1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//! Starts a timely dataflow execution from configuration information and per-worker logic.

use crate::communication::{initialize_from, Allocator, allocator::AllocateBuilder, WorkerGuards};
use crate::dataflow::scopes::Child;
use crate::worker::Worker;
use crate::{CommunicationConfig, WorkerConfig};

/// Configures the execution of a timely dataflow computation.
pub struct Config {
    /// Configuration for the communication infrastructure.
    pub communication: CommunicationConfig,
    /// Configuration for the worker threads.
    pub worker: WorkerConfig,
}

impl Config {
    /// Installs options into a [getopts_dep::Options] struct that correspond
    /// to the parameters in the configuration.
    ///
    /// It is the caller's responsibility to ensure that the installed options
    /// do not conflict with any other options that may exist in `opts`, or
    /// that may be installed into `opts` in the future.
    ///
    /// This method is only available if the `getopts` feature is enabled, which
    /// it is by default.
    #[cfg(feature = "getopts")]
    pub fn install_options(opts: &mut getopts_dep::Options) {
        CommunicationConfig::install_options(opts);
        WorkerConfig::install_options(opts);
    }

    /// Instantiates a configuration based upon the parsed options in `matches`.
    ///
    /// The `matches` object must have been constructed from a
    /// [getopts_dep::Options] which contained at least the options installed by
    /// [Self::install_options].
    ///
    /// This method is only available if the `getopts` feature is enabled, which
    /// it is by default.
    #[cfg(feature = "getopts")]
    pub fn from_matches(matches: &getopts_dep::Matches) -> Result<Config, String> {
        Ok(Config {
            communication: CommunicationConfig::from_matches(matches)?,
            worker: WorkerConfig::from_matches(matches)?,
        })
    }

    /// Constructs a new configuration by parsing the supplied text arguments.
    ///
    /// Most commonly, callers supply `std::env::args()` as the iterator.
    #[cfg(feature = "getopts")]
    pub fn from_args<I: Iterator<Item=String>>(args: I) -> Result<Config, String> {
        let mut opts = getopts_dep::Options::new();
        Config::install_options(&mut opts);
        let matches = opts.parse(args).map_err(|e| e.to_string())?;
        Config::from_matches(&matches)
    }

    /// Constructs a `Config` that uses one worker thread and the
    /// defaults for all other parameters.
    pub fn thread() -> Config {
        Config {
            communication: CommunicationConfig::Thread,
            worker: WorkerConfig::default(),
        }
    }

    /// Constructs an `Config` that uses `n` worker threads and the
    /// defaults for all other parameters.
    pub fn process(n: usize) -> Config {
        Config {
            communication: CommunicationConfig::Process(n),
            worker: WorkerConfig::default(),
        }
    }
}

/// Executes a single-threaded timely dataflow computation.
///
/// The `example` method takes a closure on a `Scope` which it executes to initialize and run a
/// timely dataflow computation on a single thread. This method is intended for use in examples,
/// rather than programs that may need to run across multiple workers.
///
/// The `example` method returns whatever the single worker returns from its closure.
/// This is often nothing, but the worker can return something about the data it saw in order to
/// test computations.
///
/// The method aggressively unwraps returned `Result<_>` types.
///
/// # Examples
///
/// The simplest example creates a stream of data and inspects it.
///
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect};
///
/// timely::example(|scope| {
///     (0..10).to_stream(scope)
///            .inspect(|x| println!("seen: {:?}", x));
/// });
/// ```
///
/// This next example captures the data and displays them once the computation is complete.
///
/// More precisely, the example captures a stream of events (receiving batches of data,
/// updates to input capabilities) and displays these events.
///
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect, Capture};
/// use timely::dataflow::operators::capture::Extract;
///
/// let data = timely::example(|scope| {
///     (0..10).to_stream(scope)
///            .inspect(|x| println!("seen: {:?}", x))
///            .capture()
/// });
///
/// // the extracted data should have data (0..10) at timestamp 0.
/// assert_eq!(data.extract()[0].1, (0..10).collect::<Vec<_>>());
/// ```
pub fn example<T, F>(func: F) -> T
where
    T: Send+'static,
    F: FnOnce(&mut Child<Worker<crate::communication::allocator::thread::Thread>,u64>)->T+Send+Sync+'static
{
    crate::execute::execute_directly(|worker| worker.dataflow(|scope| func(scope)))
}


/// Executes a single-threaded timely dataflow computation.
///
/// The `execute_directly` constructs a `Worker` and directly executes the supplied
/// closure to construct and run a timely dataflow computation. It does not create any
/// worker threads, and simply uses the current thread of control.
///
/// The closure may return a result, which will be returned from the computation.
///
/// # Examples
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect};
///
/// // execute a timely dataflow using three worker threads.
/// timely::execute_directly(|worker| {
///     worker.dataflow::<(),_,_>(|scope| {
///         (0..10).to_stream(scope)
///                .inspect(|x| println!("seen: {:?}", x));
///     })
/// });
/// ```
pub fn execute_directly<T, F>(func: F) -> T
where
    T: Send+'static,
    F: FnOnce(&mut Worker<crate::communication::allocator::thread::Thread>)->T+Send+Sync+'static
{
    let alloc = crate::communication::allocator::thread::Thread::new();
    let mut worker = crate::worker::Worker::new(WorkerConfig::default(), alloc);
    let result = func(&mut worker);
    while worker.has_dataflows() {
        worker.step_or_park(None);
    }
    result
}

/// Executes a timely dataflow from a configuration and per-communicator logic.
///
/// The `execute` method takes a `Configuration` and spins up some number of
/// workers threads, each of which execute the supplied closure to construct
/// and run a timely dataflow computation.
///
/// The closure may return a `T: Send+'static`.  The `execute` method returns
/// immediately after initializing the timely computation with a result
/// containing a `WorkerGuards<T>` (or error information), which can be joined
/// to recover the result `T` values from the local workers.
///
/// *Note*: if the caller drops the result of `execute`, the drop code will
/// block awaiting the completion of the timely computation. If the result
/// of the method is not captured it will be dropped, which gives the experience
/// of `execute` blocking; to regain control after `execute` be sure to
/// capture the results and drop them only when the calling thread has no
/// other work to perform.
///
/// # Examples
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect};
///
/// // execute a timely dataflow using three worker threads.
/// timely::execute(timely::Config::process(3), |worker| {
///     worker.dataflow::<(),_,_>(|scope| {
///         (0..10).to_stream(scope)
///                .inspect(|x| println!("seen: {:?}", x));
///     })
/// }).unwrap();
/// ```
///
/// The following example demonstrates how one can extract data from a multi-worker execution.
/// In a multi-process setting, each process will only receive those records present at workers
/// in the process.
///
/// ```rust
/// use std::sync::{Arc, Mutex};
/// use timely::dataflow::operators::{ToStream, Inspect, Capture};
/// use timely::dataflow::operators::capture::Extract;
///
/// // get send and recv endpoints, wrap send to share
/// let (send, recv) = ::std::sync::mpsc::channel();
/// let send = Arc::new(Mutex::new(send));
///
/// // execute a timely dataflow using three worker threads.
/// timely::execute(timely::Config::process(3), move |worker| {
///     let send = send.lock().unwrap().clone();
///     worker.dataflow::<(),_,_>(move |scope| {
///         (0..10).to_stream(scope)
///                .inspect(|x| println!("seen: {:?}", x))
///                .capture_into(send);
///     });
/// }).unwrap();
///
/// // the extracted data should have data (0..10) thrice at timestamp 0.
/// assert_eq!(recv.extract()[0].1, (0..30).map(|x| x / 3).collect::<Vec<_>>());
/// ```
pub fn execute<T, F>(
    mut config: Config,
    func: F
) -> Result<WorkerGuards<T>,String>
where
    T:Send+'static,
    F: Fn(&mut Worker<Allocator>)->T+Send+Sync+'static {

    if let CommunicationConfig::Cluster { ref mut log_fn, .. } = config.communication {

        *log_fn = Box::new(|events_setup| {

            let mut result = None;
            if let Ok(addr) = ::std::env::var("TIMELY_COMM_LOG_ADDR") {

                use ::std::net::TcpStream;
                use crate::logging::BatchLogger;
                use crate::dataflow::operators::capture::EventWriter;

                eprintln!("enabled COMM logging to {}", addr);

                if let Ok(stream) = TcpStream::connect(&addr) {
                    let writer = EventWriter::new(stream);
                    let mut logger = BatchLogger::new(writer);
                    result = Some(crate::logging_core::Logger::new(
                        ::std::time::Instant::now(),
                        ::std::time::Duration::default(),
                        events_setup,
                        move |time, data| logger.publish_batch(time, data)
                    ));
                }
                else {
                    panic!("Could not connect to communication log address: {:?}", addr);
                }
            }
            result
        });
    }

    let (allocators, other) = config.communication.try_build()?;

    let worker_config = config.worker;
    initialize_from(allocators, other, move |allocator| {

        let mut worker = Worker::new(worker_config.clone(), allocator);

        // If an environment variable is set, use it as the default timely logging.
        if let Ok(addr) = ::std::env::var("TIMELY_WORKER_LOG_ADDR") {

            use ::std::net::TcpStream;
            use crate::logging::{BatchLogger, TimelyEvent};
            use crate::dataflow::operators::capture::EventWriter;

            if let Ok(stream) = TcpStream::connect(&addr) {
                let writer = EventWriter::new(stream);
                let mut logger = BatchLogger::new(writer);
                worker.log_register()
                    .insert::<TimelyEvent,_>("timely", move |time, data|
                        logger.publish_batch(time, data)
                    );
            }
            else {
                panic!("Could not connect logging stream to: {:?}", addr);
            }
        }

        let result = func(&mut worker);
        while worker.has_dataflows() {
            worker.step_or_park(None);
        }
        result
    })
}

/// Executes a timely dataflow from supplied arguments and per-communicator logic.
///
/// The `execute` method takes arguments (typically `std::env::args()`) and spins up some number of
/// workers threads, each of which execute the supplied closure to construct and run a timely
/// dataflow computation.
///
/// The closure may return a `T: Send+'static`.  The `execute_from_args` method
/// returns immediately after initializing the timely computation with a result
/// containing a `WorkerGuards<T>` (or error information), which can be joined
/// to recover the result `T` values from the local workers.
///
/// *Note*: if the caller drops the result of `execute_from_args`, the drop code
/// will block awaiting the completion of the timely computation.
///
/// The arguments `execute_from_args` currently understands are:
///
/// `-w, --workers`: number of per-process worker threads.
///
/// `-n, --processes`: number of processes involved in the computation.
///
/// `-p, --process`: identity of this process; from 0 to n-1.
///
/// `-h, --hostfile`: a text file whose lines are "hostname:port" in order of process identity.
/// If not specified, `localhost` will be used, with port numbers increasing from 2101 (chosen
/// arbitrarily).
///
/// This method is only available if the `getopts` feature is enabled, which
/// it is by default.
///
/// # Examples
///
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect};
///
/// // execute a timely dataflow using command line parameters
/// timely::execute_from_args(std::env::args(), |worker| {
///     worker.dataflow::<(),_,_>(|scope| {
///         (0..10).to_stream(scope)
///                .inspect(|x| println!("seen: {:?}", x));
///     })
/// }).unwrap();
/// ```
/// ```ignore
/// host0% cargo run -- -w 2 -n 4 -h hosts.txt -p 0
/// host1% cargo run -- -w 2 -n 4 -h hosts.txt -p 1
/// host2% cargo run -- -w 2 -n 4 -h hosts.txt -p 2
/// host3% cargo run -- -w 2 -n 4 -h hosts.txt -p 3
/// ```
/// ```ignore
/// % cat hosts.txt
/// host0:port
/// host1:port
/// host2:port
/// host3:port
/// ```
#[cfg(feature = "getopts")]
pub fn execute_from_args<I, T, F>(iter: I, func: F) -> Result<WorkerGuards<T>,String>
    where I: Iterator<Item=String>,
          T:Send+'static,
          F: Fn(&mut Worker<Allocator>)->T+Send+Sync+'static, {
    let config = Config::from_args(iter)?;
    execute(config, func)
}

/// Executes a timely dataflow from supplied allocators and logging.
///
/// Refer to [`execute`](execute()) for more details.
///
/// ```rust
/// use timely::dataflow::operators::{ToStream, Inspect};
/// use timely::WorkerConfig;
///
/// // execute a timely dataflow using command line parameters
/// let (builders, other) = timely::CommunicationConfig::Process(3).try_build().unwrap();
/// timely::execute::execute_from(builders, other, WorkerConfig::default(), |worker| {
///     worker.dataflow::<(),_,_>(|scope| {
///         (0..10).to_stream(scope)
///                .inspect(|x| println!("seen: {:?}", x));
///     })
/// }).unwrap();
/// ```
pub fn execute_from<A, T, F>(
    builders: Vec<A>,
    others: Box<dyn ::std::any::Any+Send>,
    worker_config: WorkerConfig,
    func: F,
) -> Result<WorkerGuards<T>, String>
where
    A: AllocateBuilder+'static,
    T: Send+'static,
    F: Fn(&mut Worker<<A as AllocateBuilder>::Allocator>)->T+Send+Sync+'static {
    initialize_from(builders, others, move |allocator| {
        let mut worker = Worker::new(worker_config.clone(), allocator);
        let result = func(&mut worker);
        while worker.has_dataflows() {
            worker.step_or_park(None);
        }
        result
    })
}