulated weights. These methods supply that functionality.
//!
//! Importantly, these methods are used internally by differential dataflow, but are made
//! public for the convenience of others. Their precise behavior is driven by the needs of
//! differential dataflow (chiefly: canonicalizing sequences of non-zero updates); should
//! you need specific behavior, it may be best to defensively copy, paste, and maintain the
//! specific behavior you require.
use std::cmp::Ordering;
use std::collections::VecDeque;
use timely::Container;
use timely::container::{ContainerBuilder, PushInto};
use crate::{IntoOwned, Data};
use crate::difference::{IsZero, Semigroup};
/// Sorts and consolidates `vec`.
///
/// This method will sort `vec` and then consolidate runs of more than one entry with
/// identical first elements by accumulating the second elements of the pairs. Should the final
/// accumulation be zero, the element is discarded.
pub fn consolidate<T: Ord, R: Semigroup>(vec: &mut Vec<(T, R)>) {
consolidate_from(vec, 0);
}
/// Sorts and consolidate `vec[offset..]`.
///
/// This method will sort `vec[offset..]` and then consolidate runs of more than one entry with
/// identical first elements by accumulating the second elements of the pairs. Should the final
/// accumulation be zero, the element is discarded.
pub fn consolidate_from<T: Ord, R: Semigroup>(vec: &mut Vec<(T, R)>, offset: usize) {
let length = consolidate_slice(&mut vec[offset..]);
vec.truncate(offset + length);
}
/// Sorts and consolidates a slice, returning the valid prefix length.
pub fn consolidate_slice<T: Ord, R: Semigroup>(slice: &mut [(T, R)]) -> usize {
if slice.len() > 1 {
// We could do an insertion-sort like initial scan which builds up sorted, consolidated runs.
// In a world where there are not many results, we may never even need to call in to merge sort.
slice.sort_by(|x,y| x.0.cmp(&y.0));
// Counts the number of distinct known-non-zero accumulations. Indexes the write location.
let mut offset = 0;
let mut accum = slice[offset].1.clone();
for index in 1 .. slice.len() {
if slice[index].0 == slice[index-1].0 {
accum.plus_equals(&slice[index].1);
}
else {
if !accum.is_zero() {
slice.swap(offset, index-1);
slice[offset].1.clone_from(&accum);
offset += 1;
}
accum.clone_from(&slice[index].1);
}
}
if !accum.is_zero() {
slice.swap(offset, slice.len()-1);
slice[offset].1 = accum;
offset += 1;
}
offset
}
else {
slice.iter().filter(|x| !x.1.is_zero()).count()
}
}
/// Sorts and consolidates `vec`.
///
/// This method will sort `vec` and then consolidate runs of more than one entry with
/// identical first two elements by accumulating the third elements of the triples. Should the final
/// accumulation be zero, the element is discarded.
pub fn consolidate_updates<D: Ord, T: Ord, R: Semigroup>(vec: &mut Vec<(D, T, R)>) {
consolidate_updates_from(vec, 0);
}
/// Sorts and consolidate `vec[offset..]`.
///
/// This method will sort `vec[offset..]` and then consolidate runs of more than one entry with
/// identical first two elements by accumulating the third elements of the triples. Should the final
/// accumulation be zero, the element is discarded.
pub fn consolidate_updates_from<D: Ord, T: Ord, R: Semigroup>(vec: &mut Vec<(D, T, R)>, offset: usize) {
let length = consolidate_updates_slice(&mut vec[offset..]);
vec.truncate(offset + length);
}
/// Sorts and consolidates a slice, returning the valid prefix length.
pub fn consolidate_updates_slice<D: Ord, T: Ord, R: Semigroup>(slice: &mut [(D, T, R)]) -> usize {
if slice.len() > 1 {
// We could do an insertion-sort like initial scan which builds up sorted, consolidated runs.
// In a world where there are not many results, we may never even need to call in to merge sort.
slice.sort_unstable_by(|x,y| (&x.0, &x.1).cmp(&(&y.0, &y.1)));
// Counts the number of distinct known-non-zero accumulations. Indexes the write location.
let mut offset = 0;
let mut accum = slice[offset].2.clone();
for index in 1 .. slice.len() {
if (slice[index].0 == slice[index-1].0) && (slice[index].1 == slice[index-1].1) {
accum.plus_equals(&slice[index].2);
}
else {
if !accum.is_zero() {
slice.swap(offset, index-1);
slice[offset].2.clone_from(&accum);
offset += 1;
}
accum.clone_from(&slice[index].2);
}
}
if !accum.is_zero() {
slice.swap(offset, slice.len()-1);
slice[offset].2 = accum;
offset += 1;
}
offset
}
else {
slice.iter().filter(|x| !x.2.is_zero()).count()
}
}
/// A container builder that consolidates data in-places into fixed-sized containers. Does not
/// maintain FIFO ordering.
#[derive(Default)]
pub struct ConsolidatingContainerBuilder<C>{
current: C,
empty: Vec<C>,
outbound: VecDeque<C>,
}
impl<D,T,R> ConsolidatingContainerBuilder<Vec<(D, T, R)>>
where
D: Data,
T: Data,
R: Semigroup+'static,
{
/// Flush `self.current` up to the biggest `multiple` of elements. Pass 1 to flush all elements.
// TODO: Can we replace `multiple` by a bool?
#[cold]
fn consolidate_and_flush_through(&mut self, multiple: usize) {
let preferred_capacity = timely::container::buffer::default_capacity::<(D, T, R)>();
consolidate_updates(&mut self.current);
let mut drain = self.current.drain(..(self.current.len()/multiple)*multiple).peekable();
while drain.peek().is_some() {
let mut container = self.empty.pop().unwrap_or_else(|| Vec::with_capacity(preferred_capacity));
container.clear();
container.extend((&mut drain).take(preferred_capacity));
self.outbound.push_back(container);
}
}
}
impl<D, T, R, P> PushInto<P> for ConsolidatingContainerBuilder<Vec<(D, T, R)>>
where
D: Data,
T: Data,
R: Semigroup+'static,
Vec<(D, T, R)>: PushInto<P>,
{
/// Push an element.
///
/// Precondition: `current` is not allocated or has space for at least one element.
#[inline]
fn push_into(&mut self, item: P) {
let preferred_capacity = timely::container::buffer::default_capacity::<(D, T, R)>();
if self.current.capacity() < preferred_capacity * 2 {
self.current.reserve(preferred_capacity * 2 - self.current.capacity());
}
self.current.push_into(item);
if self.current.len() == self.current.capacity() {
// Flush complete containers.
self.consolidate_and_flush_through(preferred_capacity);
}
}
}
impl<D,T,R> ContainerBuilder for ConsolidatingContainerBuilder<Vec<(D, T, R)>>
where
D: Data,
T: Data,
R: Semigroup+'static,
{
type Container = Vec<(D,T,R)>;
#[inline]
fn extract(&mut self) -> Option<&mut Vec<(D,T,R)>> {
if let Some(container) = self.outbound.pop_front() {
self.empty.push(container);
self.empty.last_mut()
} else {
None
}
}
#[inline]
fn finish(&mut self) -> Option<&mut Vec<(D,T,R)>> {
if !self.current.is_empty() {
// Flush all
self.consolidate_and_flush_through(1);
// Remove all but two elements from the stash of empty to avoid memory leaks. We retain
// two to match `current` capacity.
self.empty.truncate(2);
}
self.extract()
}
}
/// Layout of containers and their read items to be consolidated.
///
/// This trait specifies behavior to extract keys and diffs from container's read
/// items. Consolidation accumulates the diffs per key.
///
/// The trait requires `Container` to have access to its `Item` GAT.
pub trait ConsolidateLayout: Container {
/// Key portion of data, essentially everything minus the diff
type Key<'a>: Eq where Self: 'a;
/// GAT diff type.
type Diff<'a>: IntoOwned<'a, Owned = Self::DiffOwned> where Self: 'a;
/// Owned diff type.
type DiffOwned: for<'a> Semigroup<Self::Diff<'a>>;
/// Deconstruct an item into key and diff. Must be cheap.
fn into_parts(item: Self::Item<'_>) -> (Self::Key<'_>, Self::Diff<'_>);
/// Push an element to a compatible container.
///
/// This function is odd to have, so let's explain why it exists. Ideally, the container
/// would accept a `(key, diff)` pair and we wouldn't need this function. However, we
/// might never be in a position where this is true: Vectors can push any `T`, which would
/// collide with a specific implementation for pushing tuples of mixes GATs and owned types.
///
/// For this reason, we expose a function here that takes a GAT key and an owned diff, and
/// leave it to the implementation to "patch" a suitable item that can be pushed into `self`.
fn push_with_diff(&mut self, key: Self::Key<'_>, diff: Self::DiffOwned);
/// Compare two items by key to sort containers.
fn cmp(item1: &Self::Item<'_>, item2: &Self::Item<'_>) -> Ordering;
/// Consolidate the supplied container.
fn consolidate_into(&mut self, target: &mut Self) {
// Sort input data
let mut permutation = Vec::with_capacity(self.len());
permutation.extend(self.drain());
permutation.sort_by(|a, b| Self::cmp(a, b));
// Iterate over the data, accumulating diffs for like keys.
let mut iter = permutation.drain(..);
if let Some(item) = iter.next() {
let (k, d) = Self::into_parts(item);
let mut prev_key = k;
let mut prev_diff = d.into_owned();
for item in iter {
let (next_key, next_diff) = Self::into_parts(item);
if next_key == prev_key {
prev_diff.plus_equals(&next_diff);
}
else {
if !prev_diff.is_zero() {
target.push_with_diff(prev_key, prev_diff);
}
prev_key = next_key;
prev_diff = next_diff.into_owned();
}
}
if !prev_diff.is_zero() {
target.push_with_diff(prev_key, prev_diff);
}
}
}
}
impl<D, T, R> ConsolidateLayout for Vec<(D, T, R)>
where
D: Ord + Clone + 'static,
T: Ord + Clone + 'static,
for<'a> R: Semigroup + IntoOwned<'a, Owned = R> + Clone + 'static,
{
type Key<'a> = (D, T) where Self: 'a;
type Diff<'a> = R where Self: 'a;
type DiffOwned = R;
fn into_parts((data, time, diff): Self::Item<'_>) -> (Self::Key<'_>, Self::Diff<'_>) {
((data, time), diff)
}
fn cmp<'a>(item1: &Self::Item<'_>, item2: &Self::Item<'_>) -> Ordering {
(&item1.0, &item1.1).cmp(&(&item2.0, &item2.1))
}
fn push_with_diff(&mut self, (data, time): Self::Key<'_>, diff: Self::DiffOwned) {
self.push((data, time, diff));
}
/// Consolidate the supplied container.
fn consolidate_into(&mut self, target: &mut Self) {
consolidate_updates(self);
std::mem::swap(self, target);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_consolidate() {
let test_cases = vec![
(
vec![("a", -1), ("b", -2), ("a", 1)],
vec![("b", -2)],
),
(
vec![("a", -1), ("b", 0), ("a", 1)],
vec![],
),
(
vec![("a", 0)],
vec![],
),
(
vec![("a", 0), ("b", 0)],
vec![],
),
(
vec![("a", 1), ("b", 1)],
vec![("a", 1), ("b", 1)],
),
];
for (mut input, output) in test_cases {
consolidate(&mut input);
assert_eq!(input, output);
}
}
#[test]
fn test_consolidate_updates() {
let test_cases = vec![
(
vec![("a", 1, -1), ("b", 1, -2), ("a", 1, 1)],
vec![("b", 1, -2)],
),
(
vec![("a", 1, -1), ("b", 1, 0), ("a", 1, 1)],
vec![],
),
(
vec![("a", 1, 0)],
vec![],
),
(
vec![("a", 1, 0), ("b", 1, 0)],
vec![],
),
(
vec![("a", 1, 1), ("b", 2, 1)],
vec![("a", 1, 1), ("b", 2, 1)],
),
];
for (mut input, output) in test_cases {
consolidate_updates(&mut input);
assert_eq!(input, output);
}
}
#[test]
fn test_consolidating_container_builder() {
let mut ccb = <ConsolidatingContainerBuilder<Vec<(usize, usize, usize)>>>::default();
for _ in 0..1024 {
ccb.push_into((0, 0, 0));
}
assert_eq!(ccb.extract(), None);
assert_eq!(ccb.finish(), None);
for i in 0..1024 {
ccb.push_into((i, 0, 1));
}
let mut collected = Vec::default();
while let Some(container) = ccb.finish() {
collected.append(container);
}
// The output happens to be sorted, but it's not guaranteed.
collected.sort();
for i in 0..1024 {
assert_eq!((i, 0, 1), collected[i]);
}
}
#[test]
fn test_consolidate_into() {
let mut data = vec![(1, 1, 1), (2, 1, 1), (1, 1, -1)];
let mut target = Vec::default();
data.sort();
data.consolidate_into(&mut target);
assert_eq!(target, [(2, 1, 1)]);
}
#[cfg(not(debug_assertions))]
const LEN: usize = 256 << 10;
#[cfg(not(debug_assertions))]
const REPS: usize = 10 << 10;
#[cfg(debug_assertions)]
const LEN: usize = 256 << 1;
#[cfg(debug_assertions)]
const REPS: usize = 10 << 1;
#[test]
fn test_consolidator_duration() {
let mut data = Vec::with_capacity(LEN);
let mut data2 = Vec::with_capacity(LEN);
let mut target = Vec::new();
let mut duration = std::time::Duration::default();
for _ in 0..REPS {
data.clear();
data2.clear();
target.clear();
data.extend((0..LEN).map(|i| (i/4, 1, -2isize + ((i % 4) as isize))));
data2.extend((0..LEN).map(|i| (i/4, 1, -2isize + ((i % 4) as isize))));
data.sort_by(|x,y| x.0.cmp(&y.0));
let start = std::time::Instant::now();
data.consolidate_into(&mut target);
duration += start.elapsed();
consolidate_updates(&mut data2);
assert_eq!(target, data2);
}
println!("elapsed consolidator {duration:?}");
}
#[test]
fn test_consolidator_duration_vec() {
let mut data = Vec::with_capacity(LEN);
let mut duration = std::time::Duration::default();
for _ in 0..REPS {
data.clear();
data.extend((0..LEN).map(|i| (i/4, 1, -2isize + ((i % 4) as isize))));
data.sort_by(|x,y| x.0.cmp(&y.0));
let start = std::time::Instant::now();
consolidate_updates(&mut data);
duration += start.elapsed();
}
println!("elapsed vec {duration:?}");
}
}