1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Lowering is the process of transforming a `HirRelationExpr`
//! into a `MirRelationExpr`.
//!
//! The most crucial part of lowering is decorrelation; i.e.: rewriting a
//! `HirScalarExpr` that may contain subqueries (e.g. `SELECT` or `EXISTS`)
//! with instances of `MirScalarExpr` that contain none of these.
//!
//! Informally, a subquery should be viewed as a query that is executed in
//! the context of some outer relation, for each row of that relation. The
//! subqueries often contain references to the columns of the outer
//! relation.
//!
//! The transformation we perform maintains an `outer` relation and then
//! traverses the relation expression that may contain references to those
//! outer columns. As subqueries are discovered, the current relation
//! expression is recast as the outer expression until such a point as the
//! scalar expression's evaluation can be determined and appended to each
//! row of the previously outer relation.
//!
//! It is important that the outer columns (the initial columns) act as keys
//! for all nested computation. When counts or other aggregations are
//! performed, they should include not only the indicated keys but also all
//! of the outer columns.
//!
//! The decorrelation transformation is initialized with an empty outer
//! relation, but it seems entirely appropriate to decorrelate queries that
//! contain "holes" from prepared statements, as if the query was a subquery
//! against a relation containing the assignments of values to those holes.

use std::collections::{BTreeMap, BTreeSet};
use std::iter::repeat;

use crate::optimizer_metrics::OptimizerMetrics;
use crate::plan::expr::{
    AggregateExpr, ColumnOrder, ColumnRef, HirRelationExpr, HirScalarExpr, JoinKind, WindowExprType,
};
use crate::plan::{transform_expr, PlanError};
use crate::session::vars::SystemVars;
use itertools::Itertools;
use mz_expr::{AccessStrategy, AggregateFunc, MirRelationExpr, MirScalarExpr};
use mz_ore::collections::CollectionExt;
use mz_ore::stack::maybe_grow;
use mz_repr::*;

mod variadic_left;

/// Maps a leveled column reference to a specific column.
///
/// Leveled column references are nested, so that larger levels are
/// found early in a record and level zero is found at the end.
///
/// The column map only stores references for levels greater than zero,
/// and column references at level zero simply start at the first column
/// after all prior references.
#[derive(Debug, Clone)]
struct ColumnMap {
    inner: BTreeMap<ColumnRef, usize>,
}

impl ColumnMap {
    fn empty() -> ColumnMap {
        Self::new(BTreeMap::new())
    }

    fn new(inner: BTreeMap<ColumnRef, usize>) -> ColumnMap {
        ColumnMap { inner }
    }

    fn get(&self, col_ref: &ColumnRef) -> usize {
        if col_ref.level == 0 {
            self.inner.len() + col_ref.column
        } else {
            self.inner[col_ref]
        }
    }

    fn len(&self) -> usize {
        self.inner.len()
    }

    /// Updates references in the `ColumnMap` for use in a nested scope. The
    /// provided `arity` must specify the arity of the current scope.
    fn enter_scope(&self, arity: usize) -> ColumnMap {
        // From the perspective of the nested scope, all existing column
        // references will be one level greater.
        let existing = self
            .inner
            .clone()
            .into_iter()
            .update(|(col, _i)| col.level += 1);

        // All columns in the current scope become explicit entries in the
        // immediate parent scope.
        let new = (0..arity).map(|i| {
            (
                ColumnRef {
                    level: 1,
                    column: i,
                },
                self.len() + i,
            )
        });

        ColumnMap::new(existing.chain(new).collect())
    }
}

/// Map with the CTEs currently in scope.
type CteMap = BTreeMap<mz_expr::LocalId, CteDesc>;

/// Information about needed when finding a reference to a CTE in scope.
#[derive(Clone)]
struct CteDesc {
    /// The new ID assigned to the lowered version of the CTE, which may not match
    /// the ID of the input CTE.
    new_id: mz_expr::LocalId,
    /// The relation type of the CTE including the columns from the outer
    /// context at the beginning.
    relation_type: RelationType,
    /// The outer relation the CTE was applied to.
    outer_relation: MirRelationExpr,
}

#[derive(Debug)]
pub struct Config {
    /// Enable outer join lowering implemented in database-issues#6747.
    pub enable_new_outer_join_lowering: bool,
    /// Enable outer join lowering implemented in database-issues#7561.
    pub enable_variadic_left_join_lowering: bool,
}

impl From<&SystemVars> for Config {
    fn from(vars: &SystemVars) -> Self {
        Self {
            enable_new_outer_join_lowering: vars.enable_new_outer_join_lowering(),
            enable_variadic_left_join_lowering: vars.enable_variadic_left_join_lowering(),
        }
    }
}

/// Context passed to the lowering. This is wired to most parts of the lowering.
pub(crate) struct Context<'a> {
    /// Feature flags affecting the behavior of lowering.
    pub config: &'a Config,
    /// Optional, because some callers don't have an `OptimizerMetrics` handy. When it's None, we
    /// simply don't write metrics.
    pub metrics: Option<&'a OptimizerMetrics>,
}

impl HirRelationExpr {
    /// Rewrite `self` into a `MirRelationExpr`.
    /// This requires rewriting all correlated subqueries (nested `HirRelationExpr`s) into flat queries
    #[mz_ore::instrument(target = "optimizer", level = "trace", name = "hir_to_mir")]
    pub fn lower<C: Into<Config>>(
        self,
        config: C,
        metrics: Option<&OptimizerMetrics>,
    ) -> Result<MirRelationExpr, PlanError> {
        let context = Context {
            config: &config.into(),
            metrics,
        };
        let result = match self {
            // We directly rewrite a Constant into the corresponding `MirRelationExpr::Constant`
            // to ensure that the downstream optimizer can easily bypass most
            // irrelevant optimizations (e.g. reduce folding) for this expression
            // without having to re-learn the fact that it is just a constant,
            // as it would if the constant were wrapped in a Let-Get pair.
            HirRelationExpr::Constant { rows, typ } => {
                let rows: Vec<_> = rows.into_iter().map(|row| (row, 1)).collect();
                MirRelationExpr::Constant {
                    rows: Ok(rows),
                    typ,
                }
            }
            mut other => {
                let mut id_gen = mz_ore::id_gen::IdGen::default();
                transform_expr::split_subquery_predicates(&mut other);
                transform_expr::try_simplify_quantified_comparisons(&mut other);
                transform_expr::fuse_window_functions(&mut other, &context)?;
                MirRelationExpr::constant(vec![vec![]], RelationType::new(vec![])).let_in(
                    &mut id_gen,
                    |id_gen, get_outer| {
                        other.applied_to(
                            id_gen,
                            get_outer,
                            &ColumnMap::empty(),
                            &mut CteMap::new(),
                            &context,
                        )
                    },
                )?
            }
        };

        mz_repr::explain::trace_plan(&result);

        Ok(result)
    }

    /// Return a `MirRelationExpr` which evaluates `self` once for each row of `get_outer`.
    ///
    /// For uncorrelated `self`, this should be the cross-product between `get_outer` and `self`.
    /// When `self` references columns of `get_outer`, much more work needs to occur.
    ///
    /// The `col_map` argument contains mappings to some of the columns of `get_outer`, though
    /// perhaps not all of them. It should be used as the basis of resolving column references,
    /// but care must be taken when adding new columns that `get_outer.arity()` is where they
    /// will start, rather than any function of `col_map`.
    ///
    /// The `get_outer` expression should be a `Get` with no duplicate rows, describing the distinct
    /// assignment of values to outer rows.
    fn applied_to(
        self,
        id_gen: &mut mz_ore::id_gen::IdGen,
        get_outer: MirRelationExpr,
        col_map: &ColumnMap,
        cte_map: &mut CteMap,
        context: &Context,
    ) -> Result<MirRelationExpr, PlanError> {
        maybe_grow(|| {
            use MirRelationExpr as SR;

            use HirRelationExpr::*;

            if let MirRelationExpr::Get { .. } = &get_outer {
            } else {
                panic!(
                    "get_outer: expected a MirRelationExpr::Get, found {:?}",
                    get_outer
                );
            }
            assert_eq!(col_map.len(), get_outer.arity());
            Ok(match self {
                Constant { rows, typ } => {
                    // Constant expressions are not correlated with `get_outer`, and should be cross-products.
                    get_outer.product(SR::Constant {
                        rows: Ok(rows.into_iter().map(|row| (row, 1)).collect()),
                        typ,
                    })
                }
                Get { id, typ } => match id {
                    mz_expr::Id::Local(local_id) => {
                        let cte_desc = cte_map.get(&local_id).unwrap();
                        let get_cte = SR::Get {
                            id: mz_expr::Id::Local(cte_desc.new_id.clone()),
                            typ: cte_desc.relation_type.clone(),
                            access_strategy: AccessStrategy::UnknownOrLocal,
                        };
                        if get_outer == cte_desc.outer_relation {
                            // If the CTE was applied to the same exact relation, we can safely
                            // return a `Get` relation.
                            get_cte
                        } else {
                            // Otherwise, the new outer relation may contain more columns from some
                            // intermediate scope placed between the definition of the CTE and this
                            // reference of the CTE and/or more operations applied on top of the
                            // outer relation.
                            //
                            // An example of the latter is the following query:
                            //
                            // SELECT *
                            // FROM x,
                            //      LATERAL(WITH a(m) as (SELECT max(y.a) FROM y WHERE y.a < x.a)
                            //              SELECT (SELECT m FROM a) FROM y) b;
                            //
                            // When the CTE is lowered, the outer relation is `Get x`. But then,
                            // the reference of the CTE is applied to `Distinct(Join(Get x, Get y), x.*)`
                            // which has the same cardinality as `Get x`.
                            //
                            // In any case, `get_outer` is guaranteed to contain the columns of the
                            // outer relation the CTE was applied to at its prefix. Since, we must
                            // return a relation containing `get_outer`'s column at the beginning,
                            // we must build a join between `get_outer` and `get_cte` on their common
                            // columns.
                            let oa = get_outer.arity();
                            let cte_outer_columns = cte_desc.relation_type.arity() - typ.arity();
                            let equivalences = (0..cte_outer_columns)
                                .map(|pos| {
                                    vec![
                                        MirScalarExpr::Column(pos),
                                        MirScalarExpr::Column(pos + oa),
                                    ]
                                })
                                .collect();

                            // Project out the second copy of the common between `get_outer` and
                            // `cte_desc.outer_relation`.
                            let projection = (0..oa)
                                .chain(oa + cte_outer_columns..oa + cte_outer_columns + typ.arity())
                                .collect_vec();
                            SR::join_scalars(vec![get_outer, get_cte], equivalences)
                                .project(projection)
                        }
                    }
                    _ => {
                        // Get statements are only to external sources, and are not correlated with `get_outer`.
                        get_outer.product(SR::Get {
                            id,
                            typ,
                            access_strategy: AccessStrategy::UnknownOrLocal,
                        })
                    }
                },
                Let {
                    name: _,
                    id,
                    value,
                    body,
                } => {
                    let value =
                        value.applied_to(id_gen, get_outer.clone(), col_map, cte_map, context)?;
                    value.let_in(id_gen, |id_gen, get_value| {
                        let (new_id, typ) = if let MirRelationExpr::Get {
                            id: mz_expr::Id::Local(id),
                            typ,
                            ..
                        } = get_value
                        {
                            (id, typ)
                        } else {
                            panic!(
                                "get_value: expected a MirRelationExpr::Get with local Id, found {:?}",
                                get_value
                            );
                        };
                        // Add the information about the CTE to the map and remove it when
                        // it goes out of scope.
                        let old_value = cte_map.insert(
                            id.clone(),
                            CteDesc {
                                new_id,
                                relation_type: typ,
                                outer_relation: get_outer.clone(),
                            },
                        );
                        let body = body.applied_to(id_gen, get_outer, col_map, cte_map, context);
                        if let Some(old_value) = old_value {
                            cte_map.insert(id, old_value);
                        } else {
                            cte_map.remove(&id);
                        }
                        body
                    })?
                }
                LetRec {
                    limit,
                    bindings,
                    body,
                } => {
                    let num_bindings = bindings.len();

                    // We use the outer type with the HIR types to form MIR CTE types.
                    let outer_column_types = get_outer.typ().column_types;

                    // Rename and introduce all bindings.
                    let mut shadowed_bindings = Vec::with_capacity(num_bindings);
                    let mut mir_ids = Vec::with_capacity(num_bindings);
                    for (_name, id, _value, typ) in bindings.iter() {
                        let mir_id = mz_expr::LocalId::new(id_gen.allocate_id());
                        mir_ids.push(mir_id);
                        let shadowed = cte_map.insert(
                            id.clone(),
                            CteDesc {
                                new_id: mir_id,
                                relation_type: RelationType::new(
                                    outer_column_types
                                        .iter()
                                        .cloned()
                                        .chain(typ.column_types.iter().cloned())
                                        .collect::<Vec<_>>(),
                                ),
                                outer_relation: get_outer.clone(),
                            },
                        );
                        shadowed_bindings.push((*id, shadowed));
                    }

                    let mut mir_values = Vec::with_capacity(num_bindings);
                    for (_name, _id, value, _typ) in bindings.into_iter() {
                        mir_values.push(value.applied_to(
                            id_gen,
                            get_outer.clone(),
                            col_map,
                            cte_map,
                            context,
                        )?);
                    }

                    let mir_body = body.applied_to(id_gen, get_outer, col_map, cte_map, context)?;

                    // Remove our bindings and reinstate any shadowed bindings.
                    for (id, shadowed) in shadowed_bindings {
                        if let Some(shadowed) = shadowed {
                            cte_map.insert(id, shadowed);
                        } else {
                            cte_map.remove(&id);
                        }
                    }

                    MirRelationExpr::LetRec {
                        ids: mir_ids,
                        values: mir_values,
                        // Copy the limit to each binding.
                        limits: repeat(limit).take(num_bindings).collect(),
                        body: Box::new(mir_body),
                    }
                }
                Project { input, outputs } => {
                    // Projections should be applied to the decorrelated `inner`, and to its columns,
                    // which means rebasing `outputs` to start `get_outer.arity()` columns later.
                    let input =
                        input.applied_to(id_gen, get_outer.clone(), col_map, cte_map, context)?;
                    let outputs = (0..get_outer.arity())
                        .chain(outputs.into_iter().map(|i| get_outer.arity() + i))
                        .collect::<Vec<_>>();
                    input.project(outputs)
                }
                Map { input, mut scalars } => {
                    // Scalar expressions may contain correlated subqueries. We must be cautious!

                    // We lower scalars in chunks, and must keep track of the
                    // arity of the HIR fragments lowered so far.
                    let mut lowered_arity = input.arity();

                    let mut input =
                        input.applied_to(id_gen, get_outer, col_map, cte_map, context)?;

                    // Lower subqueries in maximally sized batches, such as no subquery in the current
                    // batch depends on columns from the same batch.
                    // Note that subqueries in this projection may reference columns added by this
                    // Map operator, so we need to ensure these columns exist before lowering the
                    // subquery.
                    while !scalars.is_empty() {
                        let end_idx = scalars
                            .iter_mut()
                            .position(|s| {
                                let mut requires_nonexistent_column = false;
                                #[allow(deprecated)]
                                s.visit_columns(0, &mut |depth, col| {
                                    if col.level == depth {
                                        requires_nonexistent_column |= col.column >= lowered_arity
                                    }
                                });
                                requires_nonexistent_column
                            })
                            .unwrap_or(scalars.len());
                        assert!(end_idx > 0, "a Map expression references itself or a later column; lowered_arity: {}, expressions: {:?}", lowered_arity, scalars);

                        lowered_arity = lowered_arity + end_idx;
                        let scalars = scalars.drain(0..end_idx).collect_vec();

                        let old_arity = input.arity();
                        let (with_subqueries, subquery_map) = HirScalarExpr::lower_subqueries(
                            &scalars, id_gen, col_map, cte_map, input, context,
                        )?;
                        input = with_subqueries;

                        // We will proceed sequentially through the scalar expressions, for each transforming
                        // the decorrelated `input` into a relation with potentially more columns capable of
                        // addressing the needs of the scalar expression.
                        // Having done so, we add the scalar value of interest and trim off any other newly
                        // added columns.
                        //
                        // The sequential traversal is present as expressions are allowed to depend on the
                        // values of prior expressions.
                        let mut scalar_columns = Vec::new();
                        for scalar in scalars {
                            let scalar = scalar.applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                &mut input,
                                &Some(&subquery_map),
                                context,
                            )?;
                            input = input.map_one(scalar);
                            scalar_columns.push(input.arity() - 1);
                        }

                        // Discard any new columns added by the lowering of the scalar expressions
                        input = input.project((0..old_arity).chain(scalar_columns).collect());
                    }

                    input
                }
                CallTable { func, exprs } => {
                    // FlatMap expressions may contain correlated subqueries. Unlike Map they are not
                    // allowed to refer to the results of previous expressions, and we have a simpler
                    // implementation that appends all relevant columns first, then applies the flatmap
                    // operator to the result, then strips off any columns introduce by subqueries.

                    let mut input = get_outer;
                    let old_arity = input.arity();

                    let exprs = exprs
                        .into_iter()
                        .map(|e| e.applied_to(id_gen, col_map, cte_map, &mut input, &None, context))
                        .collect::<Result<Vec<_>, _>>()?;

                    let new_arity = input.arity();
                    let output_arity = func.output_arity();
                    input = input.flat_map(func, exprs);
                    if old_arity != new_arity {
                        // this means we added some columns to handle subqueries, and now we need to get rid of them
                        input = input.project(
                            (0..old_arity)
                                .chain(new_arity..new_arity + output_arity)
                                .collect(),
                        );
                    }
                    input
                }
                Filter { input, predicates } => {
                    // Filter expressions may contain correlated subqueries.
                    // We extend `get_outer` with sufficient values to determine the value of the predicate,
                    // then filter the results, then strip off any columns that were added for this purpose.
                    let mut input =
                        input.applied_to(id_gen, get_outer, col_map, cte_map, context)?;
                    for predicate in predicates {
                        let old_arity = input.arity();
                        let predicate = predicate
                            .applied_to(id_gen, col_map, cte_map, &mut input, &None, context)?;
                        let new_arity = input.arity();
                        input = input.filter(vec![predicate]);
                        if old_arity != new_arity {
                            // this means we added some columns to handle subqueries, and now we need to get rid of them
                            input = input.project((0..old_arity).collect());
                        }
                    }
                    input
                }
                Join {
                    left,
                    right,
                    on,
                    kind,
                } if right.is_correlated() => {
                    // A correlated join is a join in which the right expression has
                    // access to the columns in the left expression. It turns out
                    // this is *exactly* our branch operator, plus some additional
                    // null handling in the case of left joins. (Right and full
                    // lateral joins are not permitted.)
                    //
                    // As with normal joins, the `on` predicate may be correlated,
                    // and we treat it as a filter that follows the branch.

                    assert!(kind.can_be_correlated());

                    let left = left.applied_to(id_gen, get_outer, col_map, cte_map, context)?;
                    left.let_in(id_gen, |id_gen, get_left| {
                        let apply_requires_distinct_outer = false;
                        let mut join = branch(
                            id_gen,
                            get_left.clone(),
                            col_map,
                            cte_map,
                            *right,
                            apply_requires_distinct_outer,
                            context,
                            |id_gen, right, get_left, col_map, cte_map, context| {
                                right.applied_to(id_gen, get_left, col_map, cte_map, context)
                            },
                        )?;

                        // Plan the `on` predicate.
                        let old_arity = join.arity();
                        let on =
                            on.applied_to(id_gen, col_map, cte_map, &mut join, &None, context)?;
                        join = join.filter(vec![on]);
                        let new_arity = join.arity();
                        if old_arity != new_arity {
                            // This means we added some columns to handle
                            // subqueries, and now we need to get rid of them.
                            join = join.project((0..old_arity).collect());
                        }

                        // If a left join, reintroduce any rows from the left that
                        // are missing, with nulls filled in for the right columns.
                        if let JoinKind::LeftOuter { .. } = kind {
                            let default = join
                                .typ()
                                .column_types
                                .into_iter()
                                .skip(get_left.arity())
                                .map(|typ| (Datum::Null, typ.scalar_type))
                                .collect();
                            get_left.lookup(id_gen, join, default)
                        } else {
                            Ok::<_, PlanError>(join)
                        }
                    })?
                }
                Join {
                    left,
                    right,
                    on,
                    kind,
                } => {
                    if context.config.enable_variadic_left_join_lowering {
                        // Attempt to extract a stack of left joins.
                        if let JoinKind::LeftOuter = kind {
                            let mut rights = vec![(&*right, &on)];
                            let mut left_test = &left;
                            while let Join {
                                left,
                                right,
                                on,
                                kind: JoinKind::LeftOuter,
                            } = &**left_test
                            {
                                rights.push((&**right, on));
                                left_test = left;
                            }
                            if rights.len() > 1 {
                                // Defensively clone `cte_map` as it may be mutated.
                                let cte_map_clone = cte_map.clone();
                                if let Ok(Some(magic)) = variadic_left::attempt_left_join_magic(
                                    left_test,
                                    rights,
                                    id_gen,
                                    get_outer.clone(),
                                    col_map,
                                    cte_map,
                                    context,
                                ) {
                                    return Ok(magic);
                                } else {
                                    cte_map.clone_from(&cte_map_clone);
                                }
                            }
                        }
                    }

                    // Both join expressions should be decorrelated, and then joined by their
                    // leading columns to form only those pairs corresponding to the same row
                    // of `get_outer`.
                    //
                    // The `on` predicate may contain correlated subqueries, and we treat it
                    // as though it was a filter, with the caveat that we also translate outer
                    // joins in this step. The post-filtration results need to be considered
                    // against the records present in the left and right (decorrelated) inputs,
                    // depending on the type of join.
                    let oa = get_outer.arity();
                    let left =
                        left.applied_to(id_gen, get_outer.clone(), col_map, cte_map, context)?;
                    let lt = left.typ().column_types.into_iter().skip(oa).collect_vec();
                    let la = lt.len();
                    left.let_in(id_gen, |id_gen, get_left| {
                        let right_col_map = col_map.enter_scope(0);
                        let right = right.applied_to(
                            id_gen,
                            get_outer.clone(),
                            &right_col_map,
                            cte_map,
                            context,
                        )?;
                        let rt = right.typ().column_types.into_iter().skip(oa).collect_vec();
                        let ra = rt.len();
                        right.let_in(id_gen, |id_gen, get_right| {
                            let mut product = SR::join(
                                vec![get_left.clone(), get_right.clone()],
                                (0..oa).map(|i| vec![(0, i), (1, i)]).collect(),
                            )
                            // Project away the repeated copy of get_outer's columns.
                            .project(
                                (0..(oa + la))
                                    .chain((oa + la + oa)..(oa + la + oa + ra))
                                    .collect(),
                            );

                            // Decorrelate and lower the `on` clause.
                            let on = on.applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                &mut product,
                                &None,
                                context,
                            )?;
                            // Collect the types of all subqueries appearing in
                            // the `on` clause. The subquery results were
                            // appended to `product` in the `on.applied_to(...)`
                            // call above.
                            let on_subquery_types = product
                                .typ()
                                .column_types
                                .drain(oa + la + ra..)
                                .collect_vec();
                            // Remember if `on` had any subqueries.
                            let on_has_subqueries = !on_subquery_types.is_empty();

                            // Attempt an efficient equijoin implementation, in which outer joins are
                            // more efficiently rendered than in general. This can return `None` if
                            // such a plan is not possible, for example if `on` does not describe an
                            // equijoin between columns of `left` and `right`.
                            if kind != JoinKind::Inner {
                                if let Some(joined) = attempt_outer_equijoin(
                                    get_left.clone(),
                                    get_right.clone(),
                                    on.clone(),
                                    on_subquery_types,
                                    kind.clone(),
                                    oa,
                                    id_gen,
                                    context,
                                )? {
                                    if let Some(metrics) = context.metrics {
                                        metrics.inc_outer_join_lowering("equi");
                                    }
                                    return Ok(joined);
                                }
                            }

                            // Otherwise, perform a more general join.
                            if let Some(metrics) = context.metrics {
                                metrics.inc_outer_join_lowering("general");
                            }
                            let mut join = product.filter(vec![on]);
                            if on_has_subqueries {
                                // This means that `on.applied_to(...)` appended
                                // some columns to handle subqueries, and now we
                                // need to get rid of them.
                                join = join.project((0..oa + la + ra).collect());
                            }
                            join.let_in(id_gen, |id_gen, get_join| {
                                let mut result = get_join.clone();
                                if let JoinKind::LeftOuter { .. } | JoinKind::FullOuter { .. } =
                                    kind
                                {
                                    let left_outer = get_left.clone().anti_lookup::<PlanError>(
                                        id_gen,
                                        get_join.clone(),
                                        rt.into_iter()
                                            .map(|typ| (Datum::Null, typ.scalar_type))
                                            .collect(),
                                    )?;
                                    result = result.union(left_outer);
                                }
                                if let JoinKind::RightOuter | JoinKind::FullOuter = kind {
                                    let right_outer = get_right
                                        .clone()
                                        .anti_lookup::<PlanError>(
                                            id_gen,
                                            get_join
                                                // need to swap left and right to make the anti_lookup work
                                                .project(
                                                    (0..oa)
                                                        .chain((oa + la)..(oa + la + ra))
                                                        .chain((oa)..(oa + la))
                                                        .collect(),
                                                ),
                                            lt.into_iter()
                                                .map(|typ| (Datum::Null, typ.scalar_type))
                                                .collect(),
                                        )?
                                        // swap left and right back again
                                        .project(
                                            (0..oa)
                                                .chain((oa + ra)..(oa + ra + la))
                                                .chain((oa)..(oa + ra))
                                                .collect(),
                                        );
                                    result = result.union(right_outer);
                                }
                                Ok::<MirRelationExpr, PlanError>(result)
                            })
                        })
                    })?
                }
                Union { base, inputs } => {
                    // Union is uncomplicated.
                    SR::Union {
                        base: Box::new(base.applied_to(
                            id_gen,
                            get_outer.clone(),
                            col_map,
                            cte_map,
                            context,
                        )?),
                        inputs: inputs
                            .into_iter()
                            .map(|input| {
                                input.applied_to(
                                    id_gen,
                                    get_outer.clone(),
                                    col_map,
                                    cte_map,
                                    context,
                                )
                            })
                            .collect::<Result<Vec<_>, _>>()?,
                    }
                }
                Reduce {
                    input,
                    group_key,
                    aggregates,
                    expected_group_size,
                } => {
                    // Reduce may contain expressions with correlated subqueries.
                    // In addition, here an empty reduction key signifies that we need to supply default values
                    // in the case that there are no results (as in a SQL aggregation without an explicit GROUP BY).
                    let mut input =
                        input.applied_to(id_gen, get_outer.clone(), col_map, cte_map, context)?;
                    let applied_group_key = (0..get_outer.arity())
                        .chain(group_key.iter().map(|i| get_outer.arity() + i))
                        .collect();
                    let applied_aggregates = aggregates
                        .into_iter()
                        .map(|aggregate| {
                            aggregate.applied_to(id_gen, col_map, cte_map, &mut input, context)
                        })
                        .collect::<Result<Vec<_>, _>>()?;
                    let input_type = input.typ();
                    let default = applied_aggregates
                        .iter()
                        .map(|agg| {
                            (
                                agg.func.default(),
                                agg.typ(&input_type.column_types).scalar_type,
                            )
                        })
                        .collect();
                    // NOTE we don't need to remove any extra columns from aggregate.applied_to above because the reduce will do that anyway
                    let mut reduced =
                        input.reduce(applied_group_key, applied_aggregates, expected_group_size);

                    // Introduce default values in the case the group key is empty.
                    if group_key.is_empty() {
                        reduced = get_outer.lookup::<PlanError>(id_gen, reduced, default)?;
                    }
                    reduced
                }
                Distinct { input } => {
                    // Distinct is uncomplicated.
                    input
                        .applied_to(id_gen, get_outer, col_map, cte_map, context)?
                        .distinct()
                }
                TopK {
                    input,
                    group_key,
                    order_key,
                    limit,
                    offset,
                    expected_group_size,
                } => {
                    // TopK is uncomplicated, except that we must group by the columns of `get_outer` as well.
                    let mut input =
                        input.applied_to(id_gen, get_outer.clone(), col_map, cte_map, context)?;
                    let mut applied_group_key: Vec<_> = (0..get_outer.arity())
                        .chain(group_key.iter().map(|i| get_outer.arity() + i))
                        .collect();
                    let applied_order_key = order_key
                        .iter()
                        .map(|column_order| ColumnOrder {
                            column: column_order.column + get_outer.arity(),
                            desc: column_order.desc,
                            nulls_last: column_order.nulls_last,
                        })
                        .collect();

                    let old_arity = input.arity();

                    // Lower `limit`, which may introduce new columns if is a correlated subquery.
                    let mut limit_mir = None;
                    if let Some(limit) = limit {
                        limit_mir = Some(
                            limit
                                .applied_to(id_gen, col_map, cte_map, &mut input, &None, context)?,
                        );
                    }

                    let new_arity = input.arity();
                    // Extend the key to contain any new columns.
                    applied_group_key.extend(old_arity..new_arity);

                    let mut result = input.top_k(
                        applied_group_key,
                        applied_order_key,
                        limit_mir,
                        offset,
                        expected_group_size,
                    );

                    // If new columns were added for `limit` we must remove them.
                    if old_arity != new_arity {
                        result = result.project((0..old_arity).collect());
                    }

                    result
                }
                Negate { input } => {
                    // Negate is uncomplicated.
                    input
                        .applied_to(id_gen, get_outer, col_map, cte_map, context)?
                        .negate()
                }
                Threshold { input } => {
                    // Threshold is uncomplicated.
                    input
                        .applied_to(id_gen, get_outer, col_map, cte_map, context)?
                        .threshold()
                }
            })
        })
    }
}

impl HirScalarExpr {
    /// Rewrite `self` into a `mz_expr::ScalarExpr` which can be applied to the modified `inner`.
    ///
    /// This method is responsible for decorrelating subqueries in `self` by introducing further columns
    /// to `inner`, and rewriting `self` to refer to its physical columns (specified by `usize` positions).
    /// The most complicated logic is for the scalar expressions that involve subqueries, each of which are
    /// documented in more detail closer to their logic.
    ///
    /// This process presumes that `inner` is the result of decorrelation, meaning its first several columns
    /// may be inherited from outer relations. The `col_map` column map should provide specific offsets where
    /// each of these references can be found.
    fn applied_to(
        self,
        id_gen: &mut mz_ore::id_gen::IdGen,
        col_map: &ColumnMap,
        cte_map: &mut CteMap,
        inner: &mut MirRelationExpr,
        subquery_map: &Option<&BTreeMap<HirScalarExpr, usize>>,
        context: &Context,
    ) -> Result<MirScalarExpr, PlanError> {
        maybe_grow(|| {
            use MirScalarExpr as SS;

            use HirScalarExpr::*;

            if let Some(subquery_map) = subquery_map {
                if let Some(col) = subquery_map.get(&self) {
                    return Ok(SS::Column(*col));
                }
            }

            Ok::<MirScalarExpr, PlanError>(match self {
                Column(col_ref) => SS::Column(col_map.get(&col_ref)),
                Literal(row, typ) => SS::Literal(Ok(row), typ),
                Parameter(_) => panic!("cannot decorrelate expression with unbound parameters"),
                CallUnmaterializable(func) => SS::CallUnmaterializable(func),
                CallUnary { func, expr } => SS::CallUnary {
                    func,
                    expr: Box::new(expr.applied_to(
                        id_gen,
                        col_map,
                        cte_map,
                        inner,
                        subquery_map,
                        context,
                    )?),
                },
                CallBinary { func, expr1, expr2 } => SS::CallBinary {
                    func,
                    expr1: Box::new(expr1.applied_to(
                        id_gen,
                        col_map,
                        cte_map,
                        inner,
                        subquery_map,
                        context,
                    )?),
                    expr2: Box::new(expr2.applied_to(
                        id_gen,
                        col_map,
                        cte_map,
                        inner,
                        subquery_map,
                        context,
                    )?),
                },
                CallVariadic { func, exprs } => SS::CallVariadic {
                    func,
                    exprs: exprs
                        .into_iter()
                        .map(|expr| {
                            expr.applied_to(id_gen, col_map, cte_map, inner, subquery_map, context)
                        })
                        .collect::<Result<Vec<_>, _>>()?,
                },
                If { cond, then, els } => {
                    // The `If` case is complicated by the fact that we do not want to
                    // apply the `then` or `else` logic to tuples that respectively do
                    // not or do pass the `cond` test. Our strategy is to independently
                    // decorrelate the `then` and `else` logic, and apply each to tuples
                    // that respectively pass and do not pass the `cond` logic (which is
                    // executed, and so decorrelated, for all tuples).
                    //
                    // Informally, we turn the `if` statement into:
                    //
                    //   let then_case = inner.filter(cond).map(then);
                    //   let else_case = inner.filter(!cond).map(else);
                    //   return then_case.concat(else_case);
                    //
                    // We only require this if either expression would result in any
                    // computation beyond the expr itself, which we will interpret as
                    // "introduces additional columns". In the absence of correlation,
                    // we should just retain a `ScalarExpr::If` expression; the inverse
                    // transformation as above is complicated to recover after the fact,
                    // and we would benefit from not introducing the complexity.

                    let inner_arity = inner.arity();
                    let cond_expr =
                        cond.applied_to(id_gen, col_map, cte_map, inner, subquery_map, context)?;

                    // Defensive copies, in case we mangle these in decorrelation.
                    let inner_clone = inner.clone();
                    let then_clone = then.clone();
                    let else_clone = els.clone();

                    let cond_arity = inner.arity();
                    let then_expr =
                        then.applied_to(id_gen, col_map, cte_map, inner, subquery_map, context)?;
                    let else_expr =
                        els.applied_to(id_gen, col_map, cte_map, inner, subquery_map, context)?;

                    if cond_arity == inner.arity() {
                        // If no additional columns were added, we simply return the
                        // `If` variant with the updated expressions.
                        SS::If {
                            cond: Box::new(cond_expr),
                            then: Box::new(then_expr),
                            els: Box::new(else_expr),
                        }
                    } else {
                        // If columns were added, we need a more careful approach, as
                        // described above. First, we need to de-correlate each of
                        // the two expressions independently, and apply their cases
                        // as `MirRelationExpr::Map` operations.

                        *inner = inner_clone.let_in(id_gen, |id_gen, get_inner| {
                            // Restrict to records satisfying `cond_expr` and apply `then` as a map.
                            let mut then_inner = get_inner.clone().filter(vec![cond_expr.clone()]);
                            let then_expr = then_clone.applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                &mut then_inner,
                                subquery_map,
                                context,
                            )?;
                            let then_arity = then_inner.arity();
                            then_inner = then_inner
                                .map_one(then_expr)
                                .project((0..inner_arity).chain(Some(then_arity)).collect());

                            // Restrict to records not satisfying `cond_expr` and apply `els` as a map.
                            let mut else_inner = get_inner.filter(vec![SS::CallVariadic {
                                func: mz_expr::VariadicFunc::Or,
                                exprs: vec![
                                    cond_expr
                                        .clone()
                                        .call_binary(SS::literal_false(), mz_expr::BinaryFunc::Eq),
                                    cond_expr.clone().call_is_null(),
                                ],
                            }]);
                            let else_expr = else_clone.applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                &mut else_inner,
                                subquery_map,
                                context,
                            )?;
                            let else_arity = else_inner.arity();
                            else_inner = else_inner
                                .map_one(else_expr)
                                .project((0..inner_arity).chain(Some(else_arity)).collect());

                            // concatenate the two results.
                            Ok::<MirRelationExpr, PlanError>(then_inner.union(else_inner))
                        })?;

                        SS::Column(inner_arity)
                    }
                }

                // Subqueries!
                // These are surprisingly subtle. Things to be careful of:

                // Anything in the subquery that cares about row counts (Reduce/Distinct/Negate/Threshold) must not:
                // * change the row counts of the outer query
                // * accidentally compute its own value using the row counts of the outer query
                // Use `branch` to calculate the subquery once for each __distinct__ key in the outer
                // query and then join the answers back on to the original rows of the outer query.

                // When the subquery would return 0 rows for some row in the outer query, `subquery.applied_to(get_inner)` will not have any corresponding row.
                // Use `lookup` if you need to add default values for cases when the subquery returns 0 rows.
                Exists(expr) => {
                    let apply_requires_distinct_outer = true;
                    *inner = apply_existential_subquery(
                        id_gen,
                        inner.take_dangerous(),
                        col_map,
                        cte_map,
                        *expr,
                        apply_requires_distinct_outer,
                        context,
                    )?;
                    SS::Column(inner.arity() - 1)
                }

                Select(expr) => {
                    let apply_requires_distinct_outer = true;
                    *inner = apply_scalar_subquery(
                        id_gen,
                        inner.take_dangerous(),
                        col_map,
                        cte_map,
                        *expr,
                        apply_requires_distinct_outer,
                        context,
                    )?;
                    SS::Column(inner.arity() - 1)
                }
                Windowing(expr) => {
                    let partition_by = expr.partition_by;
                    let order_by = expr.order_by;

                    // argument lowering for scalar window functions
                    // (We need to specify the & _ in the arguments because of this problem:
                    // https://users.rust-lang.org/t/the-implementation-of-fnonce-is-not-general-enough/72141/3 )
                    let scalar_lower_args =
                        |_id_gen: &mut _,
                         _col_map: &_,
                         _cte_map: &mut _,
                         _get_inner: &mut _,
                         _subquery_map: &Option<&_>,
                         order_by_mir: Vec<MirScalarExpr>,
                         original_row_record,
                         original_row_record_type: ScalarType| {
                            let agg_input = MirScalarExpr::CallVariadic {
                                func: mz_expr::VariadicFunc::ListCreate {
                                    elem_type: original_row_record_type.clone(),
                                },
                                exprs: vec![original_row_record],
                            };
                            let mut agg_input = vec![agg_input];
                            agg_input.extend(order_by_mir.clone());
                            let agg_input = MirScalarExpr::CallVariadic {
                                func: mz_expr::VariadicFunc::RecordCreate {
                                    field_names: (0..agg_input.len())
                                        .map(|_| ColumnName::from("?column?"))
                                        .collect_vec(),
                                },
                                exprs: agg_input,
                            };
                            let list_type = ScalarType::List {
                                element_type: Box::new(original_row_record_type),
                                custom_id: None,
                            };
                            let agg_input_type = ScalarType::Record {
                                fields: std::iter::once(&list_type)
                                    .map(|t| {
                                        (ColumnName::from("?column?"), t.clone().nullable(false))
                                    })
                                    .collect(),
                                custom_id: None,
                            }
                            .nullable(false);

                            Ok((agg_input, agg_input_type))
                        };

                    // argument lowering for value window functions and aggregate window functions
                    let value_or_aggr_lower_args = |hir_encoded_args: Box<HirScalarExpr>| {
                        |id_gen: &mut _,
                         col_map: &_,
                         cte_map: &mut _,
                         get_inner: &mut _,
                         subquery_map: &Option<&_>,
                         order_by_mir: Vec<MirScalarExpr>,
                         original_row_record,
                         original_row_record_type| {
                            // Creates [((OriginalRow, EncodedArgs), OrderByExprs...)]

                            // Compute the encoded args for all rows
                            let mir_encoded_args = hir_encoded_args.applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                get_inner,
                                subquery_map,
                                context,
                            )?;
                            let mir_encoded_args_type = mir_encoded_args
                                .typ(&get_inner.typ().column_types)
                                .scalar_type;

                            // Build a new record that has two fields:
                            // 1. the original row in a record
                            // 2. the encoded args (which can be either a single value, or a record
                            //    if the window function has multiple arguments, such as `lag`)
                            let fn_input_record_fields: Box<[_]> =
                                [original_row_record_type, mir_encoded_args_type]
                                    .iter()
                                    .map(|t| {
                                        (ColumnName::from("?column?"), t.clone().nullable(false))
                                    })
                                    .collect();
                            let fn_input_record = MirScalarExpr::CallVariadic {
                                func: mz_expr::VariadicFunc::RecordCreate {
                                    field_names: fn_input_record_fields
                                        .iter()
                                        .map(|(n, _)| n.clone())
                                        .collect_vec(),
                                },
                                exprs: vec![original_row_record, mir_encoded_args],
                            };
                            let fn_input_record_type = ScalarType::Record {
                                fields: fn_input_record_fields,
                                custom_id: None,
                            }
                            .nullable(false);

                            // Build a new record with the record above + the ORDER BY exprs
                            // This follows the standard encoding of ORDER BY exprs used by aggregate functions
                            let mut agg_input = vec![fn_input_record];
                            agg_input.extend(order_by_mir.clone());
                            let agg_input = MirScalarExpr::CallVariadic {
                                func: mz_expr::VariadicFunc::RecordCreate {
                                    field_names: (0..agg_input.len())
                                        .map(|_| ColumnName::from("?column?"))
                                        .collect_vec(),
                                },
                                exprs: agg_input,
                            };

                            let agg_input_type = ScalarType::Record {
                                fields: [(
                                    ColumnName::from("?column?"),
                                    fn_input_record_type.nullable(false),
                                )]
                                .into(),
                                custom_id: None,
                            }
                            .nullable(false);

                            Ok((agg_input, agg_input_type))
                        }
                    };

                    match expr.func {
                        WindowExprType::Scalar(scalar_window_expr) => {
                            let mir_aggr_func = scalar_window_expr.into_expr();
                            Self::window_func_applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                inner,
                                subquery_map,
                                partition_by,
                                order_by,
                                mir_aggr_func,
                                scalar_lower_args,
                                context,
                            )?
                        }
                        WindowExprType::Value(value_window_expr) => {
                            let (hir_encoded_args, mir_aggr_func) = value_window_expr.into_expr();

                            Self::window_func_applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                inner,
                                subquery_map,
                                partition_by,
                                order_by,
                                mir_aggr_func,
                                value_or_aggr_lower_args(hir_encoded_args),
                                context,
                            )?
                        }
                        WindowExprType::Aggregate(aggr_window_expr) => {
                            let (hir_encoded_args, mir_aggr_func) = aggr_window_expr.into_expr();

                            Self::window_func_applied_to(
                                id_gen,
                                col_map,
                                cte_map,
                                inner,
                                subquery_map,
                                partition_by,
                                order_by,
                                mir_aggr_func,
                                value_or_aggr_lower_args(hir_encoded_args),
                                context,
                            )?
                        }
                    }
                }
            })
        })
    }

    fn window_func_applied_to<F>(
        id_gen: &mut mz_ore::id_gen::IdGen,
        col_map: &ColumnMap,
        cte_map: &mut CteMap,
        inner: &mut MirRelationExpr,
        subquery_map: &Option<&BTreeMap<HirScalarExpr, usize>>,
        partition_by: Vec<HirScalarExpr>,
        order_by: Vec<HirScalarExpr>,
        mir_aggr_func: AggregateFunc,
        lower_args: F,
        context: &Context,
    ) -> Result<MirScalarExpr, PlanError>
    where
        F: FnOnce(
            &mut mz_ore::id_gen::IdGen,
            &ColumnMap,
            &mut CteMap,
            &mut MirRelationExpr,
            &Option<&BTreeMap<HirScalarExpr, usize>>,
            Vec<MirScalarExpr>,
            MirScalarExpr,
            ScalarType,
        ) -> Result<(MirScalarExpr, ColumnType), PlanError>,
    {
        // Example MIRs for a window function (specifically, a window aggregation):
        //
        // CREATE TABLE t7(x INT, y INT);
        //
        // explain decorrelated plan for select sum(x*y) over (partition by x+y order by x-y, x/y) from t7;
        //
        // Decorrelated Plan
        // Project (#3)
        //   Map (#2)
        //     Project (#3..=#5)
        //       Map (record_get[0](record_get[1](#2)), record_get[1](record_get[1](#2)), record_get[0](#2))
        //         FlatMap unnest_list(#1)
        //           Reduce group_by=[#2] aggregates=[window_agg[sum order_by=[#0 asc nulls_last, #1 asc nulls_last]](row(row(row(#0, #1), (#0 * #1)), (#0 - #1), (#0 / #1)))]
        //             Map ((#0 + #1))
        //               CrossJoin
        //                 Constant
        //                   - ()
        //                 Get materialize.public.t7
        //
        // The same query after optimizations:
        //
        // explain select sum(x*y) over (partition by x+y order by x-y, x/y) from t7;
        //
        // Optimized Plan
        // Explained Query:
        //   Project (#2)
        //     Map (record_get[0](#1))
        //       FlatMap unnest_list(#0)
        //         Project (#1)
        //           Reduce group_by=[(#0 + #1)] aggregates=[window_agg[sum order_by=[#0 asc nulls_last, #1 asc nulls_last]](row(row(row(#0, #1), (#0 * #1)), (#0 - #1), (#0 / #1)))]
        //             ReadStorage materialize.public.t7
        //
        // The `row(row(row(...), ...), ...)` stuff means the following:
        // `row(row(row(<original row>), <arguments to window function>), <order by values>...)`
        //   - The <arguments to window function> can be either a single value or itself a
        //     `row` if there are multiple arguments.
        //   - The <order by values> are _not_ wrapped in a `row`, even if there are more than one
        //     ORDER BY columns.
        //   - The <original row> currently always captures the entire original row. This should
        //     improve when we make `ProjectionPushdown` smarter, see
        //     https://github.com/MaterializeInc/database-issues/issues/5090
        //
        // TODO:
        // We should probably introduce some dedicated Datum constructor functions instead of `row`
        // to make MIR plans and MIR construction/manipulation code more readable. Additionally, we
        // might even introduce dedicated Datum enum variants, so that the rendering code also
        // becomes more readable (and possibly slightly more performant).

        *inner = inner
            .take_dangerous()
            .let_in(id_gen, |id_gen, mut get_inner| {
                let order_by_mir = order_by
                    .into_iter()
                    .map(|o| {
                        o.applied_to(
                            id_gen,
                            col_map,
                            cte_map,
                            &mut get_inner,
                            subquery_map,
                            context,
                        )
                    })
                    .collect::<Result<Vec<_>, _>>()?;

                // Record input arity here so that any group_keys that need to mutate get_inner
                // don't add those columns to the aggregate input.
                let input_arity = get_inner.typ().arity();
                // The reduction that computes the window function must be keyed on the columns
                // from the outer context, plus the expressions in the partition key. The current
                // subquery will be 'executed' for every distinct row from the outer context so
                // by putting the outer columns in the grouping key we isolate each re-execution.
                let mut group_key = col_map
                    .inner
                    .iter()
                    .map(|(_, outer_col)| *outer_col)
                    .sorted()
                    .collect_vec();
                for p in partition_by {
                    let key = p.applied_to(
                        id_gen,
                        col_map,
                        cte_map,
                        &mut get_inner,
                        subquery_map,
                        context,
                    )?;
                    if let MirScalarExpr::Column(c) = key {
                        group_key.push(c);
                    } else {
                        get_inner = get_inner.map_one(key);
                        group_key.push(get_inner.arity() - 1);
                    }
                }

                get_inner.let_in(id_gen, |id_gen, mut get_inner| {
                    let input_type = get_inner.typ();

                    // Original columns of the relation
                    let fields: Box<_> = input_type
                        .column_types
                        .iter()
                        .take(input_arity)
                        .map(|t| (ColumnName::from("?column?"), t.clone()))
                        .collect();

                    // Original row made into a record
                    let original_row_record = MirScalarExpr::CallVariadic {
                        func: mz_expr::VariadicFunc::RecordCreate {
                            field_names: fields.iter().map(|(name, _)| name.clone()).collect_vec(),
                        },
                        exprs: (0..input_arity).map(MirScalarExpr::Column).collect_vec(),
                    };
                    let original_row_record_type = ScalarType::Record {
                        fields,
                        custom_id: None,
                    };

                    let (agg_input, agg_input_type) = lower_args(
                        id_gen,
                        col_map,
                        cte_map,
                        &mut get_inner,
                        subquery_map,
                        order_by_mir,
                        original_row_record,
                        original_row_record_type,
                    )?;

                    let aggregate = mz_expr::AggregateExpr {
                        func: mir_aggr_func,
                        expr: agg_input,
                        distinct: false,
                    };

                    // Actually call reduce with the window function
                    // The output of the aggregation function should be a list of tuples that has
                    // the result in the first position, and the original row in the second position
                    let mut reduce = get_inner
                        .reduce(group_key.clone(), vec![aggregate.clone()], None)
                        .flat_map(
                            mz_expr::TableFunc::UnnestList {
                                el_typ: aggregate
                                    .func
                                    .output_type(agg_input_type)
                                    .scalar_type
                                    .unwrap_list_element_type()
                                    .clone(),
                            },
                            vec![MirScalarExpr::Column(group_key.len())],
                        );
                    let record_col = reduce.arity() - 1;

                    // Unpack the record output by the window function
                    for c in 0..input_arity {
                        reduce = reduce.take_dangerous().map_one(MirScalarExpr::CallUnary {
                            func: mz_expr::UnaryFunc::RecordGet(mz_expr::func::RecordGet(c)),
                            expr: Box::new(MirScalarExpr::CallUnary {
                                func: mz_expr::UnaryFunc::RecordGet(mz_expr::func::RecordGet(1)),
                                expr: Box::new(MirScalarExpr::Column(record_col)),
                            }),
                        });
                    }

                    // Append the column with the result of the window function.
                    reduce = reduce.take_dangerous().map_one(MirScalarExpr::CallUnary {
                        func: mz_expr::UnaryFunc::RecordGet(mz_expr::func::RecordGet(0)),
                        expr: Box::new(MirScalarExpr::Column(record_col)),
                    });

                    let agg_col = record_col + 1 + input_arity;
                    Ok::<_, PlanError>(reduce.project((record_col + 1..agg_col + 1).collect_vec()))
                })
            })?;
        Ok(MirScalarExpr::Column(inner.arity() - 1))
    }

    /// Applies the subqueries in the given list of scalar expressions to every distinct
    /// value of the given relation and returns a join of the given relation with all
    /// the subqueries found, and the mapping of scalar expressions with columns projected
    /// by the returned join that will hold their results.
    fn lower_subqueries(
        exprs: &[Self],
        id_gen: &mut mz_ore::id_gen::IdGen,
        col_map: &ColumnMap,
        cte_map: &mut CteMap,
        inner: MirRelationExpr,
        context: &Context,
    ) -> Result<(MirRelationExpr, BTreeMap<HirScalarExpr, usize>), PlanError> {
        let mut subquery_map = BTreeMap::new();
        let output = inner.let_in(id_gen, |id_gen, get_inner| {
            let mut subqueries = Vec::new();
            let distinct_inner = get_inner.clone().distinct();
            for expr in exprs.iter() {
                #[allow(deprecated)]
                expr.visit_pre_post(
                    &mut |e| match e {
                        // For simplicity, subqueries within a conditional statement will be
                        // lowered when lowering the conditional expression.
                        HirScalarExpr::If { .. } => Some(vec![]),
                        _ => None,
                    },
                    &mut |e| match e {
                        HirScalarExpr::Select(expr) => {
                            let apply_requires_distinct_outer = false;
                            let subquery = apply_scalar_subquery(
                                id_gen,
                                distinct_inner.clone(),
                                col_map,
                                cte_map,
                                (**expr).clone(),
                                apply_requires_distinct_outer,
                                context,
                            )
                            .unwrap();

                            subqueries.push((e.clone(), subquery));
                        }
                        HirScalarExpr::Exists(expr) => {
                            let apply_requires_distinct_outer = false;
                            let subquery = apply_existential_subquery(
                                id_gen,
                                distinct_inner.clone(),
                                col_map,
                                cte_map,
                                (**expr).clone(),
                                apply_requires_distinct_outer,
                                context,
                            )
                            .unwrap();
                            subqueries.push((e.clone(), subquery));
                        }
                        _ => {}
                    },
                );
            }

            if subqueries.is_empty() {
                Ok::<MirRelationExpr, PlanError>(get_inner)
            } else {
                let inner_arity = get_inner.arity();
                let mut total_arity = inner_arity;
                let mut join_inputs = vec![get_inner];
                for (expr, subquery) in subqueries.into_iter() {
                    // Avoid lowering duplicated subqueries
                    if !subquery_map.contains_key(&expr) {
                        let subquery_arity = subquery.arity();
                        assert_eq!(subquery_arity, inner_arity + 1);
                        join_inputs.push(subquery);
                        total_arity += subquery_arity;

                        // Column with the value of the subquery
                        subquery_map.insert(expr, total_arity - 1);
                    }
                }
                // Each subquery projects all the columns of the outer context (distinct_inner)
                // plus 1 column, containing the result of the subquery. Those columns must be
                // joined with the outer/main relation (get_inner).
                let input_mapper = mz_expr::JoinInputMapper::new(&join_inputs);
                let equivalences = (0..inner_arity)
                    .map(|col| {
                        join_inputs
                            .iter()
                            .enumerate()
                            .map(|(input, _)| {
                                MirScalarExpr::Column(input_mapper.map_column_to_global(col, input))
                            })
                            .collect_vec()
                    })
                    .collect_vec();
                Ok(MirRelationExpr::join_scalars(join_inputs, equivalences))
            }
        })?;
        Ok((output, subquery_map))
    }

    /// Rewrites `self` into a `mz_expr::ScalarExpr`.
    pub fn lower_uncorrelated(self) -> Result<MirScalarExpr, PlanError> {
        use MirScalarExpr as SS;

        use HirScalarExpr::*;

        Ok(match self {
            Column(ColumnRef { level: 0, column }) => SS::Column(column),
            Literal(datum, typ) => SS::Literal(Ok(datum), typ),
            CallUnmaterializable(func) => SS::CallUnmaterializable(func),
            CallUnary { func, expr } => SS::CallUnary {
                func,
                expr: Box::new(expr.lower_uncorrelated()?),
            },
            CallBinary { func, expr1, expr2 } => SS::CallBinary {
                func,
                expr1: Box::new(expr1.lower_uncorrelated()?),
                expr2: Box::new(expr2.lower_uncorrelated()?),
            },
            CallVariadic { func, exprs } => SS::CallVariadic {
                func,
                exprs: exprs
                    .into_iter()
                    .map(|expr| expr.lower_uncorrelated())
                    .collect::<Result<_, _>>()?,
            },
            If { cond, then, els } => SS::If {
                cond: Box::new(cond.lower_uncorrelated()?),
                then: Box::new(then.lower_uncorrelated()?),
                els: Box::new(els.lower_uncorrelated()?),
            },
            Select { .. } | Exists { .. } | Parameter(..) | Column(..) | Windowing(..) => {
                sql_bail!("unexpected ScalarExpr in uncorrelated plan: {:?}", self);
            }
        })
    }
}

/// Prepare to apply `inner` to `outer`. Note that `inner` is a correlated (SQL)
/// expression, while `outer` is a non-correlated (dataflow) expression. `inner`
/// will, in effect, be executed once for every distinct row in `outer`, and the
/// results will be joined with `outer`. Note that columns in `outer` that are
/// not depended upon by `inner` are thrown away before the distinct, so that we
/// don't perform needless computation of `inner`.
///
/// `branch` will inspect the contents of `inner` to determine whether `inner`
/// is not multiplicity sensitive (roughly, contains only maps, filters,
/// projections, and calls to table functions). If it is not multiplicity
/// sensitive, `branch` will *not* distinctify outer. If this is problematic,
/// e.g. because the `apply` callback itself introduces multiplicity-sensitive
/// operations that were not present in `inner`, then set
/// `apply_requires_distinct_outer` to ensure that `branch` chooses the plan
/// that distinctifies `outer`.
///
/// The caller must supply the `apply` function that applies the rewritten
/// `inner` to `outer`.
fn branch<F>(
    id_gen: &mut mz_ore::id_gen::IdGen,
    outer: MirRelationExpr,
    col_map: &ColumnMap,
    cte_map: &mut CteMap,
    inner: HirRelationExpr,
    apply_requires_distinct_outer: bool,
    context: &Context,
    apply: F,
) -> Result<MirRelationExpr, PlanError>
where
    F: FnOnce(
        &mut mz_ore::id_gen::IdGen,
        HirRelationExpr,
        MirRelationExpr,
        &ColumnMap,
        &mut CteMap,
        &Context,
    ) -> Result<MirRelationExpr, PlanError>,
{
    // TODO: It would be nice to have a version of this code w/o optimizations,
    // at the least for purposes of understanding. It was difficult for one reader
    // to understand the required properties of `outer` and `col_map`.

    // If the inner expression is sufficiently simple, it is safe to apply it
    // *directly* to outer, rather than applying it to the distinctified key
    // (see below).
    //
    // As an example, consider the following two queries:
    //
    //     CREATE TABLE t (a int, b int);
    //     SELECT a, series FROM t, generate_series(1, t.b) series;
    //
    // The "simple" path for the `SELECT` yields
    //
    //     %0 =
    //     | Get t
    //     | FlatMap generate_series(1, #1)
    //
    // while the non-simple path yields:
    //
    //    %0 =
    //    | Get t
    //
    //    %1 =
    //    | Get t
    //    | Distinct group=(#1)
    //    | FlatMap generate_series(1, #0)
    //
    //    %2 =
    //    | LeftJoin %1 %2 (= #1 #2)
    //
    // There is a tradeoff here: the simple plan is stateless, but the non-
    // simple plan may do (much) less computation if there are only a few
    // distinct values of `t.b`.
    //
    // We apply a very simple heuristic here and take the simple path if `inner`
    // contains only maps, filters, projections, and calls to table functions.
    // The intuition is that straightforward usage of table functions should
    // take the simple path, while everything else should not. (In theory we
    // think this transformation is valid as long as `inner` does not contain a
    // Reduce, Distinct, or TopK node, but it is not always an optimization in
    // the general case.)
    //
    // TODO(benesch): this should all be handled by a proper optimizer, but
    // detecting the moment of decorrelation in the optimizer right now is too
    // hard.
    let mut is_simple = true;
    #[allow(deprecated)]
    inner.visit(0, &mut |expr, _| match expr {
        HirRelationExpr::Constant { .. }
        | HirRelationExpr::Project { .. }
        | HirRelationExpr::Map { .. }
        | HirRelationExpr::Filter { .. }
        | HirRelationExpr::CallTable { .. } => (),
        _ => is_simple = false,
    });
    if is_simple && !apply_requires_distinct_outer {
        let new_col_map = col_map.enter_scope(outer.arity() - col_map.len());
        return outer.let_in(id_gen, |id_gen, get_outer| {
            apply(id_gen, inner, get_outer, &new_col_map, cte_map, context)
        });
    }

    // The key consists of the columns from the outer expression upon which the
    // inner relation depends. We discover these dependencies by walking the
    // inner relation expression and looking for column references whose level
    // escapes inner.
    //
    // At the end of this process, `key` contains the decorrelated position of
    // each outer column, according to the passed-in `col_map`, and
    // `new_col_map` maps each outer column to its new ordinal position in key.
    let mut outer_cols = BTreeSet::new();
    #[allow(deprecated)]
    inner.visit_columns(0, &mut |depth, col| {
        // Test if the column reference escapes the subquery.
        if col.level > depth {
            outer_cols.insert(ColumnRef {
                level: col.level - depth,
                column: col.column,
            });
        }
    });
    // Collect all the outer columns referenced by any CTE referenced by
    // the inner relation.
    #[allow(deprecated)]
    inner.visit(0, &mut |e, _| match e {
        HirRelationExpr::Get {
            id: mz_expr::Id::Local(id),
            ..
        } => {
            if let Some(cte_desc) = cte_map.get(id) {
                let cte_outer_arity = cte_desc.outer_relation.arity();
                outer_cols.extend(
                    col_map
                        .inner
                        .iter()
                        .filter(|(_, position)| **position < cte_outer_arity)
                        .map(|(c, _)| {
                            // `col_map` maps column references to column positions in
                            // `outer`'s projection.
                            // `outer_cols` is meant to contain the external column
                            // references in `inner`.
                            // Since `inner` defines a new scope, any column reference
                            // in `col_map` is one level deeper when seen from within
                            // `inner`, hence the +1.
                            ColumnRef {
                                level: c.level + 1,
                                column: c.column,
                            }
                        }),
                );
            }
        }
        HirRelationExpr::Let { id, .. } => {
            // Note: if ID uniqueness is not guaranteed, we can't use `visit` since
            // we would need to remove the old CTE with the same ID temporarily while
            // traversing the definition of the new CTE under the same ID.
            assert!(!cte_map.contains_key(id));
        }
        _ => {}
    });
    let mut new_col_map = BTreeMap::new();
    let mut key = vec![];
    for col in outer_cols {
        new_col_map.insert(col, key.len());
        key.push(col_map.get(&ColumnRef {
            // Note: `outer_cols` contains the external column references within `inner`.
            // We must compensate for `inner`'s scope when translating column references
            // as seen within `inner` to column references as seen from `outer`'s context,
            // hence the -1.
            level: col.level - 1,
            column: col.column,
        }));
    }
    let new_col_map = ColumnMap::new(new_col_map);
    outer.let_in(id_gen, |id_gen, get_outer| {
        let keyed_outer = if key.is_empty() {
            // Don't depend on outer at all if the branch is not correlated,
            // which yields vastly better query plans. Note that this is a bit
            // weird in that the branch will be computed even if outer has no
            // rows, whereas if it had been correlated it would not (and *could*
            // not) have been computed if outer had no rows, but the callers of
            // this function don't mind these somewhat-weird semantics.
            MirRelationExpr::constant(vec![vec![]], RelationType::new(vec![]))
        } else {
            get_outer.clone().distinct_by(key.clone())
        };
        keyed_outer.let_in(id_gen, |id_gen, get_keyed_outer| {
            let oa = get_outer.arity();
            let branch = apply(
                id_gen,
                inner,
                get_keyed_outer,
                &new_col_map,
                cte_map,
                context,
            )?;
            let ba = branch.arity();
            let joined = MirRelationExpr::join(
                vec![get_outer.clone(), branch],
                key.iter()
                    .enumerate()
                    .map(|(i, &k)| vec![(0, k), (1, i)])
                    .collect(),
            )
            // throw away the right-hand copy of the key we just joined on
            .project((0..oa).chain((oa + key.len())..(oa + ba)).collect());
            Ok(joined)
        })
    })
}

fn apply_scalar_subquery(
    id_gen: &mut mz_ore::id_gen::IdGen,
    outer: MirRelationExpr,
    col_map: &ColumnMap,
    cte_map: &mut CteMap,
    scalar_subquery: HirRelationExpr,
    apply_requires_distinct_outer: bool,
    context: &Context,
) -> Result<MirRelationExpr, PlanError> {
    branch(
        id_gen,
        outer,
        col_map,
        cte_map,
        scalar_subquery,
        apply_requires_distinct_outer,
        context,
        |id_gen, expr, get_inner, col_map, cte_map, context| {
            // compute for every row in get_inner
            let select = expr.applied_to(id_gen, get_inner.clone(), col_map, cte_map, context)?;
            let col_type = select.typ().column_types.into_last();

            let inner_arity = get_inner.arity();
            // We must determine a count for each `get_inner` prefix,
            // and report an error if that count exceeds one.
            let guarded = select.let_in(id_gen, |_id_gen, get_select| {
                // Count for each `get_inner` prefix.
                let counts = get_select.clone().reduce(
                    (0..inner_arity).collect::<Vec<_>>(),
                    vec![mz_expr::AggregateExpr {
                        func: mz_expr::AggregateFunc::Count,
                        expr: MirScalarExpr::literal_true(),
                        distinct: false,
                    }],
                    None,
                );
                // Errors should result from counts > 1.
                let errors = counts
                    .filter(vec![MirScalarExpr::Column(inner_arity).call_binary(
                        MirScalarExpr::literal_ok(Datum::Int64(1), ScalarType::Int64),
                        mz_expr::BinaryFunc::Gt,
                    )])
                    .project((0..inner_arity).collect::<Vec<_>>())
                    .map_one(MirScalarExpr::literal(
                        Err(mz_expr::EvalError::MultipleRowsFromSubquery),
                        col_type.clone().scalar_type,
                    ));
                // Return `get_select` and any errors added in.
                Ok::<_, PlanError>(get_select.union(errors))
            })?;
            // append Null to anything that didn't return any rows
            let default = vec![(Datum::Null, col_type.scalar_type)];
            get_inner.lookup(id_gen, guarded, default)
        },
    )
}

fn apply_existential_subquery(
    id_gen: &mut mz_ore::id_gen::IdGen,
    outer: MirRelationExpr,
    col_map: &ColumnMap,
    cte_map: &mut CteMap,
    subquery_expr: HirRelationExpr,
    apply_requires_distinct_outer: bool,
    context: &Context,
) -> Result<MirRelationExpr, PlanError> {
    branch(
        id_gen,
        outer,
        col_map,
        cte_map,
        subquery_expr,
        apply_requires_distinct_outer,
        context,
        |id_gen, expr, get_inner, col_map, cte_map, context| {
            let exists = expr
                // compute for every row in get_inner
                .applied_to(id_gen, get_inner.clone(), col_map, cte_map, context)?
                // throw away actual values and just remember whether or not there were __any__ rows
                .distinct_by((0..get_inner.arity()).collect())
                // Append true to anything that returned any rows.
                .map(vec![MirScalarExpr::literal_true()]);

            // append False to anything that didn't return any rows
            get_inner.lookup(id_gen, exists, vec![(Datum::False, ScalarType::Bool)])
        },
    )
}

impl AggregateExpr {
    fn applied_to(
        self,
        id_gen: &mut mz_ore::id_gen::IdGen,
        col_map: &ColumnMap,
        cte_map: &mut CteMap,
        inner: &mut MirRelationExpr,
        context: &Context,
    ) -> Result<mz_expr::AggregateExpr, PlanError> {
        let AggregateExpr {
            func,
            expr,
            distinct,
        } = self;

        Ok(mz_expr::AggregateExpr {
            func: func.into_expr(),
            expr: expr.applied_to(id_gen, col_map, cte_map, inner, &None, context)?,
            distinct,
        })
    }
}

/// Attempts an efficient outer join, if `on` has equijoin structure.
///
/// Both `left` and `right` are decorrelated inputs.
///
/// The first `oa` columns correspond to an outer context: we should do the
/// outer join independently for each prefix. In the case that `on` contains
/// just some equality tests between columns of `left` and `right` and some
/// local predicates, we can employ a relatively simple plan.
///
/// The last `on_subquery_types.len()` columns correspond to results from
/// subqueries defined in the `on` clause - we treat those as theta-join
/// conditions that prohibit the use of the simple plan attempted here.
fn attempt_outer_equijoin(
    left: MirRelationExpr,
    right: MirRelationExpr,
    on: MirScalarExpr,
    on_subquery_types: Vec<ColumnType>,
    kind: JoinKind,
    oa: usize,
    id_gen: &mut mz_ore::id_gen::IdGen,
    context: &Context,
) -> Result<Option<MirRelationExpr>, PlanError> {
    // TODO(database-issues#6827): In theory, we can be smarter and also handle `on`
    // predicates that reference subqueries as long as these subqueries don't
    // reference `left` and `right` at the same time.
    //
    // TODO(database-issues#6828): This code can be improved as follows:
    //
    // 1. Move the `canonicalize_predicates(...)` call to `applied_to`.
    // 2. Use the canonicalized `on` predicate in the non-equijoin based
    //    lowering strategy.
    // 3. Move the `OnPredicates::new(...)` call to `applied_to`.
    // 4. Pass the classified `OnPredicates` as a parameter.
    // 5. Guard calls of this function with `on_predicates.is_equijoin()`.
    //
    // Steps (1 + 2) require further investigation because we might change the
    // error semantics in case the `on` predicate contains a literal error..

    let l_type = left.typ();
    let r_type = right.typ();
    let la = l_type.column_types.len() - oa;
    let ra = r_type.column_types.len() - oa;
    let sa = on_subquery_types.len();

    // The output type contains [outer, left, right, sa] attributes.
    let mut output_type = Vec::with_capacity(oa + la + ra + sa);
    output_type.extend(l_type.column_types);
    output_type.extend(r_type.column_types.into_iter().skip(oa));
    output_type.extend(on_subquery_types);

    // Generally healthy to do, but specifically `USING` conditions sometimes
    // put an `AND true` at the end of the `ON` condition.
    //
    // TODO(aalexandrov): maybe we should already be doing this in `applied_to`.
    // However, in that case it's not clear that we won't see regressions if
    // `on` simplifies to a literal error.
    let mut on = vec![on];
    mz_expr::canonicalize::canonicalize_predicates(&mut on, &output_type);

    // Form the left and right types without the outer attributes.
    output_type.drain(0..oa);
    let lt = output_type.drain(0..la).collect_vec();
    let rt = output_type.drain(0..ra).collect_vec();
    assert!(output_type.len() == sa);

    let on_predicates = OnPredicates::new(oa, la, ra, sa, on.clone(), context);
    if !on_predicates.is_equijoin(context) {
        return Ok(None);
    }

    // If we've gotten this far, we can do the clever thing.
    // We'll want to use left and right multiple times
    let result = left.let_in(id_gen, |id_gen, get_left| {
        right.let_in(id_gen, |id_gen, get_right| {
            // TODO: we know that we can re-use the arrangements of left and right
            // needed for the inner join with each of the conditional outer joins.
            // It is not clear whether we should hint that, or just let the planner
            // and optimizer run and see what happens.

            // We'll want the inner join (minus repeated columns)
            let join = MirRelationExpr::join(
                vec![get_left.clone(), get_right.clone()],
                (0..oa).map(|i| vec![(0, i), (1, i)]).collect(),
            )
            // remove those columns from `right` repeating the first `oa` columns.
            .project(
                (0..(oa + la))
                    .chain((oa + la + oa)..(oa + la + oa + ra))
                    .collect(),
            )
            // apply the filter constraints here, to ensure nulls are not matched.
            .filter(on);

            // We'll want to re-use the results of the join multiple times.
            join.let_in(id_gen, |id_gen, get_join| {
                let mut result = get_join.clone();

                // A collection of keys present in both left and right collections.
                let join_keys = on_predicates.join_keys();
                let both_keys_arity = join_keys.len();
                let both_keys = get_join.restrict(join_keys).distinct();

                // The plan is now to determine the left and right rows matched in the
                // inner join, subtract them from left and right respectively, pad what
                // remains with nulls, and fold them in to `result`.

                both_keys.let_in(id_gen, |_id_gen, get_both| {
                    if let JoinKind::LeftOuter { .. } | JoinKind::FullOuter = kind {
                        // Rows in `left` matched in the inner equijoin. This is
                        // a semi-join between `left` and `both_keys`.
                        let left_present = MirRelationExpr::join_scalars(
                            vec![
                                get_left
                                    .clone()
                                    // Push local predicates.
                                    .filter(on_predicates.lhs()),
                                get_both.clone(),
                            ],
                            itertools::zip_eq(
                                on_predicates.eq_lhs(),
                                (0..both_keys_arity).map(|k| MirScalarExpr::column(oa + la + k)),
                            )
                            .map(|(l_key, b_key)| [l_key, b_key].to_vec())
                            .collect(),
                        )
                        .project((0..(oa + la)).collect());

                        // Determine the types of nulls to use as filler.
                        let right_fill = rt
                            .into_iter()
                            .map(|typ| MirScalarExpr::literal_null(typ.scalar_type))
                            .collect();

                        // Add to `result` absent elements, filled with typed nulls.
                        result = left_present
                            .negate()
                            .union(get_left.clone())
                            .map(right_fill)
                            .union(result);
                    }

                    if let JoinKind::RightOuter | JoinKind::FullOuter = kind {
                        // Rows in `right` matched in the inner equijoin. This
                        // is a semi-join between `right` and `both_keys`.
                        let right_present = MirRelationExpr::join_scalars(
                            vec![
                                get_right
                                    .clone()
                                    // Push local predicates.
                                    .filter(on_predicates.rhs()),
                                get_both,
                            ],
                            itertools::zip_eq(
                                on_predicates.eq_rhs(),
                                (0..both_keys_arity).map(|k| MirScalarExpr::column(oa + ra + k)),
                            )
                            .map(|(r_key, b_key)| [r_key, b_key].to_vec())
                            .collect(),
                        )
                        .project((0..(oa + ra)).collect());

                        // Determine the types of nulls to use as filler.
                        let left_fill = lt
                            .into_iter()
                            .map(|typ| MirScalarExpr::literal_null(typ.scalar_type))
                            .collect();

                        // Add to `result` absent elements, prepended with typed nulls.
                        result = right_present
                            .negate()
                            .union(get_right.clone())
                            .map(left_fill)
                            // Permute left fill before right values.
                            .project(
                                itertools::chain!(
                                    0..oa,                 // Preserve `outer`.
                                    oa + ra..oa + la + ra, // Increment the next `la` cols by `ra`.
                                    oa..oa + ra            // Decrement the next `ra` cols by `la`.
                                )
                                .collect(),
                            )
                            .union(result)
                    }

                    Ok::<_, PlanError>(result)
                })
            })
        })
    })?;
    Ok(Some(result))
}

/// A struct that represents the predicates in the `on` clause in a form
/// suitable for efficient planning outer joins with equijoin predicates.
struct OnPredicates {
    /// A store for classified `ON` predicates.
    ///
    /// Predicates that reference a single side are adjusted to assume an
    /// `outer × <side>` schema.
    predicates: Vec<OnPredicate>,
    /// Number of outer context columns.
    oa: usize,
}

impl OnPredicates {
    const I_OUT: usize = 0; // outer context input position
    const I_LHS: usize = 1; // lhs input position
    const I_RHS: usize = 2; // rhs input position
    const I_SUB: usize = 3; // on subqueries input position

    /// Classify the predicates in the `on` clause of an outer join.
    ///
    /// The other parameters are arities of the input parts:
    ///
    /// - `oa` is the arity of the `outer` context.
    /// - `la` is the arity of the `left` input.
    /// - `ra` is the arity of the `right` input.
    /// - `sa` is the arity of the `on` subqueries.
    ///
    /// The constructor assumes that:
    ///
    /// 1. The `on` parameter will be applied on a result that has the following
    ///    schema `outer × left × right × on_subqueries`.
    /// 2. The `on` parameter is already adjusted to assume that schema.
    /// 3. The `on` parameter is obtained by canonicalizing the original `on:
    ///    MirScalarExpr` with `canonicalize_predicates`.
    fn new(
        oa: usize,
        la: usize,
        ra: usize,
        sa: usize,
        on: Vec<MirScalarExpr>,
        _context: &Context,
    ) -> Self {
        use mz_expr::BinaryFunc::Eq;

        // Re-bind those locally for more compact pattern matching.
        const I_LHS: usize = OnPredicates::I_LHS;
        const I_RHS: usize = OnPredicates::I_RHS;

        // Self parameters.
        let mut predicates = Vec::with_capacity(on.len());

        // Helpers for populating `predicates`.
        let inner_join_mapper = mz_expr::JoinInputMapper::new_from_input_arities([oa, la, ra, sa]);
        let rhs_permutation = itertools::chain!(0..oa + la, oa..oa + ra).collect::<Vec<_>>();
        let lookup_inputs = |expr: &MirScalarExpr| -> Vec<usize> {
            inner_join_mapper
                .lookup_inputs(expr)
                .filter(|&i| i != Self::I_OUT)
                .collect()
        };
        let has_subquery_refs = |expr: &MirScalarExpr| -> bool {
            inner_join_mapper
                .lookup_inputs(expr)
                .any(|i| i == Self::I_SUB)
        };

        // Iterate over `on` elements and populate `predicates`.
        for mut predicate in on {
            if predicate.might_error() {
                tracing::debug!(case = "thetajoin (error)", "OnPredicates::new");
                // Treat predicates that can produce a literal error as Theta.
                predicates.push(OnPredicate::Theta(predicate));
            } else if has_subquery_refs(&predicate) {
                tracing::debug!(case = "thetajoin (subquery)", "OnPredicates::new");
                // Treat predicates referencing an `on` subquery as Theta.
                predicates.push(OnPredicate::Theta(predicate));
            } else if let MirScalarExpr::CallBinary {
                func: Eq,
                expr1,
                expr2,
            } = &mut predicate
            {
                // Obtain the non-outer inputs referenced by each side.
                let inputs1 = lookup_inputs(expr1);
                let inputs2 = lookup_inputs(expr2);

                match (&inputs1[..], &inputs2[..]) {
                    // Neither side references an input. This could be a
                    // constant expression or an expression that depends only on
                    // the outer context.
                    ([], []) => {
                        predicates.push(OnPredicate::Const(predicate));
                    }
                    // Both sides reference different inputs.
                    ([I_LHS], [I_RHS]) => {
                        let lhs = expr1.take();
                        let mut rhs = expr2.take();
                        rhs.permute(&rhs_permutation);
                        predicates.push(OnPredicate::Eq(lhs.clone(), rhs.clone()));
                        predicates.push(OnPredicate::LhsConsequence(lhs.call_is_null().not()));
                        predicates.push(OnPredicate::RhsConsequence(rhs.call_is_null().not()));
                    }
                    // Both sides reference different inputs (swapped).
                    ([I_RHS], [I_LHS]) => {
                        let lhs = expr2.take();
                        let mut rhs = expr1.take();
                        rhs.permute(&rhs_permutation);
                        predicates.push(OnPredicate::Eq(lhs.clone(), rhs.clone()));
                        predicates.push(OnPredicate::LhsConsequence(lhs.call_is_null().not()));
                        predicates.push(OnPredicate::RhsConsequence(rhs.call_is_null().not()));
                    }
                    // Both sides reference the left input or no input.
                    ([I_LHS], [I_LHS]) | ([I_LHS], []) | ([], [I_LHS]) => {
                        predicates.push(OnPredicate::Lhs(predicate));
                    }
                    // Both sides reference the right input or no input.
                    ([I_RHS], [I_RHS]) | ([I_RHS], []) | ([], [I_RHS]) => {
                        predicate.permute(&rhs_permutation);
                        predicates.push(OnPredicate::Rhs(predicate));
                    }
                    // At least one side references more than one input.
                    _ => {
                        tracing::debug!(case = "thetajoin (eq)", "OnPredicates::new");
                        predicates.push(OnPredicate::Theta(predicate));
                    }
                }
            } else {
                // Obtain the non-outer inputs referenced by this predicate.
                let inputs = lookup_inputs(&predicate);

                match &inputs[..] {
                    // The predicate references no inputs. This could be a
                    // constant expression or an expression that depends only on
                    // the outer context.
                    [] => {
                        predicates.push(OnPredicate::Const(predicate));
                    }
                    // The predicate references only the left input.
                    [I_LHS] => {
                        predicates.push(OnPredicate::Lhs(predicate));
                    }
                    // The predicate references only the right input.
                    [I_RHS] => {
                        predicate.permute(&rhs_permutation);
                        predicates.push(OnPredicate::Rhs(predicate));
                    }
                    // The predicate references both inputs.
                    _ => {
                        tracing::debug!(case = "thetajoin (non-eq)", "OnPredicates::new");
                        predicates.push(OnPredicate::Theta(predicate));
                    }
                }
            }
        }

        Self { predicates, oa }
    }

    /// Check if the predicates can be lowered with an equijoin-based strategy.
    fn is_equijoin(&self, context: &Context) -> bool {
        // Count each `OnPredicate` variant in `self.predicates`.
        let (const_cnt, lhs_cnt, rhs_cnt, eq_cnt, eq_cols, theta_cnt) =
            self.predicates.iter().fold(
                (0, 0, 0, 0, 0, 0),
                |(const_cnt, lhs_cnt, rhs_cnt, eq_cnt, eq_cols, theta_cnt), p| {
                    (
                        const_cnt + usize::from(matches!(p, OnPredicate::Const(..))),
                        lhs_cnt + usize::from(matches!(p, OnPredicate::Lhs(..))),
                        rhs_cnt + usize::from(matches!(p, OnPredicate::Rhs(..))),
                        eq_cnt + usize::from(matches!(p, OnPredicate::Eq(..))),
                        eq_cols + usize::from(matches!(p, OnPredicate::Eq(lhs, rhs) if lhs.is_column() && rhs.is_column())),
                        theta_cnt + usize::from(matches!(p, OnPredicate::Theta(..))),
                    )
                },
            );

        let is_equijion = if context.config.enable_new_outer_join_lowering {
            // New classifier.
            eq_cnt > 0 && theta_cnt == 0
        } else {
            // Old classifier.
            eq_cnt > 0 && eq_cnt == eq_cols && theta_cnt + const_cnt + lhs_cnt + rhs_cnt == 0
        };

        // Log an entry only if this is an equijoin according to the new classifier.
        if eq_cnt > 0 && theta_cnt == 0 {
            tracing::debug!(
                const_cnt,
                lhs_cnt,
                rhs_cnt,
                eq_cnt,
                eq_cols,
                theta_cnt,
                "OnPredicates::is_equijoin"
            );
        }

        is_equijion
    }

    /// Return an [`MirRelationExpr`] list that represents the keys for the
    /// equijoin. The list will contain the outer columns as a prefix.
    fn join_keys(&self) -> JoinKeys {
        // We could return either the `lhs` or the `rhs` of the keys used to
        // form the inner join as they are equated by the join condition.
        let join_keys = self.eq_lhs().collect::<Vec<_>>();

        if join_keys.iter().all(|k| k.is_column()) {
            tracing::debug!(case = "outputs", "OnPredicates::join_keys");
            JoinKeys::Outputs(join_keys.iter().flat_map(|k| k.as_column()).collect())
        } else {
            tracing::debug!(case = "scalars", "OnPredicates::join_keys");
            JoinKeys::Scalars(join_keys)
        }
    }

    /// Return an iterator over the left-hand sides of all [`OnPredicate::Eq`]
    /// conditions in the predicates list.
    ///
    /// The iterator will start with column references to the outer columns as a
    /// prefix.
    fn eq_lhs(&self) -> impl Iterator<Item = MirScalarExpr> + '_ {
        itertools::chain(
            (0..self.oa).map(MirScalarExpr::column),
            self.predicates.iter().filter_map(|e| match e {
                OnPredicate::Eq(lhs, _) => Some(lhs.clone()),
                _ => None,
            }),
        )
    }

    /// Return an iterator over the right-hand sides of all [`OnPredicate::Eq`]
    /// conditions in the predicates list.
    ///
    /// The iterator will start with column references to the outer columns as a
    /// prefix.
    fn eq_rhs(&self) -> impl Iterator<Item = MirScalarExpr> + '_ {
        itertools::chain(
            (0..self.oa).map(MirScalarExpr::column),
            self.predicates.iter().filter_map(|e| match e {
                OnPredicate::Eq(_, rhs) => Some(rhs.clone()),
                _ => None,
            }),
        )
    }

    /// Return an iterator over the [`OnPredicate::Lhs`], [`OnPredicate::LhsConsequence`] and
    /// [`OnPredicate::Const`] conditions in the predicates list.
    fn lhs(&self) -> impl Iterator<Item = MirScalarExpr> + '_ {
        self.predicates.iter().filter_map(|p| match p {
            // We treat Const predicates local to both inputs.
            OnPredicate::Const(p) => Some(p.clone()),
            OnPredicate::Lhs(p) => Some(p.clone()),
            OnPredicate::LhsConsequence(p) => Some(p.clone()),
            _ => None,
        })
    }

    /// Return an iterator over the [`OnPredicate::Rhs`], [`OnPredicate::RhsConsequence`] and
    /// [`OnPredicate::Const`] conditions in the predicates list.
    fn rhs(&self) -> impl Iterator<Item = MirScalarExpr> + '_ {
        self.predicates.iter().filter_map(|p| match p {
            // We treat Const predicates local to both inputs.
            OnPredicate::Const(p) => Some(p.clone()),
            OnPredicate::Rhs(p) => Some(p.clone()),
            OnPredicate::RhsConsequence(p) => Some(p.clone()),
            _ => None,
        })
    }
}

enum OnPredicate {
    // A predicate that is either constant or references only outer columns.
    Const(MirScalarExpr),
    // A local predicate on the left-hand side of the join, i.e., it references only the left input
    // and possibly outer columns.
    //
    // This is one of the original predicates from the ON clause.
    //
    // One _must_ apply this predicate.
    Lhs(MirScalarExpr),
    // A local predicate on the left-hand side of the join, i.e., it references only the left input
    // and possibly outer columns.
    //
    // This is not one of the original predicates from the ON clause, but is just a consequence
    // of an original predicate in the ON clause, where the original predicate references both
    // inputs, but the consequence references only the left input.
    //
    // For example, the original predicate `input1.x = input2.a` has the consequence
    // `input1.x IS NOT NULL`. Applying such a consequence before the input is fed into the join
    // prevents null skew, and also makes more CSE opportunities available when the left input's key
    // doesn't have a NOT NULL constraint, saving us an arrangement.
    //
    // Applying the predicate is optional, because the original predicate will be applied anyway.
    LhsConsequence(MirScalarExpr),
    // A local predicate on the right-hand side of the join.
    //
    // This is one of the original predicates from the ON clause.
    //
    // One _must_ apply this predicate.
    Rhs(MirScalarExpr),
    // A consequence of an original ON predicate, see above.
    RhsConsequence(MirScalarExpr),
    // An equality predicate between the two sides.
    Eq(MirScalarExpr, MirScalarExpr),
    // a non-equality predicate between the two sides.
    #[allow(dead_code)]
    Theta(MirScalarExpr),
}

/// A set of join keys referencing an input.
///
/// This is used in the [`MirRelationExpr::Join`] lowering code in order to
/// avoid changes (and thereby possible regressions) in plans that have equijoin
/// predicates consisting only of column refs.
///
/// If we were running `CanonicalizeMfp` as part of `NormalizeOps` we might be
/// able to get rid of this code, but as it stands `Map` simplification seems
/// more cumbersome than `Project` simplification, so do this just to be sure.
enum JoinKeys {
    // A predicate that is either constant or references only outer columns.
    Outputs(Vec<usize>),
    // A local predicate on the left-hand side of the join.
    Scalars(Vec<MirScalarExpr>),
}

impl JoinKeys {
    fn len(&self) -> usize {
        match self {
            JoinKeys::Outputs(outputs) => outputs.len(),
            JoinKeys::Scalars(scalars) => scalars.len(),
        }
    }
}

/// Extension methods for [`MirRelationExpr`] required in the HIR ⇒ MIR lowering
/// code.
trait LoweringExt {
    /// See [`MirRelationExpr::restrict`].
    fn restrict(self, join_keys: JoinKeys) -> Self;
}

impl LoweringExt for MirRelationExpr {
    /// Restrict the set of columns of an input to the sequence of [`JoinKeys`].
    fn restrict(self, join_keys: JoinKeys) -> Self {
        let num_keys = join_keys.len();
        match join_keys {
            JoinKeys::Outputs(outputs) => self.project(outputs),
            JoinKeys::Scalars(scalars) => {
                let input_arity = self.arity();
                let outputs = (input_arity..input_arity + num_keys).collect();
                self.map(scalars).project(outputs)
            }
        }
    }
}