1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Intermediate representation (IR) for codegen.
use std::collections::{BTreeMap, BTreeSet};
use std::iter;
use anyhow::{bail, Result};
use itertools::Itertools;
use quote::ToTokens;
/// The intermediate representation.
pub struct Ir {
/// The items in the IR.
pub items: BTreeMap<String, Item>,
/// The generic parameters that appear throughout the IR.
///
/// Walkabout assumes that generic parameters are named consistently
/// throughout the types in the IR. This field maps each generic parameter
/// to the union of all trait bounds required of that parameter.
pub generics: BTreeMap<String, BTreeSet<String>>,
}
/// An item in the IR.
#[derive(Debug)]
pub enum Item {
/// A struct item.
Struct(Struct),
/// An enum item.
Enum(Enum),
/// An abstract item, introduced via a generic parameter.
Abstract,
}
impl Item {
pub fn fields<'a>(&'a self) -> Box<dyn Iterator<Item = &Field> + 'a> {
match self {
Item::Struct(s) => Box::new(s.fields.iter()),
Item::Enum(e) => Box::new(e.variants.iter().flat_map(|v| &v.fields)),
Item::Abstract => Box::new(iter::empty()),
}
}
pub fn generics(&self) -> &[ItemGeneric] {
match self {
Item::Struct(s) => &s.generics,
Item::Enum(e) => &e.generics,
Item::Abstract => &[],
}
}
}
/// A struct in the IR.
#[derive(Debug)]
pub struct Struct {
/// The fields of the struct.
pub fields: Vec<Field>,
/// The generic parameters on the struct.
pub generics: Vec<ItemGeneric>,
}
/// An enum in the IRs.
#[derive(Debug)]
pub struct Enum {
/// The variants of the enum.
pub variants: Vec<Variant>,
/// The generic parameters on the enum.
pub generics: Vec<ItemGeneric>,
}
/// A variant of an [`Enum`].
#[derive(Debug)]
pub struct Variant {
/// The name of the variant.
pub name: String,
/// The fields of the variant.
pub fields: Vec<Field>,
}
/// A field of a [`Variant`] or [`Struct`].
#[derive(Debug)]
pub struct Field {
/// The optional name of the field.
///
/// If omitted, the field is referred to by its index in its container.
pub name: Option<String>,
/// The type of the field.
pub ty: Type,
}
/// A generic parameter of an [`Item`].
#[derive(Debug)]
pub struct ItemGeneric {
/// The name of the generic parameter.
pub name: String,
/// The trait bounds on the generic parameter.
pub bounds: Vec<String>,
}
/// The type of a [`Field`].
#[derive(Debug)]
pub enum Type {
/// A primitive Rust type.
///
/// Primitive types do not need to be visited.
Primitive,
/// Abstract type.
///
/// Abstract types are visited, but their default visit function does
/// nothing.
Abstract(String),
/// An [`Option`] type..
///
/// The value inside the option will need to be visited if the option is
/// `Some`.
Option(Box<Type>),
/// A [`Vec`] type.
///
/// Each value in the vector will need to be visited.
Vec(Box<Type>),
/// A [`Box`] type.
///
/// The value inside the box will need to be visited.
Box(Box<Type>),
/// A type local to the AST.
///
/// The value will need to be visited by calling the appropriate `Visit`
/// or `VisitMut` trait method on the value.
Local(String),
/// A BTreeMap type
///
/// Each value will need to be visited.
Map { key: Box<Type>, value: Box<Type> },
}
/// Analyzes the provided items and produces an IR.
///
/// This is a very, very lightweight semantic analysis phase for Rust code. Our
/// main goal is to determine the type of each field of a struct or enum
/// variant, so we know how to visit it. See [`Type`] for details.
pub(crate) fn analyze(syn_items: &[syn::DeriveInput]) -> Result<Ir> {
let mut items = BTreeMap::new();
for syn_item in syn_items {
let name = syn_item.ident.to_string();
let generics = analyze_generics(&syn_item.generics)?;
let item = match &syn_item.data {
syn::Data::Struct(s) => Item::Struct(Struct {
fields: analyze_fields(&s.fields)?,
generics,
}),
syn::Data::Enum(e) => {
let mut variants = vec![];
for v in &e.variants {
variants.push(Variant {
name: v.ident.to_string(),
fields: analyze_fields(&v.fields)?,
});
}
Item::Enum(Enum { variants, generics })
}
syn::Data::Union(_) => bail!("Unable to analyze union: {}", syn_item.ident),
};
for field in item.fields() {
let mut field_ty = &field.ty;
while let Type::Box(ty) | Type::Vec(ty) | Type::Option(ty) = field_ty {
field_ty = ty;
}
if let Type::Abstract(name) = field_ty {
items.insert(name.clone(), Item::Abstract);
}
}
items.insert(name, item);
}
let mut generics = BTreeMap::<_, BTreeSet<String>>::new();
for item in items.values() {
for ig in item.generics() {
generics
.entry(ig.name.clone())
.or_default()
.extend(ig.bounds.clone());
}
}
for item in items.values() {
validate_fields(&items, item.fields())?
}
Ok(Ir { items, generics })
}
fn validate_fields<'a, I>(items: &BTreeMap<String, Item>, fields: I) -> Result<()>
where
I: IntoIterator<Item = &'a Field>,
{
for f in fields {
match &f.ty {
Type::Local(s) if !items.contains_key(s) => {
bail!(
"Unable to analyze non built-in type that is not defined in input: {}",
s
);
}
_ => (),
}
}
Ok(())
}
fn analyze_fields(fields: &syn::Fields) -> Result<Vec<Field>> {
fields
.iter()
.map(|f| {
Ok(Field {
name: f.ident.as_ref().map(|id| id.to_string()),
ty: analyze_type(&f.ty)?,
})
})
.collect()
}
fn analyze_generics(generics: &syn::Generics) -> Result<Vec<ItemGeneric>> {
let mut out = vec![];
for g in generics.params.iter() {
match g {
syn::GenericParam::Type(syn::TypeParam { ident, bounds, .. }) => {
let name = ident.to_string();
let bounds = analyze_generic_bounds(bounds)?;
// Generic parameter names that end in '2' conflict with the
// folder's name generation.
if name.ends_with('2') {
bail!("Generic parameters whose name ends in '2' conflict with folder's naming scheme: {}", name);
}
out.push(ItemGeneric { name, bounds });
}
_ => {
bail!(
"Unable to analyze non-type generic parameter: {}",
g.to_token_stream()
)
}
}
}
Ok(out)
}
fn analyze_generic_bounds<'a, I>(bounds: I) -> Result<Vec<String>>
where
I: IntoIterator<Item = &'a syn::TypeParamBound>,
{
let mut out = vec![];
for b in bounds {
match b {
syn::TypeParamBound::Trait(t) if t.path.segments.len() != 1 => {
bail!(
"Unable to analyze trait bound with more than one path segment: {}",
b.to_token_stream()
)
}
syn::TypeParamBound::Trait(t) => out.push(t.path.segments[0].ident.to_string()),
_ => bail!("Unable to analyze non-trait bound: {}", b.to_token_stream()),
}
}
Ok(out)
}
fn analyze_type(ty: &syn::Type) -> Result<Type> {
match ty {
syn::Type::Path(syn::TypePath { qself: None, path }) => match path.segments.len() {
2 => {
let name = path.segments.iter().map(|s| s.ident.to_string()).join("::");
Ok(Type::Abstract(name))
}
1 => {
let segment = path.segments.last().unwrap();
let segment_name = segment.ident.to_string();
let container = |construct_ty: fn(Box<Type>) -> Type| match &segment.arguments {
syn::PathArguments::AngleBracketed(args) if args.args.len() == 1 => {
match args.args.last().unwrap() {
syn::GenericArgument::Type(ty) => {
let inner = Box::new(analyze_type(ty)?);
Ok(construct_ty(inner))
}
_ => bail!("Container type argument is not a basic (i.e., non-lifetime, non-constraint) type argument: {}", ty.into_token_stream()),
}
}
syn::PathArguments::AngleBracketed(_) => bail!(
"Container type does not have exactly one type argument: {}",
ty.into_token_stream()
),
syn::PathArguments::Parenthesized(_) => bail!(
"Container type has unexpected parenthesized type arguments: {}",
ty.into_token_stream()
),
syn::PathArguments::None => bail!(
"Container type is missing type argument: {}",
ty.into_token_stream()
),
};
match &*segment_name {
"bool" | "usize" | "u8" | "u16" | "u32" | "u64" | "isize" | "i8" | "i16"
| "i32" | "i64" | "f32" | "f64" | "char" | "String" | "PathBuf" => {
match segment.arguments {
syn::PathArguments::None => Ok(Type::Primitive),
_ => bail!(
"Primitive type had unexpected arguments: {}",
ty.into_token_stream()
),
}
}
"Vec" => container(Type::Vec),
"Option" => container(Type::Option),
"Box" => container(Type::Box),
"BTreeMap" => match &segment.arguments {
syn::PathArguments::None => bail!("Map type missing arguments"),
syn::PathArguments::AngleBracketed(args) if args.args.len() == 2 => {
let key = match &args.args[0] {
syn::GenericArgument::Type(t) => t,
_ => bail!("Invalid argument to map container, should be a Type"),
};
let value = match &args.args[1] {
syn::GenericArgument::Type(t) => t,
_ => bail!("Invalid argument to map container, should be a Type"),
};
Ok(Type::Map {
key: Box::new(analyze_type(key)?),
value: Box::new(analyze_type(value)?),
})
}
&syn::PathArguments::AngleBracketed(_) => {
bail!("wrong type of arguments for map container")
}
syn::PathArguments::Parenthesized(_) => {
bail!("wrong type of arguments for map container")
}
},
_ => Ok(Type::Local(segment_name)),
}
}
_ => {
bail!(
"Unable to analyze type path with more than two components: '{}'",
path.into_token_stream()
)
}
},
_ => bail!(
"Unable to analyze non-struct, non-enum type: {}",
ty.into_token_stream()
),
}
}